

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

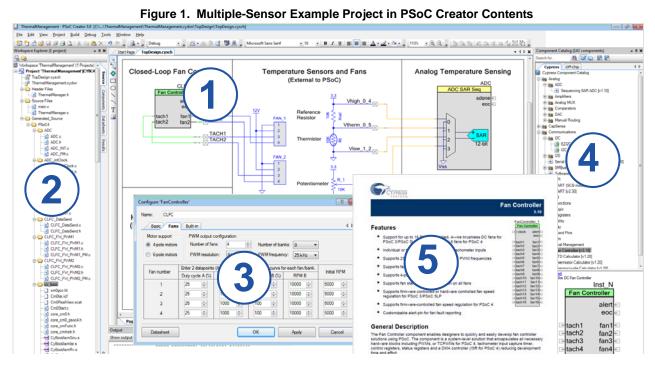
Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART
Peripherals	Bluetooth, Brown-out Detect/Reset, LVD, POR, PWM, SmartCard, SmartSense, WDT
Number of I/O	36
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	56-UFQFN Exposed Pad
Supplier Device Package	56-QFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4247lqi-bl473t

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

More Information

Cypress provides a wealth of data at http://www.cypress.com to help you to select the right PSoC device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the introduction page for Bluetooth® Low Energy (BLE) Products. Following is an abbreviated list for PRoC BLE:


- Overview: PSoC Portfolio, PSoC Roadmap
- Product Selectors: PSoC 1, PSoC 3, PSoC 4, PRoC BLE, PSoC 4 BLE, PSoC 5LP In addition, PSoC Creator includes a device selection tool.
- Application Notes: Cypress offers a large number of PSoC application notes coverting a broad range of topics, from basic to advanced level. Recommended application notes for getting started with PRoC BLE are:
- □ AN94020: Getting Started with PRoC BLE
- □ AN97060: PSoC 4 BLE and PRoC BLE Over-The-Air (OTA) Device Firmware Upgrade (DFU) Guide
- □ AN91184: PSoC 4 BLE Designing BLE Applications
- □ AN91162: Creating a BLE Custom Profile
- □ AN91445: Antenna Design and RF Layout Guidelines
- □ AN96841: Getting Started With EZ-BLE Module

PSoC Creator

- □ AN85951: PSoC 4 CapSense Design Guide
- AN95089: PSoC 4/PRoC BLE Crystal Oscillator Selection and Tuning Techniques
- AN92584: Designing for Low Power and Estimating Battery Life for BLE Applications
- Technical Reference Manual (TRM) is in two documents:
 - Architecture TRM details each PRoC BLE functional block
 - Registers TRM describes each of the PRoC BLE registers
- Development Kits:
 - CY8CKIT-042-BLE-A Pioneer Kit, is a flexible, Arduino-compatible, Bluetooth LE development kit for PSoC 4 BLE and PRoC BLE.
 - CY8CKIT-142, PSoC 4 BLE Module, features a PSoC 4 BLE device, two crystals for the antenna matching network, a PCB antenna and other passives, while providing access to all GPIOs of the device.
 - CY8CKIT-143, PSoC 4 BLE 256KB Module, features a PSoC 4 BLE 256KB device, two crystals for the antenna matching network, a PCB antenna and other passives, while providing access to all GPIOs of the device.
 - The MiniProg3 device provides an interface for flash programming and debug.

PSoC Creator is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware and firmware design of PSoC 3, PSoC 4, and PSoC 5LP based systems. Create designs using classic, familiar schematic capture supported by over 100 pre-verified, production-ready PSoC Components; see the list of component datasheets. With PSoC Creator, you can:

- 1. Drag and drop component icons to build your hardware system design in the main design workspace
- 2. Codesign your application firmware with the PSoC hardware, using the PSoC Creator IDE C compiler
- 3. Configure components using the configuration tools
- 4. Explore the library of 100+ components
- 5. Review component datasheets

Contents

Functional Definition	. 5
CPU and Memory Subsystem	. 5
System Resources	. 5
BLE Radio and Subsystem	6
Analog Blocks	. 7
Programmable Digital	. 8
Fixed-Function Digital	. 9
GPIO	. 9
Special-Function Peripherals	10
Pinouts	11
Power	16
Development Support	17
Documentation	17
Online	17
Tools	17
Electrical Specifications	18
Absolute Maximum Ratings	18
Device-Level Specifications	
Analog Peripherals	23
Digital Peripherals	27

Memory	29
System Resources	
Ordering Information	
Ordering Code Definitions	
Packaging	
WLCSP Compatibility	
Acronyms	
Document Conventions	
Units of Measure	
Revision History	48
Sales, Solutions, and Legal Information	49
Worldwide Sales and Design Support	49
Products	49
PSoC® Solutions	49
Cypress Developer Community	
Technical Support	49

CPU and Memory Subsystem

CPU

The Cortex-M0 CPU in PSoC 4200_BL is part of the 32-bit MCU subsystem, which is optimized for low-power operation with extensive clock gating. It mostly uses 16-bit instructions and executes a subset of the Thumb-2 instruction set. This enables fully compatible binary upward migration of the code to higher-performance processors such as Cortex-M3 and M4. The Cypress implementation includes a hardware multiplier that provides a 32-bit result in one cycle. It includes a nested vectored interrupt controller (NVIC) block with 32 interrupt inputs and a wakeup interrupt controller (WIC). The WIC can wake the processor up from the Deep Sleep mode, allowing power to the main processor to be switched off when the chip is in the Deep Sleep mode. The Cortex-M0 CPU provides a nonmaskable interrupt (NMI) input, which is made available to the user when it is not in use for system functions requested by the user.

The CPU also includes an SWD interface, which is a 2-wire form of JTAG; the debug configuration used for PSoC 4200_BL has four break-point (address) comparators and two watchpoint (data) comparators.

Flash

The PSoC 4200_BL device has a flash module with 256 KB of flash memory, tightly coupled to the CPU to improve average access times from the flash block. The flash block is designed to deliver 2 wait-state (WS) access time at 48 MHz and with 1-WS access time at 24 MHz. The flash accelerator delivers 85% of single-cycle SRAM access performance on average. Part of the flash module can be used to emulate EEPROM operation if required. Maximum erase and program time is 20 ms per row (256 bytes). This also applies to the emulated EEPROM.

SRAM

SRAM memory is retained during Hibernate.

SROM

The 8-KB supervisory ROM contains a library of executable functions for flash programming. These functions are accessed through supervisory calls (SVC) and enable in-system programming of the flash memory.

DMA

A DMA engine, with eight channels, is provided that can do 32-bit transfers and has chainable ping-pong descriptors.

System Resources

Power System

The power system is described in detail in the section Power on page 16. It provides an assurance that the voltage levels are as required for the respective modes, and can either delay the mode entry (on power-on reset (POR), for example) until voltage levels are as required or generate resets (brownout detect (BOD)) or interrupts when the power supply reaches a particular programmable level between 1.8 and 4.5 V (low voltage detect (LVD)).

PSoC 4200_BL operates with a single external supply (1.71 to 5.5 V without radio, and 1.9 V to 5.5 V with radio). The device has five different power modes; transitions between these modes are managed by the power system. PSoC 4200_BL provides Sleep, Deep Sleep, Hibernate, and Stop low-power modes. Refer to the *Technical Reference Manual* for more details.

