

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Ξ·XFl

Product Status	Active
Core Processor	SH-2
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	SCI
Peripherals	POR, PWM, WDT
Number of I/O	23
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df71241an50fpv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Preface

The SH7125 Group and SH7124 Group RISC (Reduced Instruction Set Computer) microcomputer include a Renesas Technology-original RISC CPU as its core, and the peripheral functions required to configure a system.

- Target Users: This manual was written for users who will be using the SH7125 Group and SH7124 Group in the design of application systems. Target users are expected to understand the fundamentals of electrical circuits, logical circuits, and microcomputers.
- Objective: This manual was written to explain the hardware functions and electrical characteristics of the SH7125 Group and SH7124 Group to the target users. Refer to the SH-1/SH-2/SH-DSP Software Manual for a detailed description of the instruction set.

Notes on reading this manual:

- In order to understand the overall functions of the chip Read the manual according to the contents. This manual can be roughly categorized into parts on the CPU, system control functions, peripheral functions and electrical characteristics.
- In order to understand the details of the CPU's functions Read the SH-1/SH-2/SH-DSP Software Manual.
- In order to understand the details of a register when its name is known Read the index that is the final part of the manual to find the page number of the entry on the register. The addresses, bits, and initial values of the registers are summarized in section 20, List of Registers.

Examples:	Register name:	The following notation is used for cases when the same or a similar function, e.g. serial communication interface, is implemented on more than one channel: XXX_N (XXX is the register name and N is the channel number)
	Bit order:	The MSB is on the left and the LSB is on the right.
	Number notation:	Binary is B'xxxx, hexadecimal is H'xxxx, decimal is xxxx.
	Signal notation:	An overbar is added to a low-active signal: \overline{xxxx}

Related Manuals: The latest versions of all related manuals are available from our web site. Please ensure you have the latest versions of all documents you require. http://www.renesas.com/

3.4	Address Map						
3.5	Initial State in This LSI						
3.6	Note of	n Changing Operating Mode	. 55				
Secti	on 4 C	lock Pulse Generator (CPG)	.57				
4.1	Feature	² S	. 57				
4.2	Input/C	Output Pins	. 60				
4.3	Clock (Operating Mode	. 61				
4.4	Registe	Pr Descriptions	. 63				
	4.4.1	Frequency Control Register (FRQCR)	. 63				
	4.4.2	Oscillation Stop Detection Control Register (OSCCR)	. 66				
4.5	Changi	ng Frequency	. 67				
4.6	Oscilla	tor	. 68				
	4.6.1	Connecting Crystal Resonator	. 68				
	4.6.2	External Clock Input Method	. 69				
4.7	Functio	on for Detecting Oscillator Stop	. 70				
4.8	Usage	Notes	. 71				
	4.8.1	Note on Crystal Resonator	.71				
	4.8.2	Notes on Board Design	.71				
Secti	on 5 E	xception Handling	.73				
5.1	Overvi	ew	. 73				
	5.1.1	Types of Exception Handling and Priority	. 73				
	5.1.2	Exception Handling Operations	. 74				
	5.1.3	Exception Handling Vector Table	. 75				
5.2	Resets		. 77				
	5.2.1	Types of Resets	. 77				
	5.2.2	Power-On Reset	. 77				
	5.2.3	Manual Reset	. 78				
5.3	Addres	s Errors	. 79				
	5.3.1	Address Error Sources	. 79				
	5.3.2	Address Error Exception Source	. 80				
5.4	Interru		. 81				
	5.4.1	Interrupt Sources	. 81				
	5.4.2	Interrupt Priority	. 82				
	5.4.3	Interrupt Exception Handling	. 82				
5.5	Except	ions Triggered by Instructions	. 83				
	5.5.1	Types of Exceptions Triggered by Instructions	. 83				
	5.5.2	Trap Instructions	. 83				
	5.5.3	Illegal Slot Instructions	. 84				

