

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

÷ХГ

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	65
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D - 12b SAR
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TJ)
Mounting Type	Surface Mount
Package / Case	125-VFBGA
Supplier Device Package	125-BGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32jg12b500f1024il125-cr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Feature List

The EFM32JG12 highlighted features are listed below.

ARM Cortex-M3 CPU platform

- High performance 32-bit processor @ up to 40 MHz
- Memory Protection Unit
- Wake-up Interrupt Controller
- Flexible Energy Management System
 - 64 µA/MHz in Active Mode (EM0)
 - 2.1 µA EM2 Deep Sleep current (256 kB RAM retention and RTCC running from LFXO)
 - 1.5 μA EM2 Deep Sleep current (16 kB RAM retention and RTCC running from LFRCO)
 - 1.81 μA EM3 Stop current (State and 256 kB RAM retention, CRYOTIMER running from ULFRCO)
 - 0.39 µA EM4H Hibernate Mode (128 byte RAM retention)
- Up to 1024 kB flash program memory
 - Dual-bank with read-while-write support
- Up to 256 kB RAM data memory
- Up to 65 General Purpose I/O Pins
 - Configurable push-pull, open-drain, pull-up/down, input filter, drive strength
 - Configurable peripheral I/O locations
 - Asynchronous external interrupts
 - Output state retention and wake-up from Shutoff Mode
- Hardware Cryptography
 - AES 128/256-bit keys
 - ECC B/K163, B/K233, P192, P224, P256
 - SHA-1 and SHA-2 (SHA-224 and SHA-256)
 - True random number generator (TRNG)
- Security Management Unit (SMU)
 - Fine-grained access control for on-chip peripherals
- Timers/Counters
 - 2× 16-bit Timer/Counter
 - 3 + 4 Compare/Capture/PWM channels
 - 2× 32-bit Timer/Counter
 - 3 + 4 Compare/Capture/PWM channels
 - 1× 32-bit Real Time Counter and Calendar
 - 1× 32-bit Ultra Low Energy CRYOTIMER for periodic wakeup from any Energy Mode
 - 16-bit Low Energy Timer for waveform generation
 - 3× 16-bit Pulse Counter with asynchronous operation
 - 2× Watchdog Timer with dedicated RC oscillator

- 8 Channel DMA Controller
- 12 Channel Peripheral Reflex System (PRS) for autonomous inter-peripheral signaling
- Communication Interfaces
 - 4× Universal Synchronous/Asynchronous Receiver/ Transmitter
 - UART/SPI/SmartCard (ISO 7816)/IrDA/I2S/LIN
 - Triple buffered full/half-duplex operation with flow control
 - Low Energy UART
 - Autonomous operation with DMA in Deep Sleep Mode
 - 2× I²C Interface with SMBus support
 - Address recognition in EM3 Stop Mode
- Ultra Low-Power Precision Analog Peripherals
 - 12-bit 1 Msps SAR Analog to Digital Converter (ADC)
 - 2× Analog Comparator (ACMP)
 - 2× 12-bit 500 ksps Digital to Analog Converter (VDAC)
 - 3× Operational Amplifier (OPAMP)
 - Digital to Analog Current Converter (IDAC)
 - Multi-channel Capacitive Sense Interface (CSEN)
 - Up to 54 pins connected to analog channels (APORT) shared between analog peripherals

Low-Energy Sensor Interface (LESENSE)

- Autonomous sensor monitoring in deep sleep mode
- Wide range of supported sensors, including LC sensors and capacitive touch switches
- Up to 16 channels
- Ultra efficient Power-on Reset and Brown-Out Detector
- Debug Interface
 - 2-pin Serial Wire Debug interface
 - 1-pin Serial Wire Viewer
 - JTAG (programming only)
 - Embedded Trace Macrocell (ETM)
- Wide Operating Range
 - 1.8 V to 3.8 V single power supply
 - Integrated DC-DC, down to 1.8 V output with up to 200 mA load current for system
 - Standard (-40 °C to 85 °C $T_{AMB})$ and Extended (-40 °C to 125 °C $T_J)$ temperature grades available
- Packages
 - 7 mm × 7 mm QFN48
 - 7 mm × 7 mm BGA125
- Pre-Programmed UART Bootloader
- Full Software Support
 - CMSIS register definitions
 - Low-power Hardware Abstraction Layer (HAL)
 - Portable software components
 - Third-party middleware
 - Free and available example code

3.5.4 Low Energy Timer (LETIMER)

The unique LETIMER is a 16-bit timer that is available in energy mode EM2 Deep Sleep in addition to EM1 Sleep and EM0 Active. This allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. The LETIMER is connected to the Real Time Counter and Calendar (RTCC), and can be configured to start counting on compare matches from the RTCC.

3.5.5 Ultra Low Power Wake-up Timer (CRYOTIMER)

The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO), or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of interrupt periods, facilitating flexible ultra-low energy operation.

3.5.6 Pulse Counter (PCNT)

The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The clock for PCNT is selectable from either an external source on pin PCTNn_S0IN or from an internal timing reference, selectable from among any of the internal oscillators, except the AUXHFRCO. The module may operate in energy mode EM0 Active, EM1 Sleep, EM2 Deep Sleep, and EM3 Stop.

3.5.7 Watchdog Timer (WDOG)

The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can also monitor autonomous systems driven by PRS.

3.6 Communications and Other Digital Peripherals

3.6.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)

The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O module. It supports full duplex asynchronous UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices supporting:

- ISO7816 SmartCards
- IrDA
- I²S

3.6.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)

The unique LEUARTTM provides two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud. The LEUART includes all necessary hardware to make asynchronous serial communication possible with a minimum of software intervention and energy consumption.

