

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	TriCore™
Core Size	32-Bit Single-Core
Speed	150MHz
Connectivity	CANbus, EBI/EMI, FIFO, I ² C, IrDA, SPI, UART/USART, USB
Peripherals	DMA, POR, PWM, WDT
Number of I/O	72
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	144K x 8
Voltage - Supply (Vcc/Vdd)	1.43V ~ 1.58V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	208-LBGA
Supplier Device Package	P-LBGA-208-2
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-tc1130-l150eb-bb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TC1130 Data Sheet Advance Information Revision History:		n 2005-02	V1.0
Previous	Version:	none	
Page Subjects (r		(major changes since last revision)	

Controller Area Network (CAN): License of Robert Bosch GmbH

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com

General Device Information

2.4 Pin Definitions and Functions

Table 2-1Pin Definitions and Functions

Symbol	Pin	In Out	PU/ PD ¹⁾	Functions				
P0		I/O		Port 0				
				Port 0 is a 16-b	it bi-directional general purpose I/O port			
				which can be a	alternatively used for GPTU, MultiCAN,			
				ASC1/2, SSC0	0/1, MLI0, EBU and SCU.			
P0.0	N11	I/O	PUC	GPTU_0	GPTU input/output line 0			
		I/O		RXD1B	ASC1 receiver input/output B			
P0.1	P15	I/O	PUC	GPTU_1	GPTU input/output line 1			
		0		TXD1B	ASC1 transmitter output B			
P0.2	P10	I/O	PUC	GPTU_2	GPTU input/output line 2			
		I/O		RXD2B	ASC2 receiver input/output B			
P0.3	M15	I/O	PUC	GPTU_3	GPTU input/output line 3			
		0		TXD2B	ASC2 transmitter output B			
P0.4	R11	I/O	PUC	GPTU_4	GPTU input/output line 4			
		I		SLSI1	SSC1 Slave Select input			
		0		BREQ	EBU Bus Request Output			
P0.5	R12	I/O	PUC	GPTU_5	GPTU input/output line 5			
		I		HOLD	EBU Hold Request Input			
		I		<u>CC60_T1</u> 2HR	CCU60 Timer 12 hardware run			
		0		BRKOUT_B	OCDS Break Out B			
P0.6	R10	I/O	PUC	GPTU_6	GPTU input/output line 6			
		I/O		HLDA	EBU Hold Acknowledge Input/Output			
				CC60_T13HR	CCU60 Timer 13 hardware run			
		0		SLSO0_0	SSC0 Slave Select output 0			
P0.7	N10	I/O	PUC	GPTU_7	GPTU input/output line 7			
		0		SLSO1_0	SSC1 Slave Select output 0			
P0.8	R13		PUC	RXDCAN0_A	CAN node 0 receiver input A			
				REQ0	External Trigger Input 0			
		0		TCLK0A	MLI0 transmit channel clock output A			
P0.9	R15	0	PUC	TXDCAN0_A	CAN node 0 transmitter output A			
				TREADY0A	MLI0 transmit channel ready input A			
/ _				REQ1	External Trigger Input 1			
P0.10	R14		PUC	RXDCAN1_A	CAN node 1 receiver input A			
				REQ2	External Trigger Input 2			
		0		I VALIDOA	MLIU transmit channel valid output A			
P0.11	N9	0	PUC	IXDCAN1_A	CAN node 1 transmitter output A			
				REQ3	External Trigger Input 3			
		O		IDAIA0A	MLIU transmit channel data output A			

General Device Information

Table 2-1Pin Definitions and Functions (cont'd)