Clock System

The PSoC 4200_BL clock system is responsible for providing clocks to all subsystems that require clocks and for switching between different clock sources without glitching. In addition, the clock system ensures that no metastable conditions occur.

The clock system for PSoC 4200_BL consists of the internal main oscillator (IMO), the internal low-speed oscillator (ILO), the 24-MHz external crystal oscillator (ECO) and the 32-kHz watch crystal oscillator (WCO). In addition, an external clock may be supplied from a pin.

IMO Clock Source

The IMO is the primary source of internal clocking in PSoC 4200_BL. It is trimmed during testing to achieve the specified accuracy. Trim values are stored in nonvolatile latches (NVL). Additional trim settings from flash can be used to compensate for changes. The IMO default frequency is 24 MHz and it can be adjusted between 3 to 48 MHz in steps of 1 MHz. The IMO tolerance with Cypress-provided calibration settings is $\pm 2\%$.

ILO Clock Source

The ILO is a very low-power oscillator, which is primarily used to generate clocks for the peripheral operation in the Deep Sleep mode. ILO-driven counters can be calibrated to the IMO to improve accuracy. Cypress provides a software component, which does the calibration.

External Crystal Oscillator (ECO)

The ECO is used as the active clock for the BLE subsystem to meet the ± 50 -ppm clock accuracy of the Bluetooth 4.2 Specification. PSoC 4200_BL includes a tunable load capacitor to tune the crystal clock frequency by measuring the actual clock frequency. The high-accuracy ECO clock can also be used as a system clock.

Watch Crystal Oscillator (WCO)

The WCO is used as the sleep clock for the BLE subsystem to meet the \pm 500-ppm clock accuracy for the Bluetooth 4.2 Specification. The sleep clock provides an accurate sleep timing and enables wakeup at the specified advertisement and connection intervals. The WCO output can be used to realize the real-time clock (RTC) function in firmware.

Watchdog Timer

A watchdog timer is implemented in the clock block running from the ILO or from the WCO; this allows the watchdog operation during Deep Sleep and generates a watchdog reset if not serviced before the timeout occurs. The watchdog reset is recorded in the Reset Cause register. With the WCO and firmware, an accurate real-time clock (within the bounds of the 32-kHz crystal accuracy) can be realized.

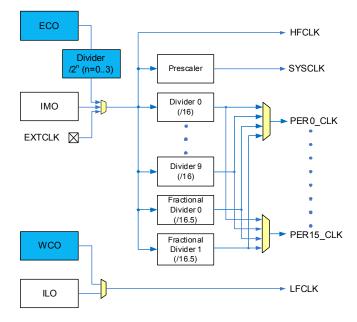


Figure 3. PSoC 4200_BL MCU Clocking Architecture

The HFCLK signal can be divided down (see Figure 3) to generate synchronous clocks for the UDBs, and the analog and digital peripherals. There are a total of 12 clock dividers for PSoC 4200_BL: ten with 16-bit divide capability and two with 16.5-bit divide capability. This allows the generation of 16 divided clock signals, which can be used by peripheral blocks. The analog clock leads the digital clocks to allow analog events to occur before the digital clock-related noise is generated. The 16-bit and 16.5-bit dividers allow a lot of flexibility in generating fine-grained frequency values and are fully supported in PSoC Creator.

Reset

PSoC 4200_BL device can be reset from a variety of sources including a software reset. Reset events are asynchronous and guarantee reversion to a known state. The reset cause is recorded in a register, which is sticky through resets and allows the software to determine the cause of the reset. An XRES pin is reserved for an external reset to avoid complications with the configuration and multiple pin functions during power-on or reconfiguration. The XRES pin has an internal pull-up resistor that is always enabled.

Voltage Reference

The PSoC 4200_BL reference system generates all internally required references. A one-percent voltage reference spec is provided for the 12-bit ADC. To allow better signal-to-noise ratios (SNR) and better absolute accuracy, it is possible to bypass the internal reference using a GPIO pin or use an external reference for the SAR. Refer to Table 19, "SAR ADC AC Specifications," on page 26 for details.

BLE Radio and Subsystem

PSoC 4200_BL incorporates a Bluetooth Smart subsystem that contains the Physical Layer (PHY) and Link Layer (LL) engines with an embedded AES-128 security engine. The physical layer consists of the digital PHY and the RF transceiver that transmits and receives GFSK packets at 1 Mbps over a 2.4-GHz ISM band, which is compliant with Bluetooth Smart Bluetooth Specification 4.2. The baseband controller is a composite hardware and firmware implementation that supports both master and slave modes. Key protocol elements, such as HCI and link control, are implemented in firmware. Time-critical functional blocks, such as encryption, CRC, data whitening, and access code correlation, are implemented in hardware (in the LL engine).

The RF transceiver contains an integrated balun, which provides a single-ended RF port pin to drive a 50- Ω antenna via a matching/filtering network. In the receive direction, this block converts the RF signal from the antenna to a digital bit stream after performing GFSK demodulation. In the transmit direction, this block performs GFSK modulation and then converts a digital baseband signal to a radio frequency before transmitting it to air through the antenna.

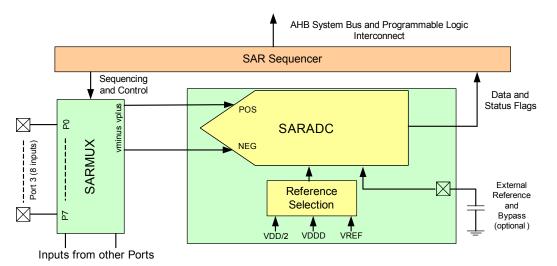
The Bluetooth Smart Radio and Subsystem (BLESS) requires a 1.9-V minimum supply (the range varies from 1.9 V to 5.5 V).

Key features of BLESS are as follows:

- Master and slave single-mode protocol stack with logical link control and adaptation protocol (L2CAP), attribute (ATT), and security manager (SM) protocols
- API access to generic attribute profile (GATT), generic access profile (GAP), and L2CAP
- L2CAP connection-oriented channel
- GAP features
 - Broadcaster, Observer, Peripheral, and Central roles
 - □ Security mode 1: Level 1, 2, 3, and 4
 - □ Security mode 2: Level 1 and 2
 - □ User-defined advertising data
 - Multiple bond support
- GATT features
 - GATT client and server
 - Supports GATT sub-procedures
 - □ 32-bit universally unique identifier (UUID)
- Security Manager (SM)
 - Pairing methods: Just works, Passkey Entry, Out of Band and Numeric Comparison
 - Authenticated man-in-the-middle (MITM) protection and data signing
 - LE Secure Connections (Bluetooth 4.2 feature)
- Link Layer (LL)
 - Master and Slave roles
 - □ 128-bit AES engine
 - Encryption
 - □ Low-duty cycle advertising
 - □ LE Ping
 - D LE Data Packet Length Extension (Bluetooth 4.2 feature)
 - Link Layer Privacy (with extended scanning filter policy, Bluetooth 4.2 feature)
- Supports all SIG-adopted BLE profiles

Analog Blocks

12-bit SAR ADC


The 12-bit, 1-Msps SAR ADC can operate at a maximum clock rate of 18 MHz and requires a minimum of 18 clocks at that frequency to do a 12-bit conversion.