3.6.3 Inter-Integrated Circuit Interface (I²C)

The I²C module provides an interface between the MCU and a serial I²C bus. It is capable of acting as both a master and a slave and supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The interface provided to software by the I²C module allows precise timing control of the transmission process and highly automated transfers. Automatic recognition of slave addresses is provided in active and low energy modes.

3.6.4 Peripheral Reflex System (PRS)

The Peripheral Reflex System provides a communication network between different peripheral modules without software involvement. Peripheral modules producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer peripherals which in turn perform actions in response. Edge triggers and other functionality can be applied by the PRS. The PRS allows peripheral to act autonomously without waking the MCU core, saving power.

4.1.7 Brown Out Detector (BOD)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
DVDD BOD threshold	V _{DVDDBOD}	DVDD rising	—	_	TBD	V
		DVDD falling (EM0/EM1)	TBD	_	_	V
		DVDD falling (EM2/EM3)	TBD	_	_	V
DVDD BOD hysteresis	V _{DVDDBOD_HYST}		—	18	_	mV
DVDD BOD response time	tDVDDBOD_DELAY	Supply drops at 0.1V/µs rate	—	2.4	_	μs
AVDD BOD threshold	V _{AVDDBOD}	AVDD rising	—	_	TBD	V
		AVDD falling (EM0/EM1)	TBD		_	V
		AVDD falling (EM2/EM3)	TBD	_	_	V
AVDD BOD hysteresis	VAVDDBOD_HYST		_	20		mV
AVDD BOD response time	tavddbod_delay	Supply drops at 0.1V/µs rate	—	2.4	_	μs
EM4 BOD threshold	V _{EM4DBOD}	AVDD rising	_		TBD	V
		AVDD falling	TBD	_	_	V
EM4 BOD hysteresis	V _{EM4BOD_HYST}		_	25	_	mV
EM4 BOD response time	t _{EM4BOD_DELAY}	Supply drops at 0.1V/µs rate	—	300	_	μs

Table 4.9. Brown Out Detector (BOD)

4.1.11 Voltage Monitor (VMON)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Supply current (including I_SENSE)	IVMON	In EM0 or EM1, 1 supply moni- tored	_	6.3	TBD	μA
		In EM0 or EM1, 4 supplies moni- tored	—	12.5	TBD	μA
		In EM2, EM3 or EM4, 1 supply monitored and above threshol	—	62	_	nA
		In EM2, EM3 or EM4, 1 supply monitored and below threshold	_	62	_	nA
		In EM2, EM3 or EM4, 4 supplies monitored and all above threshold	—	99		nA
		In EM2, EM3 or EM4, 4 supplies monitored and all below threshold	—	99		nA
Loading of monitored supply	I _{SENSE}	In EM0 or EM1	_	2	_	μA
		In EM2, EM3 or EM4	_	2		nA
Threshold range	V _{VMON_RANGE}		1.62	—	3.4	V
Threshold step size	N _{VMON_STESP}	Coarse	_	200		mV
		Fine	_	20		mV
Response time	t _{VMON_RES}	Supply drops at 1V/µs rate	—	460	—	ns
Hysteresis	V _{VMON_HYST}		_	26	_	mV

Table 4.18. Voltage Monitor (VMON)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Hysteresis (V _{CM} = 1.25 V,	V _{ACMPHYST}	HYSTSEL ⁵ = HYST0	TBD		TBD	mV
$BIASPROG^4 = 0x10, FULL-BIAS^4 = 1)$		HYSTSEL ⁵ = HYST1	TBD	18	TBD	mV
		HYSTSEL ⁵ = HYST2	TBD	32	TBD	mV
		HYSTSEL ⁵ = HYST3	TBD	44	TBD	mV
		HYSTSEL ⁵ = HYST4	TBD	55	TBD	mV
		HYSTSEL ⁵ = HYST5	TBD	65	TBD	mV
		HYSTSEL ⁵ = HYST6	TBD	77	TBD	mV
		HYSTSEL ⁵ = HYST7	TBD	86	TBD	mV
		HYSTSEL ⁵ = HYST8	TBD		TBD	mV
		HYSTSEL ⁵ = HYST9	TBD	-18	TBD	mV
		HYSTSEL ⁵ = HYST10	TBD	-32	TBD	mV
		HYSTSEL ⁵ = HYST11	TBD	-43	TBD	mV
		HYSTSEL ⁵ = HYST12	TBD	-54	TBD	mV
		HYSTSEL ⁵ = HYST13	TBD	-64	TBD	mV
		HYSTSEL ⁵ = HYST14	TBD	-74	TBD	mV
		HYSTSEL ⁵ = HYST15	TBD	-85	TBD	mV
Comparator delay ³	t _{ACMPDELAY}	$BIASPROG^4 = 1$, $FULLBIAS^4 = 0$	_	30	_	μs
		BIASPROG ⁴ = 0x10, FULLBIAS ⁴ = 0	_	3.7	_	μs
		BIASPROG ⁴ = 0x02, FULLBIAS ⁴ = 1	—	360	_	ns
		BIASPROG ⁴ = 0x20, FULLBIAS ⁴ = 1	—	35	_	ns
Offset voltage	VACMPOFFSET	BIASPROG ⁴ =0x10, FULLBIAS ⁴ = 1	TBD	_	TBD	mV
Reference voltage	V _{ACMPREF}	Internal 1.25 V reference	TBD	1.25	TBD	V
		Internal 2.5 V reference	TBD	2.5	TBD	V
Capacitive sense internal re- sistance	R _{CSRES}	CSRESSEL ⁶ = 0	_	inf	_	kΩ
		CSRESSEL ⁶ = 1	—	15	—	kΩ
		CSRESSEL ⁶ = 2	—	27	—	kΩ
		CSRESSEL ⁶ = 3	_	39		kΩ
		CSRESSEL ⁶ = 4	_	51	—	kΩ
		CSRESSEL ⁶ = 5		102		kΩ
		CSRESSEL ⁶ = 6		164		kΩ
		CSRESSEL ⁶ = 7	_	239		kΩ