Symbol	Pin	In Out	PU/ PD ¹⁾	Functions	
P2		I/O		Port 2 Port 2 is a 16-b which can be a CCU60_IIC_F	bit bi-directional general purpose I/O port alternatively used for ASC0/1/2, SSC0/1,
P2.0	P12	I/O O	PUC	RXD0 CSEMU	ASC0 receiver input/output line EBU Chip Select Output for Emulator Region
P2.1	P11	0 I	PUC	TXD0 TESTMODE	ASC0 transmitter output line Test Mode Select Input
P2.2	P13	I/O	PUC	MRST0	SSC0 master receive/slave transmit
P2.3	P14	I/O	PUC	MTSR0	SSC0 master transmit/slave receive input/output
P2.4 P2.5	N15 N14	I/O O I/O	PUC PUC	SCLK0 COUT60_3 MRST1A	SSC0 clock input/output line CCU60 compare channel 3 output SSC1 master receive/slave transmit
P2.6	N12	I/O I/O	PUC	CC60_0 MTSR1A	CCU60 input/output of capture compare channel 0 SSC1 master transmit/slave receive
P2.7	K16	0	PUC	COUT60_0	CCU60 output of capture/compare channel 0
P2.8	J16	1/O 1/O	PUC	SCLK1A CC60_1	SSC1 clock input/output line A CCU60 input/output of capture/ compare channel 1
P2.9	H16	I/O O	PUC	RXD1A COUT60_1	ASC1 receiver input/output line A CCU60 output of capture/compare channel 1
P2.10	L13	0 I/O	PUC	TXD1A CC60_2	ASC1 transmitter output line A CCU60 input/output of capture/ compare channel 2
P2.11	G16	I/O O	PUC	RXD2A COUT60_2	ASC2 receiver input/output line A CCU60 output of capture/compare channel 2
P2.12	K15	0 I/O I O		TXD2A SDA0 CTRAP0 SLSO0_3	ASC2 transmitter output line A IIC Serial Data line 0 CCU60 trap input SSC0 Slave Select output 3

General Device Information

Table 2-1Pin Definitions and Functions (cont'd)

Symbol	Pin	In Out	PU/ PD ¹⁾	Functions	Functions				
P4		I/O		Port 4 Port 4 is an 8-bit bi-directional general purpose I/O port which can be alternatively used for USB, MLI0 and SCU.					
P4.0	R8	 0	PUC	USBCLK TCLK0B	48 MHz input clock MLI0 transmit channel clock output B				
P4.1	R9		PUC	RCVI TREADY0B	USB data input MLI0 transmit channel ready input B				
P4.2	N7	I	PUC	VPI	USB D+ CMOS level mirror of differential signal				
P4.3	N6	0	PUC	TVALID0B VMI	MLI0 transmit channel valid output B USB D- CMOS level mirror of differential signal				
P4.4	P6	0	PUC	IDATA0B VPO RCLK0B	MLI0 transmit channel data output B USB D+ CMOS level output MLI0 receive channel clock input B				
P4.5	R7	0 0	PUC	VMO RREADY0B	USB D- CMOS level output MLI0 receive channel ready output B				
P4.6	R6	0 I	PUC	USBOE RVALID0B	Direction select for transmit or receive MLI0 receive channel valid input B				
P4.7	P5	I О	PUC	<u>RDATA0B</u> BRKOUT_A	MLI0 receive channel data input B OCDS Break Out A				
HDRST	N5	I/O	PUA	Britteer Indication OutputHardware Reset Input/Reset Indication OutputAssertion of this bi-directional open-drain pin causes asynchronous reset of the chip through externalcircuitry. This pin must be driven for a minimum $4 f_{CPU}$ clock cycles.The internal reset circuitry drives this pin in responseto a power-on, hardware, watchdog and power-downwake-up reset for a specific period of time. For a					
PORST	R5	I	PUC	Power-on Reset Input A low level on PORST causes an asynchronous reset of the entire chip. PORST is a fully asynchronous level sensitive signal.					
NMI	T7	I	PUC	Non-Maskabl A high-to-low NMI-Trap requ	le Interrupt Input transition on this pin causes an uest to the CPU.				