The block functionality is augmented for the user by adding a reference buffer to it (trimmable to ±1%) and by providing the choice of three internal voltage references, V_{DD} , $V_{DD}/2$, and V_{REF} (nominally 1.024 V), as well as an external reference through a GPIO pin. The Sample-and-Hold (S/H) aperture is programmable; it allows the gain bandwidth requirements of the amplifier driving the SAR inputs, which determine its settling time, to be relaxed if required. System performance will be 65 dB for true 12-bit precision provided appropriate references are used and system noise levels permit it. To improve the performance in noisy conditions, it is possible to provide an external bypass (through a fixed pin location) for the internal reference amplifier.

The SAR is connected to a fixed set of pins through an 8-input sequencer. The sequencer cycles through the selected channels autonomously (sequencer scan) and does so with zero switching overhead (that is, the aggregate sampling bandwidth is equal to 1 Msps whether it is for a single channel or distributed over several channels). The sequencer switching is effected through a state machine or through firmware-driven switching. A feature provided by the sequencer is the buffering of each channel to reduce CPU interrupt-service requirements. To accommodate signals with varying source impedances and frequencies, it is possible to have different sample times programmable for each channel. Also, the signal range specification through a pair of range registers (low and high range values) is implemented with a corresponding out-of-range interrupt if the digitized value exceeds the programmed range; this allows fast detection of out-of-range values without having to wait for a sequencer scan to be completed and the CPU to read the values and check for out-of-range values in software.

The SAR is able to digitize the output of the on-chip temperature sensor for calibration and other temperature-dependent functions. The SAR is not available in Deep Sleep and Hibernate modes as it requires a high-speed clock (up to 18 MHz). The SAR operating range is 1.71 to 5.5 V.

Opamps (CTBm Block)

PSoC 42X8_BLE has four opamps with Comparator modes, which allow most common analog functions to be performed on-chip, eliminating external components. PGAs, voltage buffers, filters, transimpedance amplifiers, and other functions can be realized with external passives saving power, cost, and space. The on-chip opamps are designed with enough bandwidth to drive the sample-and-hold circuit of the ADC without requiring external buffering.

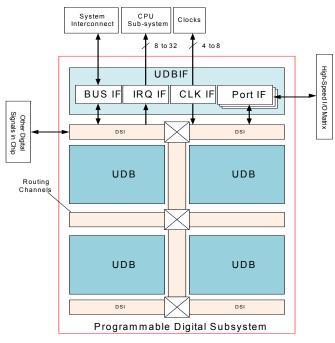
Temperature Sensor

PSoC 4200_BL has an on-chip temperature sensor. This consists of a diode, which is biased by a current source that can be disabled to save power. The temperature sensor is connected

to the ADC, which digitizes the reading and produces a temperature value by using a Cypress-supplied software that includes calibration and linearization.

Low-Power Comparators

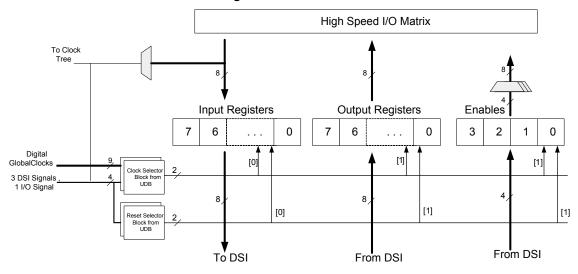
PSoC 4200_BL has a pair of low-power comparators, which can also operate in Deep Sleep and Hibernate modes. This allows the analog system blocks to be disabled while retaining the ability to monitor external voltage levels during low-power modes. The comparator outputs are normally synchronized to avoid metastability unless operating in an asynchronous power mode (Hibernate) where the system wake-up circuit is activated by a comparator-switch event.



Programmable Digital

Universal Digital Blocks (UDBs) and Port Interfaces

The PSoC 4XX8 BLE 4.2 has four UDBs; the UDB array also provides a switched Digital System Interconnect (DSI) fabric that allows signals from peripherals and ports to be routed to and through the UDBs for communication and control.


Figure 5. UDB Array

UDBs can be clocked from a clock-divider block, from a port interface (required for peripherals such as SPI), and from the DSI network directly or after synchronization.

A port interface is defined, which acts as a register that can be clocked with the same source as the PLDs inside the UDB array. This allows a faster operation because the inputs and outputs can be registered at the port interface close to the I/O pins and at the edge of the array. The port interface registers can be clocked by one of the I/Os from the same port. This allows interfaces such as SPI to operate at higher clock speeds by eliminating the delay for the port input to be routed over DSI and used to register other inputs (see Figure 6).

Figure 6. Port Interface

UDBs can generate interrupts (one UDB at a time) to the interrupt controller. UDBs retain the ability to connect to any pin on the chip through the DSI.

Special-Function Peripherals

LCD Segment Drive

PSoC 4200_BL has an LCD controller, which can drive up to four commons and up to 32 segments. It uses full digital methods to drive the LCD segments requiring no generation of internal LCD voltages. The two methods used are referred to as digital correlation and PWM.

The digital correlation method modulates the frequency and levels of the common and segment signals to generate the highest RMS voltage across a segment to light it up or to keep the RMS signal zero. This method is good for STN displays but may result in reduced contrast with TN (cheaper) displays.

The PWM method drives the panel with PWM signals to effectively use the capacitance of the panel to provide the integration of the modulated pulse-width to generate the desired LCD voltage. This method results in higher power consumption but can result in better results when driving TN displays. LCD operation is supported during Deep Sleep mode, refreshing a small display buffer (four bits; one 32-bit register per port).

CapSense

CapSense is supported on all pins in PSoC 4200_BL through a CapSense Sigma-Delta (CSD) block that can be connected to any pin through an analog mux bus that any GPIO pin can be connected to via an Analog switch. CapSense function can thus be provided on any pin or group of pins in a system under software control. A Component is provided for the CapSense block to make it easy for the user.

The shield voltage can be driven on another mux bus to provide liquid-tolerance capability. Liquid tolerance is provided by driving the shield electrode in phase with the sense electrode to keep the shield capacitance from attenuating the sensed input.

The CapSense block has two IDACs which can be used for general purposes if CapSense is not being used (both IDACs are available in that case) or if CapSense is used without liquid tolerance (one IDAC is available).