D	A		N 41 -	-		11.14
Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Signal to noise and distortion ratio (1 kHz sine wave),	SNDR _{DAC}	500 ksps, single-ended, internal 1.25V reference	—	60.4	_	dB
Noise band limited to 250 kHz		500 ksps, single-ended, internal 2.5V reference	—	61.6	—	dB
		500 ksps, single-ended, 3.3V VDD reference	-	64.0	_	dB
		500 ksps, differential, internal 1.25V reference	_	63.3	_	dB
		500 ksps, differential, internal 2.5V reference	_	64.4	_	dB
		500 ksps, differential, 3.3V VDD reference	_	65.8	_	dB
Signal to noise and distortion ratio (1 kHz sine wave).	SNDR _{DAC_BAND}	500 ksps, single-ended, internal 1.25V reference	_	65.3	_	dB
Noise band limited to 22 kHz.		500 ksps, single-ended, internal 2.5V reference	_	66.7	_	dB
		500 ksps, differential, 3.3V VDD reference	_	68.5	—	dB
		500 ksps, differential, internal 1.25V reference	_	67.8	—	dB
		500 ksps, differential, internal 2.5V reference	_	69.0	_	dB
		500 ksps, single-ended, 3.3V VDD reference	_	70.0	_	dB
Total harmonic distortion	THD		_	70.2	_	dB
Differential non-linearity ³	DNL _{DAC}		TBD		TBD	LSB
Intergral non-linearity	INL _{DAC}		TBD	_	TBD	LSB
Offset error ⁵	V _{OFFSET}	T _J = 25 °C	TBD		TBD	mV
		-40 °C ≤ T _J ≤ 85 °C	TBD		TBD	mV
Gain error ⁵	V _{GAIN}	T _J = 25 °C	TBD		TBD	%
		-40 °C ≤ T _J ≤ 85 °C	TBD		TBD	%
External load capactiance, OUTSCALE=0	C _{LOAD}		_	_	75	pF

Note:

1. Supply current specifications are for VDAC circuitry operating with static output only and do not include current required to drive the load.

2. In differential mode, the output is defined as the difference between two single-ended outputs. Absolute voltage on each output is limited to the single-ended range.

3. Entire range is monotonic and has no missing codes.

- 4. Current from HFPERCLK is dependent on HFPERCLK frequency. This current contributes to the total supply current used when the clock to the DAC module is enabled in the CMU.
- 5. Gain is calculated by measuring the slope from 10% to 90% of full scale. Offset is calculated by comparing actual VDAC output at 10% of full scale to ideal VDAC output at 10% of full scale with the measured gain.

6. PSRR calculated as 20 * log₁₀(Δ VDD / Δ V_{OUT}), VDAC output at 90% of full scale

4.1.21 USART SPI

SPI Master Timing

Table 4.30. SPI Master Timing

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SCLK period ^{1 3 2}	t _{SCLK}		2 * t _{HFPERCLK}	_	_	ns
CS to MOSI ^{1 3}	t _{CS_MO}		0	—	13.3	ns
SCLK to MOSI ^{1 3}	t _{SCLK_MO}		0	—	8	ns
MISO setup time ^{1 3}	t _{SU_MI}	IOVDD = 1.62 V	90	_	—	ns
		IOVDD = 3.0 V	40	—	—	ns
MISO hold time ^{1 3}	t _{H_MI}		10	_	-	ns
Note:						

Note:

1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).

2. t_{HFPERCLK} is one period of the selected HFPERCLK.