General Device Information

Table 2-1Pin Definitions and Functions (cont'd)

Symbol	Pin	In Out	PU/ PD ¹⁾	Functions
				EBU Address/Data Bus Input/Output Lines
AD0	C8	I/O	PUC	EBU Address/Data Bus Line 0
AD1	C7	I/O	PUC	EBU Address/Data Bus Line 1
AD2	B6	I/O	PUC	EBU Address/Data Bus Line 2
AD3	C6	I/O	PUC	EBU Address/Data Bus Line 3
AD4	C5	I/O	PUC	EBU Address/Data Bus Line 4
AD5	A3	I/O	PUC	EBU Address/Data Bus Line 5
AD6	A2	I/O	PUC	EBU Address/Data Bus Line 6
AD7	C3	I/O	PUC	EBU Address/Data Bus Line 7
AD8	C2	I/O	PUC	EBU Address/Data Bus Line 8
AD9	D2	I/O	PUC	EBU Address/Data Bus Line 9
AD10	F1	I/O	PUC	EBU Address/Data Bus Line 10
AD11	E3	I/O	PUC	EBU Address/Data Bus Line 11
AD12	F3	I/O	PUC	EBU Address/Data Bus Line 12
AD13	G1	I/O	PUC	EBU Address/Data Bus Line 13
AD14	H2	I/O	PUC	EBU Address/Data Bus Line 14
AD15	G3	I/O	PUC	EBU Address/Data Bus Line 15
AD16	D7	I/O	PUC	EBU Address/Data Bus Line 16
AD17	B5	I/O	PUC	EBU Address/Data Bus Line 17
AD18	A4	I/O	PUC	EBU Address/Data Bus Line 18
AD19	B4	I/O	PUC	EBU Address/Data Bus Line 19
AD20	C4	I/O	PUC	EBU Address/Data Bus Line 20
AD21	B3	I/O	PUC	EBU Address/Data Bus Line 21
AD22	B2	I/O	PUC	EBU Address/Data Bus Line 22
AD23	B1	I/O	PUC	EBU Address/Data Bus Line 23
AD24	C1	I/O	PUC	EBU Address/Data Bus Line 24
AD25	D3	I/O	PUC	EBU Address/Data Bus Line 25
AD26	E2	I/O	PUC	EBU Address/Data Bus Line 26
AD27	F2	I/O	PUC	EBU Address/Data Bus Line 27
AD28	F4	I/O	PUC	EBU Address/Data Bus Line 28
AD29	G4	I/O	PUC	EBU Address/Data Bus Line 29
AD30	H3	I/O	PUC	EBU Address/Data Bus Line 30
AD31	G2	I/O	PUC	EBU Address/Data Bus Line 31
BC0	A5	0	PUC	EBU Byte Control Line 0
<u>BC1</u>	A6	0	PUC	EBU Byte Control Line 1
<u>BC2</u>	B7	0	PUC	EBU Byte Control Line 2
BC3	A7	0	PUC	EBU Byte Control Line 3

Functional Description

3 Functional Description

3.1 On-Chip Memories

The TC1130 provides the following on-chip memories:

- Program Memory Interface (PMI) with
 - 32-Kbyte Scratch-pad Code RAM (SPRAM)
 - 16-Kbyte Instruction Cache Memory (ICACHE)
- Data Memory Interface (DMI) with
 - 28-Kbyte Scratch-pad Data RAM (SPRAM)
 - 4-Kbyte Data Cache Memory (DCACHE)
- Data Memory Unit (DMU) with
 - 64-Kbyte SRAM
 16 Kbyte Poet POM
- 16-Kbyte Boot ROM (BROM)

Advance Information

Functional Description

Table 3-1 TC1130 Block Address Map (cont'd)