Pin	Name	Туре	Description
40	P2.3	GPIO	Port 2 Pin 3, Icd, csd
41	P2.4	GPIO	Port 2 Pin 4, lcd, csd
42	P2.5	GPIO	Port 2 Pin 5, lcd, csd
43	P2.6	GPIO	Port 2 Pin 6, lcd, csd
44	P2.7	GPIO	Port 2 Pin 7, lcd, csd
45	VREF	REF	1.024-V reference
46	VDDA	POWER	1.71-V to 5.5-V analog supply
47	P3.0	GPIO	Port 3 Pin 0, lcd, csd
48	P3.1	GPIO	Port 3 Pin 1, lcd, csd
49	P3.2	GPIO	Port 3 Pin 2, lcd, csd
50	P3.3	GPIO	Port 3 Pin 3, lcd, csd
51	P3.4	GPIO	Port 3 Pin 4, lcd, csd
52	P3.5	GPIO	Port 3 Pin 5, lcd, csd
53	P3.6	GPIO	Port 3 Pin 6, lcd, csd
54	P3.7	GPIO	Port 3 Pin 7, lcd, csd
55	VSSA	GROUND	Analog ground
56	VCCD	POWER	Regulated 1.8-V supply, connect to 1.3-µF capacitor.
57	EPAD	GROUND	Ground paddle for the QFN package

Table 1. PSoC 4200_BL Pin List (QFN Package) (continued)

Table 2. PSoC 4200_BL Pin List (WLCSP Package)

Pin	Name	Туре	Description
A1	NC	NC	Do not connect
A2	VREF	REF	1.024-V reference
A3	VSSA	GROUND	Analog ground
A4	P3.3	GPIO	Port 3 Pin 3, analog/digital/lcd/csd
A5	P3.7	GPIO	Port 3 Pin 7, analog/digital/lcd/csd
A6	VSSD	GROUND	Digital ground
A7	VSSA	GROUND	Analog ground
A8	VCCD	POWER	Regulated 1.8-V supply, connect to 1-µF capacitor
A9	VDDD	POWER	1.71-V to 5.5-V digital supply
B1	NB	NO BALL	No Ball
B2	P2.3	GPIO	Port 2 Pin 3, analog/digital/lcd/csd
B3	VSSA	GROUND	Analog ground
B4	P2.7	GPIO	Port 2 Pin 7, analog/digital/lcd/csd
B5	P3.4	GPIO	Port 3 Pin 4, analog/digital/lcd/csd
B6	P3.5	GPIO	Port 3 Pin 5, analog/digital/lcd/csd
B7	P3.6	GPIO	Port 3 Pin 6, analog/digital/lcd/csd
B8	XTAL32I/P6.1	CLOCK	32.768-kHz crystal or external clock input
B9	XTAL320/P6.0	CLOCK	32.768-kHz crystal
C1	NC	NC	Do not connect

The selection of peripheral function for different GPIO pins is given in Table 4.

Table 4. Port Pin Connections

Nome	Anglen	Digital								
Name	Analog	GPIO	Active #0	Active #1	Active #2	Deep Sleep #0	Deep Sleep #1			
P0.0	COMP0_INP	GPIO	TCPWM0_P[3]	SCB1_UART_RX[1]	-	SCB1_I2C_SDA[1]	SCB1_SPI_MOSI[1]			
P0.1	COMP0_INN	GPIO	TCPWM0_N[3]	SCB1_UART_TX[1]	-	SCB1_I2C_SCL[1]	SCB1_SPI_MISO[1]			
P0.2	-	GPIO	TCPWM1_P[3]	SCB1_UART_RTS[1]	-	COMP0_OUT[0]	SCB1_SPI_SS0[1]			
P0.3	-	GPIO	TCPWM1_N[3]	SCB1_UART_CTS[1]	-	COMP1_OUT[0]	SCB1_SPI_SCLK[1]			
P0.4	COMP1_INP	GPIO	TCPWM1_P[0]	SCB0_UART_RX[1]	EXT_CLK[0]/ ECO_OUT[0]	SCB0_I2C_SDA[1]	SCB0_SPI_MOSI[1]			
P0.5	COMP1_INN	GPIO	TCPWM1_N[0]	SCB0_UART_TX[1]	-	SCB0_I2C_SCL[1]	SCB0_SPI_MISO[1]			
P0.6	-	GPIO	TCPWM2_P[0]	SCB0_UART_RTS[1]	-	SWDIO[0]	SCB0_SPI_SS0[1]			
P0.7	-	GPIO	TCPWM2_N[0]	SCB0_UART_CTS[1]	-	SWDCLK[0]	SCB0_SPI_SCLK[1]			
P1.0	CTBm1_OA0_INP	GPIO	TCPWM0_P[1]	-	-	COMP0_OUT[1]	WCO_OUT[2]			
P1.1	CTBm1_OA0_INN	GPIO	TCPWM0_N[1]	-	-	COMP1_OUT[1]	SCB1_SPI_SS1			
P1.2	CTBm1_OA0_OUT	GPIO	TCPWM1_P[1]	-	-	_	SCB1_SPI_SS2			
P1.3	CTBm1_OA1_OUT	GPIO	TCPWM1_N[1]	-	-	-	SCB1_SPI_SS3			
P1.4	CTBm1_OA1_INN	GPIO	TCPWM2_P[1]	SCB0_UART_RX[0]	-	SCB0_I2C_SDA[0]	SCB0_SPI_MOSI[1]			
P1.5	CTBm1_OA1_INP	GPIO	TCPWM2_N[1]	SCB0_UART_TX[0]	-	SCB0_I2C_SCL[0]	SCB0_SPI_MISO[1]			
P1.6	CTBm1_OA0_INP	GPIO	TCPWM3_P[1]	SCB0_UART_RTS[0]	-	-	SCB0_SPI_SS0[1]			
P1.7	CTBm1_OA1_INP	GPIO	TCPWM3_N[1]	SCB0_UART_CTS[0]	-	_	SCB0_SPI_SCLK[1]			
P2.0	CTBm0_OA0_INP	GPIO	-	-	-	_	SCB0_SPI_SS1			
P2.1	CTBm0_OA0_INN	GPIO	-	-	-	-	SCB0_SPI_SS2			
P2.2	CTBm0_OA0_OUT	GPIO	-	-	-	WAKEUP	SCB0_SPI_SS3			
P2.3	CTBm0_OA1_OUT	GPIO	-	-	-	_	WCO_OUT[1]			
P2.4	CTBm0_OA1_INN	GPIO	-	-	-	-	-			
P2.5	CTBm0_OA1_INP	GPIO	-	-	-	-	-			
P2.6	CTBm0_OA0_INP	GPIO	-	-	-	-	-			
P2.7	CTBm0_OA1_INP	GPIO	-	-	EXT_CLK[1]/ECO_OUT[1]	-	-			
P3.0	SARMUX_0	GPIO	TCPWM0_P[2]	SCB0_UART_RX[2]	-	SCB0_I2C_SDA[2]	-			
P3.1	SARMUX_1	GPIO	TCPWM0_N[2]	SCB0_UART_TX[2]	-	SCB0_I2C_SCL[2]	-			
P3.2	SARMUX_2	GPIO	TCPWM1_P[2]	SCB0_UART_RTS[2]	-	_	-			
P3.3	SARMUX_3	GPIO	TCPWM1_N[2]	SCB0_UART_CTS[2]	-	_	-			
P3.4	SARMUX_4	GPIO	TCPWM2_P[2]	SCB1_UART_RX[2]	-	SCB1_I2C_SDA[2]	-			
P3.5	SARMUX_5	GPIO	TCPWM2_N[2]	SCB1_UART_TX[2]	-	SCB1_I2C_SCL[2]	-			
P3.6	SARMUX_6	GPIO	TCPWM3_P[2]	SCB1_UART_RTS[2]	-	-	-			
P3.7	SARMUX_7	GPIO	TCPWM3_N[2]	SCB1_UART_CTS[2]	-	-	WCO_OUT[0]			
P4.0	CMOD	GPIO	TCPWM0_P[0]	SCB1_UART_RTS[0]	-	_	SCB1_SPI_MOSI[0]			
P4.1	CTANK	GPIO	TCPWM0_N[0]	SCB1_UART_CTS[0]	-	_	SCB1_SPI_MISO[0]			
P5.0	-	GPIO	TCPWM3_P[0]	SCB1_UART_RX[0]	EXTPA_EN	SCB1_I2C_SDA[0]	SCB1_SPI_SS0[0]			
P5.1	-	GPIO	TCPWM3_N[0]	SCB1_UART_TX[0]	EXT_CLK[2]/ECO_OUT[2]	SCB1_I2C_SCL[0]	SCB1_SPI_SCLK[0]			
P6.0_XTAL32O	-	GPIO	-	-	-	-	-			
P6.1_XTAL32I	-	GPIO	-	-	-	-	_			