3. Measurement done with 8 pF output loading at 10% and 90% of V_{DD} (figure shows 50% of V_{DD}).

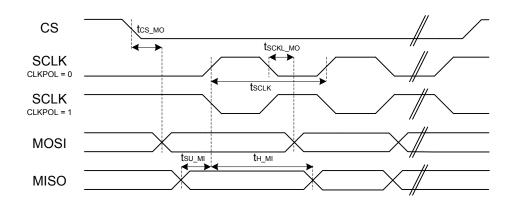


Figure 4.1. SPI Master Timing Diagram

6. Pin Definitions

6.1 EFM32JG12B5xx in BGA125 Device Pinout

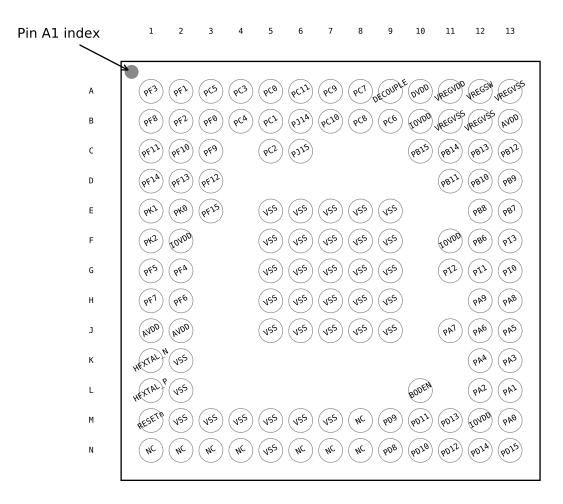


Figure 6.1. EFM32JG12B5xx in BGA125 Device Pinout

	Pin		Pin Alternate Functi	ionality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
N9	PD8	BUSDY BUSCX	WTIM0_CC1 #30 WTIM0_CC2 #28 WTIM0_CDTI0 #24 WTIM0_CDTI1 #22 WTIM0_CDTI2 #20 WTIM1_CC0 #16 WTIM1_CC1 #14 WTIM1_CC2 #12 WTIM1_CC3 #10	US3_TX #0 US3_RX #31 US3_CLK #30 US3_CS #29 US3_CTS #28 US3_RTS #27	LES_CH0
N10	PD10	BUSDY BUSCX	TIM0_CC0 #18 TIM0_CC1 #17 TIM0_CC2 #16 TIM0_CDTI0 #15 TIM0_CDTI0 #15 TIM0_CDTI2 #13 TIM1_CC0 #18 TIM1_CC1 #17 TIM1_CC2 #16 TIM1_CC3 #15 WTIM0_CDT10 #26 WTIM0_CDT10 #26 WTIM0_CDT11 #24 WTIM0_CDT12 #22 WTIM1_CC1 #16 WTIM1_CC1 #16 WTIM1_CC2 #14 WTIM1_CC3 #12 LE- TIM0_OUT0 #18 LE- TIM0_OUT0 #18 LE- TIM0_OUT1 #17 PCNT0_S0IN #18 PCNT0_S1IN #17	US0_TX #18 US0_RX #17 US0_CLK #16 US0_CS #15 US0_CTS #14 US0_RTS #13 US1_TX #18 US1_RX #17 US1_CLK #16 US1_CS #15 US1_CTS #14 US1_RTS #13 US3_TX #2 US3_RX #1 US3_CLK #0 US3_CS #31 US3_CTS #30 US3_RTS #29 LEU0_TX #18 LEU0_RX #17 I2C0_SDA #18 I2C0_SCL #17	CMU_CLK1 #4 PRS_CH3 #9 PRS_CH4 #1 PRS_CH5 #0 PRS_CH6 #12 ACMP0_O #18 ACMP1_O #18 LES_CH2
N11	PD12	VDAC0_OUT1ALT / OPA1_OUTALT #0 BUSDY BUSCX	TIM0_CC0 #20 TIM0_CC1 #19 TIM0_CC2 #18 TIM0_CDTI0 #17 TIM0_CDTI0 #17 TIM0_CDTI1 #16 TIM0_CDTI2 #15 TIM1_CC0 #20 TIM1_CC1 #19 TIM1_CC2 #18 TIM1_CC3 #17 WTIM0_CDTI0 #28 WTIM0_CDTI1 #26 WTIM0_CDTI1 #26 WTIM0_CDT12 #24 WTIM1_CC0 #20 WTIM1_CC1 #18 WTIM1_CC2 #16 WTIM1_CC3 #14 LE- TIM0_OUT0 #20 LE- TIM0_OUT0 #20 LE- TIM0_OUT1 #19 PCNT0_S0IN #20 PCNT0_S1IN #19	US0_TX #20 US0_RX #19 US0_CLK #18 US0_CS #17 US0_CTS #16 US0_RTS #15 US1_TX #20 US1_RX #19 US1_CLK #18 US1_CS #17 US1_CTS #16 US1_RTS #15 US3_TX #4 US3_RX #3 US3_CLK #2 US3_CS #1 US3_CTS #0 US3_RTS #31 LEU0_TX #20 LEU0_RX #19 I2C0_SDA #20 I2C0_SCL #19	PRS_CH3 #11 PRS_CH4 #3 PRS_CH5 #2 PRS_CH6 #14 ACMP0_O #20 ACMP1_O #20 LES_CH4

Pin Pin Alternate Functionality / Description					
Pin #	Pin Name	Analog	Timers	Communication	Other
N12	PD14	BUSDY BUSCX VDAC0_OUT1 / OPA1_OUT	TIM0_CC0 #22 TIM0_CC1 #21 TIM0_CC2 #20 TIM0_CDTI0 #19 TIM0_CDTI1 #18 TIM0_CDTI2 #17 TIM1_CC0 #22 TIM1_CC1 #21 TIM1_CC2 #20 TIM1_CC3 #19 WTIM0_CDTI0 #30 WTIM0_CDTI0 #30 WTIM0_CDTI1 #28 WTIM0_CDT12 #26 WTIM1_CC1 #20 WTIM1_CC1 #20 WTIM1_CC2 #18 WTIM1_CC3 #16 LE- TIM0_OUT0 #22 LE- TIM0_OUT0 #22 LE- TIM0_OUT1 #21 PCNT0_S0IN #22 PCNT0_S1IN #21	US0_TX #22 US0_RX #21 US0_CLK #20 US0_CS #19 US0_CTS #18 US0_RTS #17 US1_TX #22 US1_RX #21 US1_CLK #20 US1_CS #19 US1_CTS #18 US1_RTS #17 US3_TX #6 US3_RX #5 US3_CLK #4 US3_CS #3 US3_CTS #2 US3_RTS #1 LEU0_TX #22 LEU0_RX #21 I2C0_SDA #22 I2C0_SCL #21	CMU_CLK0 #5 PRS_CH3 #13 PRS_CH4 #5 PRS_CH5 #4 PRS_CH6 #16 ACMP0_O #22 ACMP1_O #22 LES_CH6 GPIO_EM4WU4
N13	PD15	VDAC0_OUT0ALT / OPA0_OUTALT #2 BUSCY BUSDX OPA1_N	TIM0_CC0 #23 TIM0_CC1 #22 TIM0_CC2 #21 TIM0_CDTI0 #20 TIM0_CDTI1 #19 TIM0_CDTI2 #18 TIM1_CC0 #23 TIM1_CC1 #22 TIM1_CC2 #21 TIM1_CC3 #20 WTIM0_CDTI0 #31 WTIM0_CDTI0 #31 WTIM0_CDTI1 #29 WTIM0_CDTI2 #27 WTIM1_CC0 #23 WTIM1_CC1 #21 WTIM1_CC3 #17 LE- TIM0_OUT0 #23 LE- TIM0_OUT0 #23 LE- TIM0_OUT1 #22 PCNT0_S0IN #23 PCNT0_S1IN #22	US0_TX #23 US0_RX #22 US0_CLK #21 US0_CS #20 US0_CTS #19 US0_RTS #18 US1_TX #23 US1_RX #22 US1_CLK #21 US1_CS #20 US1_CTS #19 US1_RTS #18 US3_TX #7 US3_RX #6 US3_CLK #5 US3_CS #4 US3_CTS #3 US3_RTS #2 LEU0_TX #23 LEU0_RX #22 I2C0_SDA #23 I2C0_SCL #22	CMU_CLK1 #5 PRS_CH3 #14 PRS_CH4 #6 PRS_CH5 #5 PRS_CH6 #17 ACMP0_O #23 ACMP1_O #23 LES_CH7 DBG_SWO #2