Table 2.9 Instruction Formats

Instruction Format	Source Operand	Destination Operand	Sample Instruction
0 type 15 0 xxxx xxxx xxxx xxxx	—		NOP
n type		nnnn: register direct	MOVT Rn
xxxx nnnn xxxx xxxx	Control register or system register	nnnn: register direct	STS MACH,Rn
	Control register or system register	nnnn: pre- decrement register indirect	STC.L SR,@-Rn
m type	mmmm: register direct	Control register or system register	LDC Rm,SR
xxxxx mmmm xxxxx xxxxx	mmmm: post- increment register indirect	Control register or system register	LDC.L @Rm+,SR
	mmmm: register indirect	_	JMP @Rm
	PC relative using Rm	_	BRAF Rm

Item		NMI	IRQ	Peripheral Modules	Remarks
Interrupt pr and compa bits in SR	riority decision arison with mask	$1 \times lcyc + 2 \times Pcyc$	1 × lcyc + 1 × Pcyc	1 × lcyc + 2 × Pcyc	
Wait for completion of sequence currently being executed by CPU		X (≥ 0)	X (≥ 0)	X (≥ 0)	The longest sequence is for interrupt or address- error exception handling $(X = 7 \times lcyc + m1 + m2$ + m3 + m4). If an interrupt-masking instruction follows, however, the time may be even longer.
Time from start of interrupt exception handling until fetch of first instruction of exception handling routine starts		$8 \times lcyc + m1 + m2 + m3$	$8 \times lcyc + m1 + m2 + m3$	8 × lcyc + m1 + m2 + m3	Performs the saving PC and SR, and vector address fetch.
Interrupt response time	Total:	$\begin{array}{l} 9\times lcyc+2\times \\ Pcyc+m1+m2 \\ +m3+X \end{array}$	$\begin{array}{l} 9\times lcyc+1\times \\ Pcyc+m1+m2\\ +m3+X \end{array}$	$\begin{array}{l}9\times lcyc+2\times\\Pcyc+m1+m2\\+m3+X\end{array}$	
	Minimum*:	12 × lcyc + 2 × Pcyc	12 × lcyc + 1 × Pcyc	12 × lcyc + 2 × Pcyc	SR, PC, and vector table are all in on-chip RAM.
	Maximum:	$\begin{array}{l} 16 \times lcyc + \\ 2 \times Pcyc + 2 \times \\ (m1 + m2 + m3) \\ + m4 \end{array}$	$\begin{array}{l} 16 \times lcyc + \\ 1 \times Pcyc + 2 \\ (m1 + m2 + m3) \\ + m4 \end{array}$	$\begin{array}{l} 16 \times lcyc + \\ 2 \times Pcyc + 2 \\ (m1 + m2 + m3) \\ + m4 \end{array}$	

Table 6.4 Interrupt Response Time

Notes: * In the case that $m1 = m2 = m3 = m4 = 1 \times lcyc$.

m1 to m4 are the number of cycles needed for the following memory accesses.

RENESAS

m1: SR save (longword write)

m2: PC save (longword write)

m3: Vector address read (longword read)

m4: Fetch first instruction of interrupt service routine

9.3.9 Timer A/D Converter Start Request Control Register (TADCR)

TADCR is a 16-bit readable/writable register that enables or disables A/D converter start requests and specifies whether to link A/D converter start requests with interrupt skipping operation. The MTU2 has one TADCR in channel 4.

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	BF[1:0]	-	-	-	-	-	-	UT4AE	DT4AE	UT4BE	DT4BE	ITA3AE	ITA4VE	ITB3AE	ITB4VE
Initial value:	0	0	0	0	0	0	0	0	0	0*	0	0*	0*	0*	0*	0*
R/W:	R/W	R/W	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Note: * Do not set to 1 when complementary PWM mode is not selected.

		Initial		
Bit	Bit Name	Value	R/W	Description
15, 14	BF[1:0]	00	R/W	TADCOBRA_4/TADCOBRB_4 Transfer Timing Select
				Select the timing for transferring data from TADCOBRA_4 and TADCOBRB_4 to TADCORA_4 and TADCORB_4.
				For details, see table 9.29.
13 to 8	_	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
7	UT4AE	0	R/W	Up-Count TRG4AN Enable
				Enables or disables A/D converter start requests (TRG4AN) during TCNT_4 up-count operation.
				 A/D converter start requests (TRG4AN) disabled during TCNT_4 up-count operation
				 A/D converter start requests (TRG4AN) enabled during TCNT_4 up-count operation
6	DT4AE	0*	R/W	Down-Count TRG4AN Enable
				Enables or disables A/D converter start requests (TRG4AN) during TCNT_4 down-count operation.
				 A/D converter start requests (TRG4AN) disabled during TCNT_4 down-count operation
				1: A/D converter start requests (TRG4AN) enabled during TCNT_4 down-count operation