Table 19. SAR ADC AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID167	A_psrr	Power supply rejection ratio	70	-	-	dB	Measured at 1-V reference
SID168	A_cmrr	Common mode rejection ratio	66	_	_	dB	-
SID169	A_samp	Sample rate	-	_	1	Msps	
SID313	Fsarintref	SAR operating speed without external ref. bypass	_	-	100	Ksps	12-bit resolution
SID170	A_snr	Signal-to-noise ratio (SNR)	65	_	_	dB	Fin = 10 kHz
SID171	A_bw	Input bandwidth without aliasing	-	_	A_samp/2	kHz	-
SID172	A_inl	Integral non linearity. V _{DD} = 1.71 to 5.5 V, 1 Msps	-1.7	-	2	LSB	Vref = 1 V to V _{DD}
SID173	A_INL	Integral non linearity. V _{DDD} = 1.71 to 3.6 V, 1 Msps	-1.5	-	1.7	LSB	Vref = 1.71 V to V _{DD}
SID174	A_INL	Integral non linearity. V _{DD} = 1.71 to 5.5 V, 500 Ksps	-1.5	-	1.7	LSB	Vref = 1 V to V _{DD}
SID175	A_dnl	Differential non linearity. V _{DD} = 1.71 to 5.5 V, 1 Msps	-1	_	2.2	LSB	Vref = 1 V to V _{DD}
SID176	A_DNL	Differential non linearity. V _{DD} = 1.71 to 3.6 V, 1 Msps	-1	-	2	LSB	Vref = 1.71 V to V _{DD}
SID177	A_DNL	Differential non linearity. V _{DD} = 1.71 to 5.5 V, 500 Ksps	-1	_	2.2	LSB	Vref = 1 V to V _{DD}
SID178	A_thd	Total harmonic distortion	_	_	-65	dB	Fin = 10 kHz

CSD

Table 20. CSD Block Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID179	V _{CSD}	Voltage range of operation	1.71	-	5.5	V	-
SID180	IDAC1	DNL for 8-bit resolution	-1	_	1	LSB	-
SID181	IDAC1	INL for 8-bit resolution	-3	_	3	LSB	-
SID182	IDAC2	DNL for 7-bit resolution	-1	_	1	LSB	-
SID183	IDAC2	INL for 7-bit resolution	-3	_	3	LSB	-
SID184	SNR	Ratio of counts of finger to noise	5	_	_	Ratio	Capacitance range of 9 to 35 pF, 0.1 pF sensitivity. Radio is not operating during the scan
SID185	IDAC1_CRT1	Output current of IDAC1 (8 bits) in High range	_	612	_	μA	_
SID186	I _{DAC1_CRT2}	Output current of IDAC1 (8 bits) in Low range	_	306	_	μA	-
SID187	IDAC2_CRT1	Output current of IDAC2 (7 bits) in High range	_	305	_	μA	_
SID188	I _{DAC2_CRT2}	Output current of IDAC2 (7 bits) in Low range	-	153	_	μA	_

Table 32. Fixed UART AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID236	F _{UART}	Bit rate	Ι	-	1	Mbps	_

SPI Specifications

Table 33. Fixed SPI DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID237	I _{SPI1}	Block current consumption at 1 Mbps	-	-	360	μA	-
SID238	I _{SPI2}	Block current consumption at 4 Mbps	-	-	560	μA	_
SID239	I _{SPI3}	Block current consumption at 8 Mbps	-	-	600	μA	_

Table 34. Fixed SPI AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID240		SPI operating frequency (master; 6X oversampling)	-	-	8	MHz	-

Table 35. Fixed SPI Master Mode AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID241	Т _{DMO}	MOSI valid after Sclock driving edge	-	-	18	ns	_
SID242	T _{DSI}	MISO valid before Sclock capturing edge. Full clock, late MISO sampling used	20	-	_	ns	Full clock, late MISO sampling
SID243	T _{HMO}	Previous MOSI data hold time	0	-	_	ns	Referred to Slave capturing edge

Table 36. Fixed SPI Slave Mode AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID244	T _{DMI}	MOSI valid before Sclock capturing edge	40	-	-	ns	-
SID245	T _{DSO}	MISO valid after Sclock driving edge	-	-	42 + 3 × T _{CPU}	ns	_
SID246	T _{DSO_ext}	MISO valid after Sclock driving edge in external clock mode	-	-	53	ns	V _{DD} < 3.0 V
SID247	T _{HSO}	Previous MISO data hold time	0	-	-	ns	-
SID248	T _{SSELSCK}	SSEL valid to first SCK valid edge	100	-	_	ns	_

Memory

Table 37. Flash DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID249	V _{PE}	Erase and program voltage	1.71	1	5.5	V	_
SID309	T _{WS48}	Number of Wait states at 32–48 MHz	2	Ι	Ι		CPU execution from flash
SID310	T _{WS32}	Number of Wait states at 16–32 MHz	1	I	I		CPU execution from flash
SID311	T _{WS16}	Number of Wait states for 0–16 MHz	0	-	-		CPU execution from flash

Voltage Monitors

Table 43. Voltage Monitor DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID265	V _{LVI1}	LVI_A/D_SEL[3:0] = 0000b	1.71	1.75	1.79	V	-
SID266	V _{LVI2}	LVI_A/D_SEL[3:0] = 0001b	1.76	1.80	1.85	V	-
SID267	V _{LVI3}	LVI_A/D_SEL[3:0] = 0010b	1.85	1.90	1.95	V	-
SID268	V _{LVI4}	LVI_A/D_SEL[3:0] = 0011b	1.95	2.00	2.05	V	-
SID269	V _{LVI5}	LVI_A/D_SEL[3:0] = 0100b	2.05	2.10	2.15	V	-
SID270	V _{LVI6}	LVI_A/D_SEL[3:0] = 0101b	2.15	2.20	2.26	V	-
SID271	V _{LVI7}	LVI_A/D_SEL[3:0] = 0110b	2.24	2.30	2.36	V	-
SID272	V _{LVI8}	LVI_A/D_SEL[3:0] = 0111b	2.34	2.40	2.46	V	-
SID273	V _{LVI9}	LVI_A/D_SEL[3:0] = 1000b	2.44	2.50	2.56	V	-
SID274	V _{LVI10}	LVI_A/D_SEL[3:0] = 1001b	2.54	2.60	2.67	V	-
SID2705	V _{LVI11}	LVI_A/D_SEL[3:0] = 1010b	2.63	2.70	2.77	V	-
SID276	V _{LVI12}	LVI_A/D_SEL[3:0] = 1011b	2.73	2.80	2.87	V	-
SID277	V _{LVI13}	LVI_A/D_SEL[3:0] = 1100b	2.83	2.90	2.97	V	-
SID278	V _{LVI14}	LVI_A/D_SEL[3:0] = 1101b	2.93	3.00	3.08	V	-
SID279	V _{LVI15}	LVI_A/D_SEL[3:0] = 1110b	3.12	3.20	3.28	V	-
SID280	V _{LVI16}	LVI_A/D_SEL[3:0] = 1111b	4.39	4.50	4.61	V	-
SID281	LVI_IDD	Block current	-	-	100	μA	-