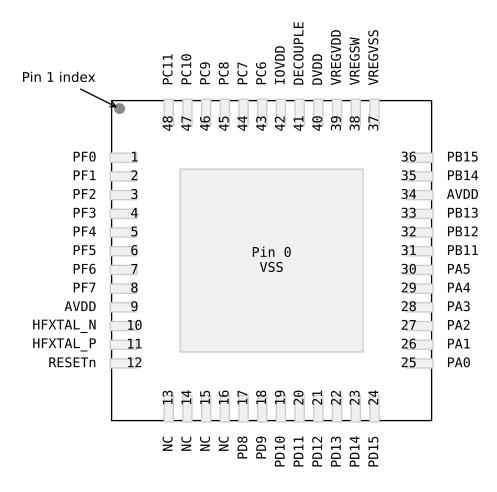


Figure 6.2. EFM32JG12B5xx in QFN48 Device Pinout

	Pin		Pin Alternate Funct	ionality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
0	VSS	Ground			
1	PF0	BUSBY BUSAX	TIM0_CC0 #24 TIM0_CC1 #23 TIM0_CC2 #22 TIM0_CDTI0 #21 TIM0_CDTI1 #20 TIM0_CDTI2 #19 TIM1_CC0 #24 TIM1_CC1 #23 TIM1_CC2 #22 TIM1_CC3 #21 WTIM0_CDTI1 #30 WTIM0_CDTI2 #28 WTIM1_CC0 #24 WTIM1_CC1 #22 WTIM1_CC2 #20 WTIM1_CC3 #18 LE- TIM0_OUT0 #24 LE- TIM0_OUT1 #23 PCNT0_S0IN #24 PCNT0_S1IN #23	US0_TX #24 US0_RX #23 US0_CLK #22 US0_CS #21 US0_CTS #20 US0_RTS #19 US1_TX #24 US1_RX #23 US1_CLK #22 US1_CS #21 US1_CTS #20 US1_RTS #19 US2_TX #14 US2_RX #13 US2_CLK #12 US2_CS #11 US2_CTS #10 US2_RTS #9 LEU0_TX #24 LEU0_RX #23 I2C0_SDA #24 I2C0_SCL #23	PRS_CH0 #0 PRS_CH1 #7 PRS_CH2 #6 PRS_CH3 #5 ACMP0_O #24 ACMP1_O #24 DBG_SWCLKTCK BOOT_TX
2	PF1	BUSAY BUSBX	TIM0_CC0 #25 TIM0_CC1 #24 TIM0_CC2 #23 TIM0_CDTI0 #22 TIM0_CDTI1 #21 TIM0_CDTI2 #20 TIM1_CC0 #25 TIM1_CC1 #24 TIM1_CC2 #23 TIM1_CC3 #22 WTIM0_CDTI1 #31 WTIM0_CDTI2 #29 WTIM1_CC0 #25 WTIM1_CC1 #23 WTIM1_CC1 #23 WTIM1_CC3 #19 LE- TIM0_OUT0 #25 LE- TIM0_OUT0 #25 LE- TIM0_OUT1 #24 PCNT0_S0IN #25 PCNT0_S1IN #24	US0_TX #25 US0_RX #24 US0_CLK #23 US0_CS #22 US0_CTS #21 US0_RTS #20 US1_TX #25 US1_RX #24 US1_CLK #23 US1_CS #22 US1_CTS #21 US1_RTS #20 US2_TX #15 US2_RX #14 US2_CLK #13 US2_CS #12 US2_CTS #11 US2_RTS #10 LEU0_TX #25 LEU0_RX #24 I2C0_SDA #25 I2C0_SCL #24	PRS_CH0 #1 PRS_CH1 #0 PRS_CH2 #7 PRS_CH3 #6 ACMP0_O #25 ACMP1_O #25 DBG_SWDIOTMS BOOT_RX