9.3.30 Timer Waveform Control Register (TWCR)

TWCR is an 8-bit readable/writable register that controls the waveform when synchronous counter clearing occurs in TCNT_3 and TCNT_4 in complementary PWM mode and specifies whether to clear the counters at TGRA_3 compare match. The CCE bit and WRE bit in TWCR must be modified only while TCNT stops.

Bit:	7	6	5	4	3	2	1	0
	CCE	-	-	-	-	-	-	WRE
Initial value:	0*	0	0	0	0	0	0	0
R/W:	R/(W)	R	R	R	R	R	R	R/(W)

Note: * Do not set to 1 when complementary PWM mode is not selected.

Bit	Bit Name	Initial Value	R/W	Description
7	CCE	0*	R/(W)	Compare Match Clear Enable
				Specifies whether to clear counters at TGRA_3 compare match in complementary PWM mode.
				0: Does not clear counters at TGRA_3 compare match
				1: Clears counters at TGRA_3 compare match
				[Setting condition]
				• When 1 is written to CCE after reading CCE = 0
6 to 1	_	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.

Bit	Bit Name	Initial value	R/W	Description
8	PIE1	0	R/W	Port Interrupt Enable 1
				This bit enables/disables interrupt requests when any one of the POE0F to POE3F bits of the ICSR1 is set to 1.
				0: Interrupt requests disabled
				1: Interrupt requests enabled
7, 6	POE3M[1:0]	00	R/W* ²	POE3 mode 1, 0
				(Supported only by the SH7125. Write 00 to these bits in the SH7124.)
				These bits select the input mode of the $\overline{POE3}$ pin.
				00: Accept request on falling edge of POE3 input
				 Accept request when POE3 input has been sampled for 16 P
				 Accept request when POE3 input has been sampled for 16 Pφ/16 clock pulses and all are low level.
				 Accept request when POE3 input has been sampled for 16 P
5, 4		All 0	R/W* ²	Reserved
				These bits are always read as 0. The write value should always be 0.
3, 2	POE1M[1:0]	00	R/W* ²	POE1 mode 1, 0
				These bits select the input mode of the $\overline{POE1}$ pin.
				00: Accept request on falling edge of POE1 input
				 Accept request when POE1 input has been sampled for 16 P
				 Accept request when POE1 input has been sampled for 16 P\u00f6/16 clock pulses and all are low level.
				 Accept request when POE1 input has been sampled for 16 Pφ/128 clock pulses and all are low level.

Bit	Bit Name	Initial value	R/W	Description
13	MTU2P2CZE	1	R/W*	MTU2 Port 2 Output Comparison/High-Impedance Enable
				This bit specifies whether to compare output levels for the MTU2 high-current PE12/TIOC4A and PE14/TIOC4C pins and to place them in high- impedance state when the OSF1 bit is set to 1 while the OEC1 bit is 1 or when any one of the POE0F, POE1F, POE3F, and MTU2CH34HIZ bits is set to 1.
				0: Does not compare output levels or place the pins in high-impedance state
				1: Compares output levels and places the pins in high-impedance state
12	MTU2P3CZE	1	R/W*	MTU2 Port 3 Output Comparison/High-Impedance Enable
				This bit specifies whether to compare output levels for the MTU2 high-current PE13/TIOC4B and PE15/TIOC4D pins and to place them in high- impedance state when the OSF1 bit is set to 1 while the OEC1 bit is 1 or when any one of the POE0F, POE1F, POE3F, and MTU2CH34HIZ bits is set to 1.
				0: Does not compare output levels or place the pins in high-impedance state
				1: Compares output levels and places the pins in high-impedance state
11	_	0	R	Reserved
				This bit is always read as 0. The write value should always be 0.
10 to 8		All 1	R/W*	Reserved
				These bits are always read as 1. The write value should always be 1.
7 to 0	_	0	R	Reserved
				These bits are always read as 0. The write value should always be 0.