Table 44. Voltage Monitor AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID282	T _{MONTRIP}	Voltage monitor trip time	Ι	_	1	μs	_

SWD Interface

Table 45. SWD Interface Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID283	F_SWDCLK1	$3.3~V \leq V_{DD} \leq 5.5~V$	_	_	14	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID284	F_SWDCLK2	$1.71 \text{ V} \le \text{V}_{DD} \le 3.3 \text{ V}$	_	_	7		SWDCLK ≤ 1/3 CPU clock frequency
SID285	T_SWDI_SETUP	T = 1/f SWDCLK	0.25 × T	-	-	ns	-
SID286	T_SWDI_HOLD	T = 1/f SWDCLK	0.25 × T	-	-	ns	-
SID287	T_SWDO_VALID	T = 1/f SWDCLK	-	-	0.5 × T	ns	-
SID288	T_SWDO_HOLD	T = 1/f SWDCLK	1	_	_	ns	-

Internal Main Oscillator

Table 46. IMO DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID289	I _{IMO1}	IMO operating current at 48 MHz	_	-	1000	μA	-
SID290	I _{IMO2}	IMO operating current at 24 MHz	-	-	325	μA	-
SID291	I _{IMO3}	IMO operating current at 12 MHz	-	-	225	μA	-
SID292	I _{IMO4}	IMO operating current at 6 MHz	-	-	180	μA	-
SID293	I _{IMO5}	IMO operating current at 3 MHz	_	-	150	μA	-

Table 47. IMO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID296	F _{IMOTOL3}	Frequency variation from 3 to 48 MHz	_	-	±2	%	With API-called calibration
SID297	F _{IMOTOL3}	IMO startup time	_	-	12	μs	_

Internal Low-Speed Oscillator

Table 48. ILO DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID298	I _{ILO2}	ILO operating current at 32 kHz	-	0.3	1.05	μA	-

Table 49. ILO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID299	T _{STARTILO1}	ILO startup time	-	-	2	ms	-
SID300	F _{ILOTRIM1}	32-kHz trimmed frequency	15	32	50	kHz	-

Table 50. External Clock Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID301	ExtClkFreq	External clock input frequency	0	-	48	MHz	CMOS input level only
SID302	ExtClkDuty	Duty cycle; Measured at $V_{DD/2}$	45	-	55	%	CMOS input level only

Table 51. UDB AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions		
Data Path	Data Path performance								
SID303	F _{MAX-TIMER}	Max frequency of 16-bit timer in a UDB pair	_	-	48	MHz	-		
SID304	F _{MAX-ADDER}	Max frequency of 16-bit adder in a UDB pair	_	-	48	MHz	-		
SID305	F _{MAX_CRC}	Max frequency of 16-bit CRC/PRS in a UDB pair	-	-	48	MHz	_		
PLD Perfor	rmance in UDB								
SID306	F _{MAX_PLD}	Max frequency of 2-pass PLD function in a UDB pair	_	_	48	MHz	-		
Clock to O	utput Performance								
SID307	T _{CLK_OUT_UDB1}	Prop. delay for clock in to data out at 25 °C, Typical	_	15	_	ns	-		
SID308	T _{CLK_OUT_UDB2}	Prop. delay for clock in to data out, Worst case	_	25	_	ns	_		

Table 52. BLE Subsystem

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
RF Receiv	er Specification						
SID340		RX sensitivity with idle transmitter	-	-89	-	dBm	-
SID340A	RXS, IDLE	RX sensitivity with idle transmitter excluding Balun loss	-	-91	-	dBm	Guaranteed by design simulation
SID341	RXS, DIRTY	RX sensitivity with dirty transmitter	_	-87	-70	dBm	RF-PHY Specification (RCV-LE/CA/01/C)
SID342	RXS, HIGHGAIN	RX sensitivity in high-gain mode with idle transmitter	-	-91	-	dBm	-
SID343	PRXMAX	Maximum input power	-10	-1	-	dBm	RF-PHY Specification (RCV-LE/CA/06/C)
SID344	CI1	Co-channel interference, Wanted signal at –67 dBm and Inter- ferer at FRX	Ι	9	21	dB	RF-PHY Specification (RCV-LE/CA/03/C)
SID345	CI2	Adjacent channel interference Wanted signal at –67 dBm and Inter- ferer at FRX ±1 MHz	_	3	15	dB	RF-PHY Specification (RCV-LE/CA/03/C)
SID346	CI3	Adjacent channel interference Wanted signal at –67 dBm and Inter- ferer at FRX ±2 MHz	-	-29	-	dB	RF-PHY Specification (RCV-LE/CA/03/C)
SID347	Cl4	Adjacent channel interference Wanted signal at –67 dBm and Inter- ferer at ≥FRX ±3 MHz	-	-39	-	dB	RF-PHY Specification (RCV-LE/CA/03/C)
SID348	CI5	Adjacent channel interference Wanted Signal at –67 dBm and Inter- ferer at Image frequency (F _{IMAGE})	-	-20	_	dB	RF-PHY Specification (RCV-LE/CA/03/C)
SID349	Cl6	Adjacent channel interference Wanted signal at –67 dBm and Inter- ferer at Image frequency (F _{IMAGE} ± 1 MHz)	_	-30	_	dB	RF-PHY Specification (RCV-LE/CA/03/C)
SID350	OBB1	Out-of-band blocking, Wanted signal at –67 dBm and Inter- ferer at F = 30–2000 MHz	-30	-27	-	dBm	RF-PHY Specification (RCV-LE/CA/04/C)
SID351	OBB2	Out-of-band blocking, Wanted signal at –67 dBm and Inter- ferer at F = 2003–2399 MHz	-35	-27	-	dBm	RF-PHY Specification (RCV-LE/CA/04/C)
SID352	OBB3	Out-of-band blocking, Wanted signal at –67 dBm and Inter- ferer at F = 2484–2997 MHz	-35	-27	_	dBm	RF-PHY Specification (RCV-LE/CA/04/C)
SID353	OBB4	Out-of-band blocking, Wanted signal a –67 dBm and Inter- ferer at F = 3000–12750 MHz	-30	-27	_	dBm	RF-PHY Specification (RCV-LE/CA/04/C)
SID354	IMD	Intermodulation performance Wanted signal at –64 dBm and 1-Mbps BLE, third, fourth, and fifth offset channel	-50	-	_	dBm	RF-PHY Specification (RCV-LE/CA/05/C)
SID355	RXSE1	Receiver spurious emission 30 MHz to 1.0 GHz	_	-	-57	dBm	100-kHz measurement bandwidth ETSI EN300 328 V1.8.1