Seg- ment	Address Range	Size	Description	DMI Acc.	PMI Acc.	
	D000 0000 _H – D000 6FFF _H	28 KB	DMI Local Data RAM (LDRAM)	DMI local	via LMB	
	D000 7000 _H – D3FF FFFF _H	~ 64 MB	Reserved			
	D400 0000 _H – D400 7FFF _H	32 KB	PMI Local Code Scratch Pad RAM (SPRAM)	via LMB	PMI local	
13	D400 8000 _H – D7FF FFFF _H	~64 MB	Reserved			
	D800 0000 _H – DDFF FFFF _H	96 MB	External Memory Space	via	via	
	DE00 0000 _H – DEFF FFFF _H	16 MB	Emulator Memory Space	LMB	LMB	
	DF00 0000 _H – DFFF BFFF _H	~16 MB	-	_		
	DFFF C000 _H – DFFF FFFF _H	16 KB	Boot ROM Space	via FPI	via FPI	led
	E000 0000 _H – E7FF FFFF _H	128 MB	External Memory Space	via LMB	via LMB	n-cach
	E800 0000 _H - E83F FFFF _H 4 MBReserved for mapped space for lower 4 Mbytes of Local Memory in Segment 12 (Transformed by LFI bridge C000 0000 _H - C03F FFFF		Reserved for mapped space for lower 4 Mbytes of Local Memory in Segment 12 (Transformed by LFI bridge to $C000\ 0000_{H} - C03F\ FFFF_{H}$)	access only from FPI bus side of	access only from FPI bus side of	IOU
14	F040.0000	4.145		LFI	LFI	
	E840 0000 _H – E84F FFFF _H	1 MB	MB Reserved for mapped space for lower 1 Mbyte of Local Memory in Segment 13 (Transformed by LFI bridge to D000 0000 _H – D00F FFFF _H)		access only from FPI bus	
	E850 0000 _H - E85F FFFF _H 1 MBReserved for mapped space for 1 Mbyte of Local Memory in Segment 13 (Transformed by LFI bridge to D400 0000 _H - D40F FFFF _H)				side of LFI	

Functional Description

- Evaluation of the device address in slave mode
- · Bus access arbitration in multimaster mode

Features:

- Extended buffer allows up to 4 send/receive data bytes to be stored
- Selectable baud rate generation
- Support of standard 100 kBaud and extended 400 kBaud data rates
- Operation in 7-bit addressing mode or 10-bit addressing mode
- · Flexible control via interrupt service routines or by polling
- Dynamic access to up to 2 physical IIC buses

Functional Description

3.12 Universal Serial Bus Interface (USB)

Figure 3-8 shows a global view of the functional blocks of the Universal Serial Bus interface (USB).

The USB module is further supplied with clock control, interrupt control, address decoding, and port control logic. One DMA request can be generated by USB module.

Figure 3-8 General Block Diagram of the USB Interface

The USB handles all transactions between the serial USB bus and the internal (parallel) bus of the microcontroller. The USB module includes several units which are required to support data handling with the USB bus: the on-chip USB transceiver (optionally), the flexible USB buffer block with a 32-bit wide RAM, the buffer control unit with sub modules for USB and CPU memory access control, the UDC_IF device interface for USB protocol handling, the microcontroller interface unit (MCU) with the USB specific special function registers and the interrupt generation unit. A clock generation unit provides the clock signal for the USB module for full speed and low speed USB operation.

Functional Description

The bit timings for the CAN nodes are derived from the peripheral clock (f_{CAN}) and are programmable up to a data rate of 1 MBaud. A pair of receive and transmit pins connects each CAN node to a bus transceiver.

Features:

- Compliant to ISO 11898
- CAN functionality according to CAN specification V2.0 B (active)
- Dedicated control registers are provided for each CAN node
- A data transfer rate up to 1 MBaud is supported
- Flexible and powerful message transfer control and error handling capabilities are implemented
- Advanced CAN bus bit timing analysis and baud rate detection can be performed for each CAN node via the frame counter
- Full-CAN functionality: A set of 128 message objects can be individually
 - allocated (assigned) to any CAN node
 - configured as transmit or receive object
 - setup to handle frames with 11-bit or 29-bit identifier
 - counted or assigned a timestamp via a frame counter
 - configured to remote monitoring mode
- Advanced Acceptance Filtering:
 - Each message object provides an individual acceptance mask to filter incoming frames.
 - A message object can be configured to accept only standard or only extended frames or to accept both standard and extended frames.
 - Message objects can be grouped into 4 priority classes.
 - The selection of the message to be transmitted first can be performed on the basis of frame identifier, IDE bit and RTR bit according to CAN arbitration rules.
- Advanced Message Object Functionality:
 - Message objects can be combined to build FIFO message buffers of arbitrary size, which is only limited by the total number of message objects.
 - Message objects can be linked to form a gateway to automatically transfer frames between two different CAN buses. A single gateway can link any two CAN nodes. An arbitrary number of gateways may be defined.
- Advanced Data Management:
 - The Message objects are organized in double chained lists.
 - List reorganizations may be performed at any time, even during full operation of the CAN nodes.
 - A powerful, command driven list controller manages the organization of the list structure and ensures consistency of the list.
 - Message FIFOs are based on the list structure and can easily be scaled in size during CAN operation.