Note: * Can be modified only once after a power-on reset.

Ρφ (MHz)	External Input Clock (MHz)	Maximum Bit Rate (bits/s)
10	1.6667	1666666.7
12	2.0000	2000000.0
14	2.3333	2333333.3
16	2.6667	2666666.7
18	3.0000	300000.0
20	3.3333	3333333.3
22	3.6667	3666666.7
24	4.0000	4000000.0
26	4.3333	4333333.3
28	4.6667	4666666.7
30	5.0000	500000.0
32	5.3333	5333333.3
34	5.6667	5666666.7
36	6.0000	600000.0
38	6.3333	6333333.3
40	6.6667	6666666.7

Table 12.12 Maximum Bit Rates with External Clock Input (Clock Synchronous Mode)

Figure 13.1 shows a block diagram of the A/D converter.

		Initial		
Bit	Bit Name	Value	R/W	Description
3 to 0	TRG0S[3:0]	0000	R/W	A/D Trigger 0 Select 3 to 0
				Select an external trigger or MTU2 trigger to start A/D conversion for group 0 when A/D module 0 is in single mode, 4-channel scan mode, or 2-channel scan mode.
				0000: External trigger pin (ADTRG) input
				0001: TRGA input capture/compare match for each MTU2 channel or TCNT_4 underflow (trough) in complementary PWM mode (TRGAN)
				0010: MTU2 channel 0 compare match (TRG0N)
				0011: MTU2 A/D conversion start request delaying (TRG4AN)
				0100: MTU2 A/D conversion start request delaying (TRG4BN)
				0101: Setting prohibited
				0110: Setting prohibited
				0111: Setting prohibited
				1xxx: Setting prohibited
				When switching the selector, first clear the ADST bit in the A/D control register (ADCR) to 0.
				Specify different trigger sources for the group 0 and group 1 conversion requests so that a group 0 conversion request is not generated simultaneously with a group 1 conversion request in 2-channel scan mode.

[Legend] x: Don't care

• PEDRL (SH7124)

Bit	: 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PE15 DR	PE14 DR	PE13 DR	PE12 DR	PE11 DR	PE10 DR	PE9 DR	PE8 DR	-	-	-	-	PE3 DR	PE2 DR	PE1 DR	PE0 DR
Initial value	: 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	: R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R	R/W	R/W	R/W	R/W

Bit	Bit Name	Initial Value	R/W	Description
15	PE15DR	0	R/W	See table 16.6.
14	PE14DR	0	R/W	-
13	PE13DR	0	R/W	-
12	PE12DR	0	R/W	-
11	PE11DR	0	R/W	-
10	PE10DR	0	R/W	-
9	PE9DR	0	R/W	-
8	PE8DR	0	R/W	-
7 to 4	_	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
3	PE3DR	0	R/W	See table 16.6.
2	PE2DR	0	R/W	-
1	PE1DR	0	R/W	_
0	PE0DR	0	R/W	_

Table 16.6 Port E Data Register L (PEDRL) Read/Write Operations

• PEDRL Bits 15 to 0

PEIOR	Pin Function	Read	Write				
0	General input	Pin state	Can write to PEDRL, but it has no effect on pin state				
	Other than general input	Pin state	Can write to PEDRL, but it has no effect on pin state				
1	General output	PEDRL value	Value written is output from pin				
	Other than PEDRL value general output		Can write to PEDRL, but it has no effect on pin state				

16.4 Port F

Port F in the SH7125 and SH7124 is an input-only port with the eight pins shown in figure 16.7.

Figure 16.7 Port F (SH7125, SH7124)

16.4.1 Register Descriptions

Port F is an 8-bit input-only port in the SH7125 and SH7124. Port F has the following register. For details on register addresses and register states during each processing, refer to section 20, List of Registers.

Table 16.7 Register Configuration

Register Name	Abbrevia- tion	R/W	Initial Value	Address	Access Size
Port F data register L	PFDRL	R	_	H'FFFFD382	8, 16

(1) Download Control

The on-chip program is automatically downloaded by setting the SCO bit to 1. The on-chip RAM area to be downloaded is the area as much as 3 Kbytes starting from the start address specified by FTDAR. For the address map of the on-chip RAM, see figure 17.10.