Table 52. BLE Subsystem (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions		
SID378	ITX,-6dBm	TX current at –6-dBm setting (PA3)	-	14.5	-	mA	-		
SID379	ITX,-12dBm	TX current at –12-dBm setting (PA2)	-	13.2	-	mA	-		
SID380	ITX,-18dBm	TX current at –18-dBm setting (PA1)	-	12.5	_	mA	-		
SID380A	lavg_1sec, 0dBm	Average current at 1-second BLE connection interval	-	17.1	_	μΑ	TXP: 0 dBm; ±20-ppm master and slave clock accuracy.		
SID380B	lavg_4sec, 0dBm	Average current at 4-second BLE connection interval	-	6.1	-	μΑ	TXP: 0 dBm; ±20-ppm master and slave clock accuracy.		
General R	F Specifications								
SID381	FREQ	RF operating frequency	2400	-	2482	MHz	-		
SID382	CHBW	Channel spacing	-	2	-	MHz	-		
SID383	DR	On-air data rate	-	1000	-	kbps	-		
SID384	IDLE2TX	BLE.IDLE to BLE. TX transition time	-	120	140	μs	-		
SID385	IDLE2RX	BLE.IDLE to BLE. RX transition time	-	75	120	μs	-		
RSSI Spec	ifications		•						
SID386	RSSI, ACC	RSSI accuracy – ±5			-	dB	-		
SID387	RSSI, RES	RSSI resolution	-	1	-	dB	-		
SID388	RSSI, PER	RSSI sample period	_	6	_	μs	-		

Table 53. ECO Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID389	F _{ECO}	Crystal frequency	-	24	_	MHz	-
SID390	F _{TOL}	Frequency tolerance	-50	_	50	ppm	-
SID391	ESR	Equivalent series resistance	-	-	60	Ω	_
SID392	PD	Drive level	-	-	100	μW	_
SID393	T _{START1}	Startup time (Fast Charge on)	-	-	850	μs	_
SID394	T _{START2}	Startup time (Fast Charge off)	-	-	3	ms	_
SID395	CL	Load capacitance	-	8	_	pF	-
SID396	C0	Shunt capacitance	-	1.1	—	pF	-
SID397	I _{ECO}	Operating current	_	1400	I	μA	_

Ordering Information

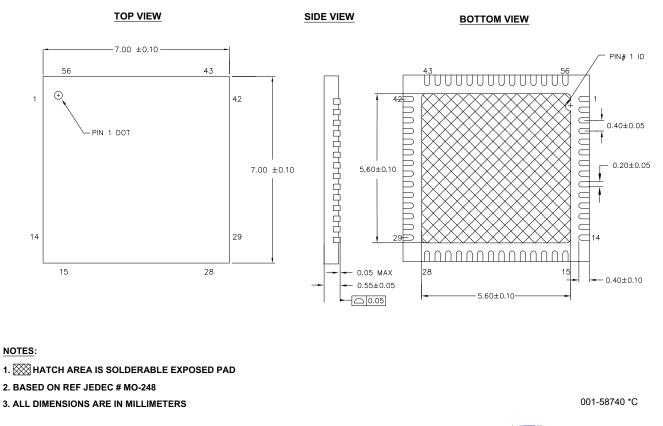
The PSoC 4200_BL part numbers and features are listed in Table 55.

Table 55. PSoC 4200_BL Part Numbers

Product Family	NGW	Max CPU Speed (MHz)	BLE subsystem	Flash (KB)	SRAM (KB)	UDB	Opamp	CapSense	TMG (Gestures)	Direct LCD Drive	12-bit SAR ADC	DMA	LP Comparators	TCPWM Blocks	SCB Blocks	GPIO	Package	Temperature Range
	CY8C4247LQI-BL473	48	4.1	128	16	4	4	-	-	-	1 Msps	-	2	4	2	36	QFN	85 °C
	CY8C4247FNI-BL473	48	4.1	128	16	4	4	-	-	-	1 Msps	-	2	4	2	36	CSP	85 °C
	CY8C4247LQI-BL453	48	4.1	128	16	4	4	1	-	-	1 Msps	-	2	4	2	36	QFN	85 °C
	CY8C4247LQI-BL463	48	4.1	128	16	4	4	Ι	-	1	1 Msps	-	2	4	2	36	QFN	85 °C
	CY8C4247LQI-BL483	48	4.1	128	16	4	4	1	-	1	1 Msps	-	2	4	2	36	QFN	85 °C
	CY8C4247LQI-BL493	48	4.1	128	16	4	4	1	1	1	1 Msps	-	2	4	2	36	QFN	85 °C
	CY8C4247FNI-BL483	48	4.1	128	16	4	4	1	-	1	1 Msps	-	2	4	2	36	68-CSP	85 °C
	CY8C4247FNI-BL493	48	4.1	128	16	4	4	1	1	1	1 Msps	-	2	4	2	36	68-CSP	85 °C
	CY8C4247FNQ-BL483	48	4.1	128	16	4	4	1	-	1	1 Msps	-	2	4	2	36	68-CSP	105 °C
	CY8C4247LQQ-BL483	48	4.1	128	16	4	4	1	-	1	1 Msps	-	2	4	2	36	QFN	105 °C
	CY8C4247FLI-BL493	48	4.1	128	16	4	4	1	1	1	1 Msps	-	2	4	2	36	Thin 68-CSP	85 °C
	CY8C4248LQI-BL473	48	4.1	256	32	4	4	-	-	-	1 Msps	1	2	4	2	36	QFN	85 °C
	CY8C4248LQI-BL453	48	4.1	256	32	4	4	1	-	-	1 Msps	1	2	4	2	36	QFN	85 °C
	CY8C4248LQI-BL483	48	4.1	256	32	4	4	1	-	1	1 Msps	1	2	4	2	36	QFN	85 °C
BI	CY8C4248FNI-BL483	48	4.1	256	32	4	4	1	-	1	1 Msps	1	2	4	2	36	76-CSP	85 °C
PSoC 4200_BI	CY8C4248FLI-BL483	48	4.1	256	32	4	4	1	-	1	1 Msps	1	2	4	2	36	Thin 76-CSP	85 °C
SoC	CY8C4248LQI-BL543	48	4.2	256	32	-	2	Ι	-	-	1 Msps	1	-	4	2	36	QFN	85 °C
٩	CY8C4248FNI-BL543	48	4.2	256	32	-	2	Ι	-	-	1 Msps	1	-	4	2	36	76-CSP	85 °C
	CY8C4248LQI-BL573	48	4.2	256	32	4	4	-	-	-	1 Msps	1	2	4	2	36	QFN	85 °C
	CY8C4248FNI-BL573	48	4.2	256	32	4	4	-	-	-	1 Msps	1	2	4	2	36	76-CSP	85 °C
	CY8C4248LQI-BL553	48	4.2	256	32	4	4	1	-	-	1 Msps	1	2	4	2	36	QFN	85 °C
	CY8C4248FNI-BL553	48	4.2	256	32	4	4	1	-	-	1 Msps	1	2	4	2	36	76-CSP	85 °C
	CY8C4248LQI-BL563	48	4.2	256	32	4	4	-	-	1	1 Msps	1	2	4	2	36	QFN	85 °C
	CY8C4248FNI-BL563	48	4.2	256	32	4	4	Ι	-	1	1 Msps	1	2	4	2	36	76-CSP	85 °C
	CY8C4248LQI-BL583	48	4.2	256	32	4	4	1	-	1	1 Msps	1	2	4	2	36	QFN	85 °C
	CY8C4248FNI-BL583	48	4.2	256	32	4	4	1	-	1	1 Msps	1	2	4	2	36	76-CSP	85 °C
	CY8C4248FLI-BL583	48	4.2	256	32	4	4	1	-	1	1 Msps	1	2	4	2	36	Thin 76-CSP	85 °C
	CY8C4248LQQ-BL583	48	4.2	256	32	4	4	1	-	1	1 Msps	1	2	4	2	36	QFN	105 °C
	CY8C4248FNQ-BL583	48	4.2	256	32	4	4	1	-	1	1 Msps	1	2	4	2	36	76-CSP	105 °C
	CY8C4248LQI-BL593	48	4.2	256	32	4	4	1	1	1	1 Msps	1	2	4	2	36	QFN	85 °C
	CY8C4248FNI-BL593	48	4.2	256	32	4	4	1	1	1	1 Msps	1	2	4	2	36	76-CSP	85 °C