Table 6.3. EFM32JG12B5xx in QFN48 Device Pinout

	Pin	onality / Description			
Pin #	Pin Name	Analog	Timers	Communication	Other
21	PD12	VDAC0_OUT1ALT / OPA1_OUTALT #0 BUSDY BUSCX	TIM0_CC0 #20 TIM0_CC1 #19 TIM0_CC2 #18 TIM0_CDTI0 #17 TIM0_CDTI1 #16 TIM0_CDTI2 #15 TIM1_CC0 #20 TIM1_CC1 #19 TIM1_CC2 #18 TIM1_CC2 #18 TIM1_CC3 #17 WTIM0_CDTI0 #28 WTIM0_CDTI1 #26 WTIM0_CDT12 #24 WTIM1_CC0 #20 WTIM1_CC1 #18 WTIM1_CC2 #16 WTIM1_CC3 #14 LE- TIM0_OUT0 #20 LE- TIM0_OUT0 #20 LE- TIM0_OUT1 #19 PCNT0_S0IN #20 PCNT0_S1IN #19	US0_TX #20 US0_RX #19 US0_CLK #18 US0_CS #17 US0_CTS #16 US0_RTS #15 US1_TX #20 US1_RX #19 US1_CLK #18 US1_CS #17 US1_CTS #16 US1_RTS #15 US3_TX #4 US3_RX #3 US3_CLK #2 US3_CS #1 US3_CTS #0 US3_RTS #31 LEU0_TX #20 LEU0_RX #19 I2C0_SDA #20 I2C0_SCL #19	PRS_CH3 #11 PRS_CH4 #3 PRS_CH5 #2 PRS_CH6 #14 ACMP0_O #20 ACMP1_O #20 LES_CH4
22	PD13	VDAC0_OUT0ALT / OPA0_OUTALT #1 BUSCY BUSDX OPA1_P	TIM0_CC0 #21 TIM0_CC1 #20 TIM0_CC2 #19 TIM0_CDTI0 #18 TIM0_CDTI1 #17 TIM0_CDTI2 #16 TIM1_CC0 #21 TIM1_CC1 #20 TIM1_CC2 #19 TIM1_CC3 #18 WTIM0_CDTI0 #29 WTIM0_CDTI0 #29 WTIM0_CDTI1 #27 WTIM0_CDTI2 #25 WTIM1_CC0 #21 WTIM1_CC1 #19 WTIM1_CC3 #15 LE- TIM0_OUT0 #21 LE- TIM0_OUT0 #21 LE- TIM0_OUT1 #20 PCNT0_S0IN #21 PCNT0_S1IN #20	US0_TX #21 US0_RX #20 US0_CLK #19 US0_CS #18 US0_CTS #17 US0_RTS #16 US1_TX #21 US1_RX #20 US1_CLK #19 US1_CS #18 US1_CTS #17 US1_RTS #16 US3_TX #5 US3_RX #4 US3_CLK #3 US3_CS #2 US3_CTS #1 US3_RTS #0 LEU0_TX #21 LEU0_RX #20 I2C0_SDA #21 I2C0_SCL #20	PRS_CH3 #12 PRS_CH4 #4 PRS_CH5 #3 PRS_CH6 #15 ACMP0_O #21 ACMP1_O #21 LES_CH5

	Pin		Pin Alternate Funct	ionality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
32	PB12	BUSDY BUSCX OPA2_OUT	TIM0_CC0 #7 TIM0_CC1 #6 TIM0_CC2 #5 TIM0_CDTI0 #4 TIM0_CDTI1 #3 TIM0_CDTI2 #2 TIM1_CC0 #7 TIM1_CC1 #6 TIM1_CC2 #5 TIM1_CC3 #4 WTIM0_CC0 #16 WTIM0_CC1 #14 WTIM0_CC1 #14 WTIM0_CC1 #14 WTIM0_CDT10 #8 WTIM0_CDT10 #8 WTIM0_CDT11 #6 WTIM1_CC0 #0 LE- TIM0_OUT0 #7 LE- TIM0_OUT1 #6 PCNT0_S0IN #7 PCNT0_S1IN #6	US0_TX #7 US0_RX #6 US0_CLK #5 US0_CS #4 US0_CTS #3 US0_RTS #2 US1_TX #7 US1_RX #6 US1_CLK #5 US1_CS #4 US1_CTS #3 US1_RTS #2 LEU0_TX #7 LEU0_RX #6 I2C0_SDA #7 I2C0_SCL #6	PRS_CH6 #7 PRS_CH7 #6 PRS_CH8 #5 PRS_CH9 #4 ACMP0_0 #7 ACMP1_0 #7
33	PB13	BUSCY BUSDX OPA2_N	TIM0_CC0 #8 TIM0_CC1 #7 TIM0_CC2 #6 TIM0_CDTI0 #5 TIM0_CDTI1 #4 TIM0_CDTI2 #3 TIM1_CC0 #8 TIM1_CC1 #7 TIM1_CC2 #6 TIM1_CC3 #5 WTIM0_CC0 #17 WTIM0_CC1 #15 WTIM0_CC1 #15 WTIM0_CDT10 #9 WTIM0_CDT10 #9 WTIM0_CDT11 #7 WTIM0_CDT12 #5 WTIM1_CC0 #1 LE- TIM0_OUT0 #8 LE- TIM0_OUT1 #7 PCNT0_S0IN #8 PCNT0_S1IN #7	US0_TX #8 US0_RX #7 US0_CLK #6 US0_CS #5 US0_CTS #4 US0_RTS #3 US1_TX #8 US1_RX #7 US1_CLK #6 US1_CS #5 US1_CTS #4 US1_RTS #3 LEU0_TX #8 LEU0_RX #7 I2C0_SDA #8 I2C0_SCL #7	CMU_CLKI0 #0 PRS_CH6 #8 PRS_CH7 #7 PRS_CH8 #6 PRS_CH9 #5 ACMP0_O #8 ACMP1_O #8 DBG_SWO #1 GPIO_EM4WU9
34	AVDD	Analog power supply .	·		·