The download control is set by using the programming/erasing interface registers. The return value is given by the DPFR parameter.

(a) Download pass/fail result parameter (DPFR: one byte of start address of on-chip RAM specified by FTDAR)

This parameter indicates the return value of the download result. The value of this parameter can be used to determine if downloading is executed or not. Since the confirmation whether the SCO bit is set to 1 is difficult, the certain determination must be performed by setting one byte of the start address of the on-chip RAM area specified by FTDAR to a value other than the return value of download (for example, H'FF) before the download start (before setting the SCO bit to 1). For the checking method of download results, see section 17.5.2 (2), Programming Procedure in User Program Mode.

Bit:	7	6	5	4	3	2	1	0
	-	-	-	-	-	SS	FK	SF
Initial value:	-	-	-	-	-	-	-	-
R/W:	R/W							

Bit	Bit Name	Initial Value	R/W	Description
7 to 3	_	Undefined	R/W	Unused
				Return 0.
2	SS	Undefined	R/W	Source Select Error Detect
				The on-chip program which can be downloaded can be specified as only one type. When more than two types of the program are selected, the program is not selected, or the program is selected without mapping, an error occurs.
				0: Download program can be selected normally
				1: Download error occurs (Multi-selection or program which is not mapped is selected)

H'23

(6) Inquiry on operating frequency

In response to the inquiry on operating frequency, the boot program returns the number of operating frequencies and the maximum and minimum values.

Command

— Command H'23 (1 byte): Inquiry on operating frequency

Response

H'33	Size	No. of frequency types				
Operating freq.	(min)	Operating freq. (max)				
SUM						

- Response H'33 (1 byte): Response to the inquiry on operating frequency
- Size (1 byte): The total length of the number of frequency types, and maximum and minimum values of operating frequency fields.
- Number of frequency types (1 byte): The number of operating clock frequencies required within the device.

For example, the value two indicates main and peripheral operating clock frequencies.

— Minimum value of operating frequency (2 bytes): The minimum frequency of a frequencymultiplied or -divided clock signal.

The value in this field and in the maximum value field is the frequency in MHz to two decimal places, multiplied by 100 (for example, if the frequency is 20.00 MHz, the value multiplied by 100 is 2000, so H'07D0 is returned here).

 Maximum value of operating frequency (2 bytes): The maximum frequency of a frequencymultiplied or -divided clock signal.

As many pairs of minimum values are included as there are frequency types.

— SUM (1 byte): Checksum

(7) Inquiry on user MATs

In response to the inquiry on user MATs, the boot program returns the number of user MAT areas and their addresses.

Command

H'25

- Command H'25 (1 byte): Inquiry on user MAT information

Response	H'35	Size	No. of areas	
	First address of	f the area		Last address of the area
	SUM			

- Response H'35 (1 byte): Response to the inquiry on user MATs
- Size (1 byte): The total length of the number of areas and first and last address fields.
- Number of areas (1 byte): The number of user MAT areas.
 H'01 is returned if the entire user MAT area is continuous.
- First address of the area (4 bytes)
- Last address of the area (4 bytes)
 - As many pairs of first and last address field are included as there are areas.
- SUM (1 byte): Checksum

(8) Inquiry on erasure blocks

In response to the inquiry on erasure blocks, the boot program returns the number of erasure blocks in the user MAT and the addresses where each block starts and ends.

Command	H'26	
---------	------	--

- Command H'26 (1 byte): Inquiry on erasure blocks

Response	H'36	Size	No. of blocks	
	First address of	f the block		Last address of the block
	SUM			

Section 18 RAM

This LSI has an on-chip high-speed static RAM. The on-chip RAM is connected to the CPU by a 32-bit data bus (L bus), enabling 8, 16, or 32-bit width access to data in the on-chip RAM.

The on-chip RAM is allocated to different addresses according to each product as shown in figure 18.1. The on-chip RAM can be accessed from the CPU (via the L bus). An access from the L bus (CPU) is a 1-cycle access. In addition, the contents of the on-chip RAM are retained in sleep mode or software standby mode, and at a power-on reset or manual reset.

The on-chip RAM can be enabled or disabled by means of the RAME bit in the RAM control register (RAMCR). For details on the RAM control register (RAMCR), refer to section 19.3.7, RAM Control Register (RAMCR).