Advance Information

Functional Description

Figure 3-12 General Block Diagram of the CCU6 Interfaces

Functional Description

3.25 **Power Supply**

The TC1130 provides an ingenious power supply concept in order to improve the EMI behavior as well as to minimize the crosstalk within on-chip modules.

Figure 3-18 shows the TC1130's power supply concept, where certain logic modules are individually supplied with power. This concept improves the EMI behavior by reduction of the noise cross coupling.

Figure 3-18 TC1130 Power Supply Concept

Electrical Parameters

4.2 DC Parameters

4.2.1 Input/Output Characteristics

$v_{SS} = 0 v, T_A = -40 C (0 + 120 C)$	$V_{SS} = 0$) V; T _A	= -40° C to	+125°C
---	--------------	---------------------	----------------------	--------

Parameter	Symbol	Limit	Values	Unit	Test Condition	
		min.	max.			
GPIO pins, Dedicated pins	and EBU p	ins		•		
Input low voltage	V _{IL} SR	-0.3	0.8	V	LvTTL	
Input high voltage	V _{IH} SR	2.0	V _{DDP} + 0.3	V	LvTTL	
Output low voltage	V _{OL} CC	_	0.4	V	I _{OL} = 2mA	
Output high voltage	V _{OH} CC	2.4	-	V	I _{OH} = -2mA	
Pull-up current 1)	I _{PUA} CC	-	149	μA	$V_{\rm IN} = 0V$	
	I _{PUC} CC	-	7.2	μA	$V_{\rm IN} = 0V$	
Pull-down current ²⁾	I _{PDA} CC	-	156	μA	$V_{\rm IN} = V_{\rm DDP}$	
	$ I_{PDC} CC$	-	15.7	μA	$V_{\rm IN} = V_{\rm DDP}$	
Input leakage current 3)	I _{OZ1} CC	-	±350	nA	$0 < V_{IN} < V_{DDP}$	
Pin Capacitance ⁴⁾	C _{IO} CC	-	10	pF	<i>f</i> = 1 MHz T _A = 25 °C	

¹⁾ The current is applicable to the pins, for which a pull-up has been specified. Refer to Table 2-1. I_{PUx} refers to the pull-up current for type *x* in absolute values.

²⁾ The current is applicable to the pins, for which a pull-down has been specified. Refer to Table 2-1. *I*_{PDx} refers to the pull-down current for type *x* in absolute values.

³⁾ Excluded following pins: NMI, TRST, TCK, TDI, TMS, MII_TXCLK, MII_RXCLK, MII_MDIO, ALE, P2.1,HWCFG0, HWCFG1, HWCFG2, BRKIN, PORST, HDRST.

⁴⁾ Not subject to production test, verified by design/characterization.

Advance Information

Electrical Parameters

Figure 4-1 USB Interface

Advance Information

Electrical Parameters

4.3.6 Timing for JTAG Signals

(Operating Conditions apply; C_{L} = 50 pF)

Parameter	Syr	nbol	Lin	Unit	
			min	max	
TCK clock period	t _{TC}	≺ SR	50	-	ns
TCK high time	<i>t</i> ₁	SR	10	_	ns
TCK low time	<i>t</i> ₂	SR	29	-	ns
TCK clock rise time	t ₃	SR	_	0.4	ns
TCK clock fall time	<i>t</i> ₄	SR	_	0.4	ns

Figure 4-7 TCK Clock Timing

Advance Information

Electrical Parameters

Parameter	Symbol		Lin	Unit	
			min	max	
TMS setup to TCK _	<i>t</i> ₁	SR	7.85	_	ns
TMS hold to TCK _	<i>t</i> ₂	SR	3.0	_	ns
TDI setup to TCK 🦨	<i>t</i> ₁	SR	10.9	_	ns
TDI hold to TCK 🖌	<i>t</i> ₂	SR	3.0	_	ns
TDO valid output from TCK 飞	t ₃	CC	_	10.7	ns
TDO high impedance to valid output from TCK 🥆	<i>t</i> ₄	CC	_	23.0	ns
TDO valid output to high impedance from TCK 🥆	t_5	CC	_	26.0	ns