	Pin		Pin Alternate Funct	ionality / Description		
Pin #	Pin Name	Analog	Timers	Communication	Other	
35	PB14	BUSDY BUSCX LFXTAL_N	TIM0_CC0 #9 TIM0_CC1 #8 TIM0_CC2 #7 TIM0_CDTI0 #6 TIM0_CDTI1 #5 TIM0_CDTI2 #4 TIM1_CC0 #9 TIM1_CC1 #8 TIM1_CC2 #7 TIM1_CC3 #6 WTIM0_CC0 #18 WTIM0_CC1 #16 WTIM0_CC1 #16 WTIM0_CC1 #16 WTIM0_CDTI0 #10 WTIM0_CDT11 #8 WTIM0_CDT12 #6 WTIM1_CC0 #2 WTIM1_CC1 #0 LE- TIM0_OUT1 #8 PCNT0_S0IN #9 PCNT0_S0IN #9	US0_TX #9 US0_RX #8 US0_CLK #7 US0_CS #6 US0_CTS #5 US0_RTS #4 US1_TX #9 US1_RX #8 US1_CLK #7 US1_CS #6 US1_CTS #5 US1_RTS #4 LEU0_TX #9 LEU0_RX #8 I2C0_SDA #9 I2C0_SCL #8	CMU_CLK1 #1 PRS_CH6 #9 PRS_CH7 #8 PRS_CH8 #7 PRS_CH9 #6 ACMP0_O #9 ACMP1_O #9	
36	PB15	BUSCY BUSDX LFXTAL_P	TIM0_CC0 #10 TIM0_CC1 #9 TIM0_CC2 #8 TIM0_CDTI0 #7 TIM0_CDTI1 #6 TIM0_CDTI2 #5 TIM1_CC0 #10 TIM1_CC1 #9 TIM1_CC2 #8 TIM1_CC3 #7 WTIM0_CC0 #19 WTIM0_CC0 #19 WTIM0_CC1 #17 WTIM0_CC1 #17 WTIM0_CDT10 #11 WTIM0_CDT11 #9 WTIM0_CDT12 #7 WTIM1_CC0 #3 WTIM1_CC1 #1 LE- TIM0_OUT0 #10 LE- TIM0_OUT1 #9 PCNT0_S0IN #10 PCNT0_S1IN #9	US0_TX #10 US0_RX #9 US0_CLK #8 US0_CS #7 US0_CTS #6 US0_RTS #5 US1_TX #10 US1_RX #9 US1_CLK #8 US1_CS #7 US1_CTS #6 US1_RTS #5 LEU0_TX #10 LEU0_RX #9 I2C0_SDA #10 I2C0_SCL #9	CMU_CLK0 #1 PRS_CH6 #10 PRS_CH7 #9 PRS_CH8 #8 PRS_CH9 #7 ACMP0_O #10 ACMP1_O #10	
37	VREGVSS	Voltage regulator VSS	1	1		
38	VREGSW	DCDC regulator switching	node			
39	VREGVDD	Voltage regulator VDD inp	out			
40	DVDD	Digital power supply .				
41	DECOUPLE	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.				
42	IOVDD	Digital IO power supply .				

Alternate									
Functionality	0 - 3	4 - 7	8 - 11	12 - 15	16 - 19	20 - 23	24 - 27	28 - 31	Description
WTIM0_CC0	0: PA0	4: PA4	8: PA8	12: PB8	16: PB12	20: PC0	24: PC4	28: PC8	Wide timer 0 Cap-
	1: PA1	5: PA5	9: PA9	13: PB9	17: PB13	21: PC1	25: PC5	29: PC9	ture Compare in-
	2: PA2	6: PA6	10: PB6	14: PB10	18: PB14	22: PC2	26: PC6	30: PC10	put / output channel
	3: PA3	7: PA7	11: PB7	15: PB11	19: PB15	23: PC3	27: PC7	31: PC11	0.
WTIM0_CC1	0: PA2	4: PA6	8: PB6	12: PB10	16: PB14	20: PC2	24: PC6	28: PC10	Wide timer 0 Cap-
	1: PA3	5: PA7	9: PB7	13: PB11	17: PB15	21: PC3	25: PC7	29: PC11	ture Compare in-
	2: PA4	6: PA8	10: PB8	14: PB12	18: PC0	22: PC4	26: PC8	30: PD8	put / output channel
	3: PA5	7: PA9	11: PB9	15: PB13	19: PC1	23: PC5	27: PC9	31: PD9	1.
WTIM0_CC2	0: PA4	4: PA8	8: PB8	12: PB12	16: PC0	20: PC4	24: PC8	28: PD8	Wide timer 0 Cap-
	1: PA5	5: PA9	9: PB9	13: PB13	17: PC1	21: PC5	25: PC9	29: PD9	ture Compare in-
	2: PA6	6: PB6	10: PB10	14: PB14	18: PC2	22: PC6	26: PC10	30: PD10	put / output channel
	3: PA7	7: PB7	11: PB11	15: PB15	19: PC3	23: PC7	27: PC11	31: PD11	2.
WTIM0_CDTI0	0: PA8	4: PB8	8: PB12	12: PC0	16: PC4	20: PC8	24: PD8	28: PD12	Wide timer 0 Com-
	1: PA9	5: PB9	9: PB13	13: PC1	17: PC5	21: PC9	25: PD9	29: PD13	plimentary Dead
	2: PB6	6: PB10	10: PB14	14: PC2	18: PC6	22: PC10	26: PD10	30: PD14	Time Insertion
	3: PB7	7: PB11	11: PB15	15: PC3	19: PC7	23: PC11	27: PD11	31: PD15	channel 0.
WTIM0_CDTI1	0: PB6	4: PB10	8: PB14	12: PC2	16: PC6	20: PC10	24: PD10	28: PD14	Wide timer 0 Com-
	1: PB7	5: PB11	9: PB15	13: PC3	17: PC7	21: PC11	25: PD11	29: PD15	plimentary Dead
	2: PB8	6: PB12	10: PC0	14: PC4	18: PC8	22: PD8	26: PD12	30: PF0	Time Insertion
	3: PB9	7: PB13	11: PC1	15: PC5	19: PC9	23: PD9	27: PD13	31: PF1	channel 1.
WTIM0_CDTI2	0: PB8	4: PB12	8: PC0	12: PC4	16: PC8	20: PD8	24: PD12	28: PF0	Wide timer 0 Com-
	1: PB9	5: PB13	9: PC1	13: PC5	17: PC9	21: PD9	25: PD13	29: PF1	plimentary Dead
	2: PB10	6: PB14	10: PC2	14: PC6	18: PC10	22: PD10	26: PD14	30: PF2	Time Insertion
	3: PB11	7: PB15	11: PC3	15: PC7	19: PC11	23: PD11	27: PD15	31: PF3	channel 2.
WTIM1_CC0	0: PB12	4: PC0	8: PC4	12: PC8	16: PD8	20: PD12	24: PF0	28: PF4	Wide timer 1 Cap-
	1: PB13	5: PC1	9: PC5	13: PC9	17: PD9	21: PD13	25: PF1	29: PF5	ture Compare in-
	2: PB14	6: PC2	10: PC6	14: PC10	18: PD10	22: PD14	26: PF2	30: PF6	put / output channel
	3: PB15	7: PC3	11: PC7	15: PC11	19: PD11	23: PD15	27: PF3	31: PF7	0.
WTIM1_CC1	0: PB14	4: PC2	8: PC6	12: PC10	16: PD10	20: PD14	24: PF2	28: PF6	Wide timer 1 Cap-
	1: PB15	5: PC3	9: PC7	13: PC11	17: PD11	21: PD15	25: PF3	29: PF7	ture Compare in-
	2: PC0	6: PC4	10: PC8	14: PD8	18: PD12	22: PF0	26: PF4	30: PF8	put / output channel
	3: PC1	7: PC5	11: PC9	15: PD9	19: PD13	23: PF1	27: PF5	31: PF9	1.
WTIM1_CC2	0: PC0	4: PC4	8: PC8	12: PD8	16: PD12	20: PF0	24: PF4	28: PF8	Wide timer 1 Cap-
	1: PC1	5: PC5	9: PC9	13: PD9	17: PD13	21: PF1	25: PF5	29: PF9	ture Compare in-
	2: PC2	6: PC6	10: PC10	14: PD10	18: PD14	22: PF2	26: PF6	30: PF10	put / output channel
	3: PC3	7: PC7	11: PC11	15: PD11	19: PD15	23: PF3	27: PF7	31: PF11	2.
WTIM1_CC3	0: PC2	4: PC6	8: PC10	12: PD10	16: PD14	20: PF2	24: PF6	28: PF10	Wide timer 1 Cap-
	1: PC3	5: PC7	9: PC11	13: PD11	17: PD15	21: PF3	25: PF7	29: PF11	ture Compare in-
	2: PC4	6: PC8	10: PD8	14: PD12	18: PF0	22: PF4	26: PF8	30: PF12	put / output channel
	3: PC5	7: PC9	11: PD9	15: PD13	19: PF1	23: PF5	27: PF9	31: PF13	3.