PSoC 4 devices follow the part numbering convention described in the following table. All fields are single-character alphanumeric (0, 1, 2, ..., 9, A,B, ..., Z) unless stated otherwise.

Ordering Code Definitions

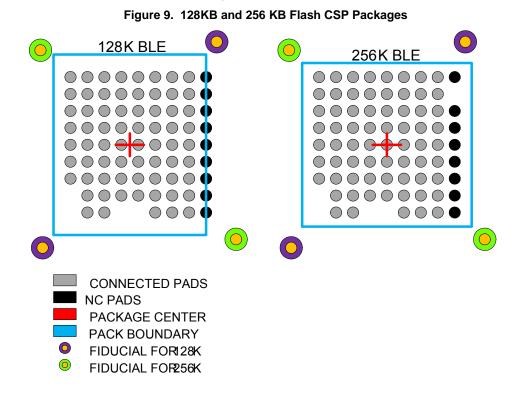

Example	<u>CY8C 4 A B C D E F - BLXYZ</u>
CY8 C	Cypress Prefix
4: PSoC 4	Architecture
2 : 4200 Family	Family within Architecture
4 : 48 MHz	Speed Grade
8 : 256 KB	Flash Capacity
LQ : QFN	Package Code
I : Industrial	Temperature Range
BLXYZ: Attributes	Attributes Code

The Field Values are listed in the following table:

Field	Description	Values	Meaning					
CY8C	Cypress Prefix							
4	Architecture	4	PSoC 4					
А	Family within architecture	2	4200-BLE Family					
В	CPU Speed	4	48 MHz					
С	Flash Capacity	8, 7	256, 128 KB respectively					
		FN	WLCSP					
DE	Package Code	kage Code LQ QFN						
		FL	Thin CSP					
F	Temperature Range	I	Industrial					
BLXYZ	Attributes Code	BL400-BL499	Bluetooth 4.1 compliant					
		BL500-BL599	Bluetooth 4.2 compliant					

Figure 8. 56-Pin QFN 7 × 7 × 0.6 mm

The center pad on the QFN package should be connected to ground (VSS) for best mechanical, thermal, and electrical performance.



WLCSP Compatibility

The PSoC 4XXX_BLE family has products with 128 KB (16KB SRAM) and 256 KB (32KB SRAM) Flash. Package pin-outs and sizes are identical for the 56-pin QFN package but are different in one dimension for the 68-ball WLCSP.

The 256KB Flash product has an extra column of balls which are required for mechanical integrity purposes in the Chip-Scale package. With consideration for this difference, the land pattern on the PCB may be designed such that either product may be used with no change to the PCB design.

Figure 9 shows the 128KB and 256 KB Flash CSP packages.

The rightmost column of (all NC, No Connect) balls in the 256K BLE WLCSP is for mechanical integrity purposes. The package is thus wider (3.2 mm versus 2.8 mm). All other dimensions are identical. Cypress will provide layout symbols for PCB layout.

The scheme in Figure 9 is implemented to design the PCB for the 256K BLE package with the appropriate space requirements thus allowing use of either package at a later time without redesigning the Printed Circuit Board.

Acronyms

Table 60. Acronyms Used in this Document

Acronym Description			
abus	analog local bus		
ADC	analog-to-digital converter		
AG	analog global		
AHB	AMBA (advanced microcontroller bus archi- tecture) high-performance bus, an Arm data transfer bus		
ALU	arithmetic logic unit		
AMUXBUS	analog multiplexer bus		
API	application programming interface		
APSR	application program status register		
Arm [®]	advanced RISC machine, a CPU architecture		
ATM	automatic thump mode		
BW	bandwidth		
CAN	Controller Area Network, a communications protocol		
CMRR	common-mode rejection ratio		
CPU	central processing unit		
CRC	cyclic redundancy check, an error-checking protocol		
DAC	digital-to-analog converter, see also IDAC, VDAC		
DFB	digital filter block		
DIO	digital input/output, GPIO with only digital capabilities, no analog. See GPIO.		
DMIPS	Dhrystone million instructions per second		
DMA	direct memory access, see also TD		
DNL	differential nonlinearity, see also INL		
DNU	do not use		
DR	port write data registers		
DSI	digital system interconnect		
DWT	data watchpoint and trace		
ECC	error correcting code		
ECO	external crystal oscillator		
EEPROM	electrically erasable programmable read-only memory		
EMI	electromagnetic interference		
EMIF	external memory interface		
EOC	end of conversion		
EOF	end of frame		
EPSR	execution program status register		
ESD	electrostatic discharge		

Table 60. Acronyms Used in this Document (continued)

Acronym	Description
ETM	embedded trace macrocell
FIR	finite impulse response, see also IIR
FPB	flash patch and breakpoint
FS	full-speed
GPIO	general-purpose input/output, applies to a PSoC pin
HVI	high-voltage interrupt, see also LVI, LVD
IC	integrated circuit
IDAC	current DAC, see also DAC, VDAC
IDE	integrated development environment
I ² C, or IIC	Inter-Integrated Circuit, a communications protocol
lir	infinite impulse response, see also FIR
ILO	internal low-speed oscillator, see also IMO
IMO	internal main oscillator, see also ILO
INL	integral nonlinearity, see also DNL
I/O	input/output, see also GPIO, DIO, SIO, USBIO
IPOR	initial power-on reset
IPSR	interrupt program status register
IRQ	interrupt request
ITM	instrumentation trace macrocell
LCD	liquid crystal display
LIN	Local Interconnect Network, a communications protocol.
LR	link register
LUT	lookup table
LVD	low-voltage detect, see also LVI
LVI	low-voltage interrupt, see also HVI
LVTTL	low-voltage transistor-transistor logic
MAC	multiply-accumulate
MCU	microcontroller unit
MISO	master-in slave-out
NC	no connect
NMI	nonmaskable interrupt
NRZ	non-return-to-zero
NVIC	nested vectored interrupt controller
NVL	nonvolatile latch, see also WOL
opamp	operational amplifier
PAL	programmable array logic, see also PLD