Figure 18.1 On-chip RAM Addresses

Section 20 List of Registers

		Number of				Number of Access
Register Name	Abbreviation	Bits	Address	Module	Access Size	States
Timer interrupt skipping counter	TITCNT	8	H'FFFFC231	MTU2	8	MP
Timer buffer transfer set register	TBTER	8	H'FFFFC232	_	8	B: 2, W: 2, L: 4
Timer dead time enable register	TDER	8	H'FFFFC234		8	
Timer output level buffer register	TOLBR	8	H'FFFFC236	-	8	-
Timer buffer operation transfer mode register_3	TBTM_3	8	H'FFFFC238	_	8, 16	_
Timer buffer operation transfer mode register_4	TBTM_4	8	H'FFFFC239	_	8	_
Timer A/D converter start request control register	TADCR	16	H'FFFFC240	_	16	_
Timer A/D converter start request cycle set register A_4	TADCORA_4	16	H'FFFFC244	_	16, 32	_
Timer A/D converter start request cycle set register B_4	TADCORB_4	16	H'FFFFC246	_	16	_
Timer A/D converter start request cycle set buffer register A_4	TADCOBRA_4	16	H'FFFFC248	_	16, 32	_
Timer A/D converter start request cycle set buffer register B_4	TADCOBRB_4	16	H'FFFFC24A	_	16	_
Timer waveform control register	TWCR	8	H'FFFFC260	-	8	_
Timer start register	TSTR	8	H'FFFFC280	-	8, 16	_
Timer synchronous register	TSYR	8	H'FFFFC281	-	8	_
Timer read/write enable register	TRWER	8	H'FFFFC284	-	8	_
Timer control register_0	TCR_0	8	H'FFFFC300	-	8, 16, 32	_
Timer mode register_0	TMDR_0	8	H'FFFFC301	-	8	_
Timer I/O control register H_0	TIORH_0	8	H'FFFFC302	-	8, 16	_
Timer I/O control register L_0	TIORL_0	8	H'FFFFC303	-	8	_
Timer interrupt enable register_0	TIER_0	8	H'FFFFC304	-	8, 16, 32	_
Timer status register_0	TSR_0	8	H'FFFFC305	-	8	-
Timer counter_0	TCNT_0	16	H'FFFFC306	-	16	-
Timer general register A_0	TGRA_0	16	H'FFFFC308	-	16, 32	-
Timer general register B_0	TGRB_0	16	H'FFFFC30A	-	16	-

Figure C.4 VQFN-64

Index

A

A/D conversion time 4	94
A/D converter (ADC) 4	-77
A/D converter activation 3	21
A/D converter characteristics7	29
A/D converter interrupt source 4	97
A/D converter start request delaying	
function	10
Absolute accuracy	-98
Absolute maximum ratings 7	11
AC characteristics 7	14
AC characteristics measurement	
conditions7	28
Address error 79, 88, 6	64
Addressing modes	26
Arithmetic operation instructions	39
Asynchronous mode 413, 4	46

B

Boot mode	611
Branch instructions	43
Break comparison conditions	115
Break detection and processing	474
Break on data access cycle	137
Break on instruction fetch cycle	137
Bus state controller (BSC)	149

С

Calculating exception handling vector t	able
addresses	76
Changing frequency	67
Clock (MP ϕ) for the MTU2 module	57
Clock frequency control circuit	59
Clock operating mode	61
Clock pulse generator (CPG)	57

Clock synchronous mode	.413,456
Clock timing	715
CMT interrupt sources	511
Compare match timer (CMT)	505
Complementary PWM mode	
Connecting crystal resonator	68
Continuous scan mode	491
Control signal timing	717
CPU	17
Crystal oscillator	59

D

Data transfer instructions	
DC Characteristics	712
Dead time compensation	315
Divider	59

E

Error protection	625
Exception handling	73
Exception handling state	47
External clock input method	69
External pulse width measurement	314
External trigger input timing	495

F

Features of instructions	23
Flash Memory	579
Flash memory characteristics	730
Flash memory configuration	584
Flow of the user break operation	136
Full-scale error	498
Function for detecting oscillator stop.	70