Figure 4-8 JTAG Timing

Electrical Parameters

4.3.7 Timing for OCDS Trace and Breakpoint Signals

(Operating Conditions apply; C_{L} (TRCLK) = 25 pF, C_{L} = 50 pF)

Parameter	Syr	nbol	Lin	Unit	
			min	max	
BRK_OUT valid from TRCLK _	<i>t</i> ₁	CC	_	5.2	ns
OCDS2_STATUS[4:0] valid from TRCLK _	<i>t</i> ₁	CC	0	5	ns
OCDS2_INDIR_PC[7:0] valid from TRCLK _	<i>t</i> ₁	CC	0	5	ns
OCDS2_BRKPT[2:0] valid from TRCLK _	<i>t</i> ₁	CC	0	5	ns

Figure 4-9 OCDS Trace Signals Timing

Electrical Parameters

4.3.8.5 Timing for Demultiplexed Access Signals

(Operating Conditions apply; C_{L} = 50 pF)¹⁾

Parameter		nbol	Limits		Unit
			min	max	
$\overline{\text{CSx}}$, RD/ $\overline{\text{WR}}$, $\overline{\text{RD}}$, MR/ $\overline{\text{W}}$, $\overline{\text{BC}(3:0)}$ output valid time	<i>t</i> ₁	CC	_	9	ns
from output clock _					
$\overline{\text{CSx}}$, RD/ $\overline{\text{WR}}$, $\overline{\text{RD}}$, MR/ $\overline{\text{W}}$, $\overline{\text{BC}(3:0)}$ output hold time	<i>t</i> ₂	CC	0.0	_	ns
from output clock 🦨					
Address output valid time from output clock 🖌	t ₃	CC	_	9	ns
Address output hold time from output clock 🖌	<i>t</i> ₄	CC	0.0	-	ns
WAIT input setup time to output clock 🖌	<i>t</i> ₇	SR	12	—	ns
WAIT input hold time from output clock 🖌	<i>t</i> ₈	SR	3	-	ns
AD(31:0) output valid time from output clock _	t ₉	CC	_	9	ns
AD(31:0) output hold time from output clock _	t ₁₀	CC	0.0	-	ns
AD(31:0) input setup time to output clock 🖌	t ₁₁	SR	1.3	—	ns
AD(31:0) input hold time from output clock 🖌	t ₁₂	SR	3	—	ns
RMW output valid time from output clock 🖌	t ₁₃	CC	_	8	ns
RMW output hold time from output clock 🖌	t ₁₄	CC	1.3	-	ns
AD(31:0) output hold time from RD/WR	t ₁₆	CC	0	-	ns

 The purpose for characterization of Asynchronous access is to provide the performance of all of the signals to user. User can decide whether an extra cycle is needed or not based on above parameters to generate signals with correct timing sequence. It is user's responsibility to program the correct phase length according to the memory/peripheral device specification and EBU specification.

Electrical Parameters

Figure 4-13 Demultiplexed Asynchronous Device Access Timing

Electrical Parameters

4.3.9.2 SSC Master Mode Timing

(Operating Conditions apply; C_{L} = 50 pF)

Parameter		Symbol	Limi	Limit Values	
			min.	max.	
SCLK clock period	<i>t</i> ₀	CC	2*T _{SSC} 1)	_	ns
MTSR/SLSOx delay from SCLK 🖌	<i>t</i> ₁	CC	0	8	ns
MRST setup to SCLK Վ	<i>t</i> ₂	SR	10	_	ns
MRST hold from SCLK ٦	t ₃	SR	5	_	ns

¹⁾ $T_{SSCmin} = T_{SYS} = 1/f_{SYS}$. When $f_{SYS} = 120MHz$, $t_0 = 16.7ns$

Figure 4-16 SSC Master Mode Timing