6.4 Analog Port (APORT) Client Maps

The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs, DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal routing. Figure 6.3 APORT Connection Diagram on page 111 Shows the APORT routing for this device family. A complete description of APORT functionality can be found in the Reference Manual.

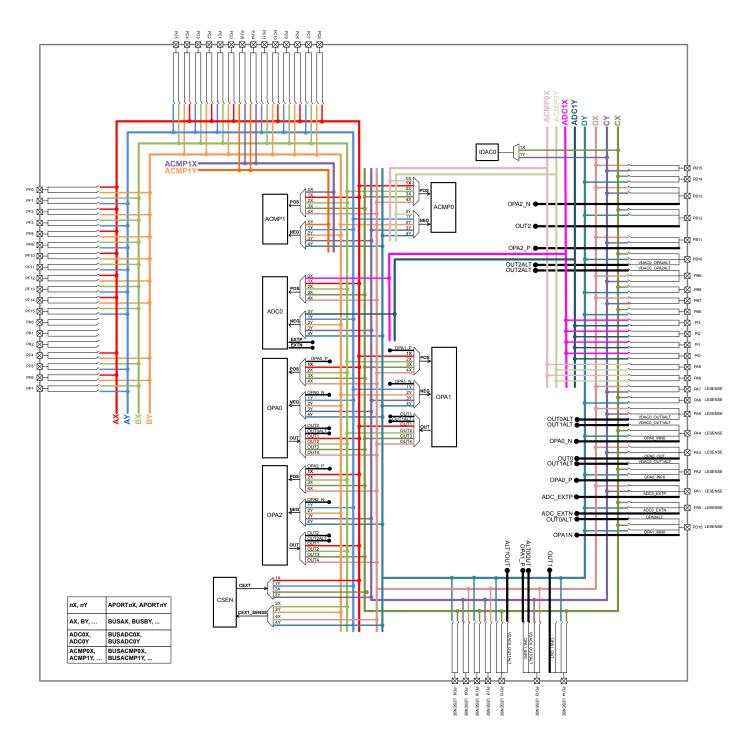


Figure 6.3. APORT Connection Diagram

Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins.

In general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin connection in the table and then combining the value in the Port column (APORT__), and the channel identifier (CH__). For example, if pin

Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0
OPA0_N																																	
APORT1Y	BUSAY	PF15		PF13		PF11		PF9		PF7		PF5		PF3		PF1						PC11		PC9		PC7		PC5		PC3		PC1	
APORT2Y	BUSBY		PF14		PF12		PF10		PF8		PF6		PF4		PF2		PF0						PC10		PC8		9CG		PC4		PC2		PC0
APORT3Y	BUSCY	PB15		PB13		PB11		PB9		PB7								PA7		PA5		PA3		PA1		PD15		PD13		PD11		PD9	
APORT4Y	BUSDY		PB14		PB12		PB10		PB8		PB6								PA6		PA4		PA2		PA0		PD14		PD12		PD10		PD8
OF	A0_	P																															
APORT1X	BUSAX		PF14		PF12		PF10		PF8		PF6		PF4		PF2		PF0						PC10		PC8		PC6		PC4		PC2		PC0
APORT2X	BUSBX	PF15		PF13		PF11		PF9		PF7		PF5		PF3		PF1						PC11		PC9		PC7		PC5		PC3		PC1	
APORT3X	BUSCX		PB14		PB12		PB10		PB8		PB6								PA6		PA4		PA2		PA0		PD14		PD12		PD10		PD8
APORT4X	BUSDX	PB15		PB13		PB11		PB9		PB7								PA7		PA5		PA3		PA1		PD15		PD13		PD11		PD9	

Table 6.11. VDAC0 / OPA Bus and Pin Mapping

7. BGA125 Package Specifications

7.1 BGA125 Package Dimensions

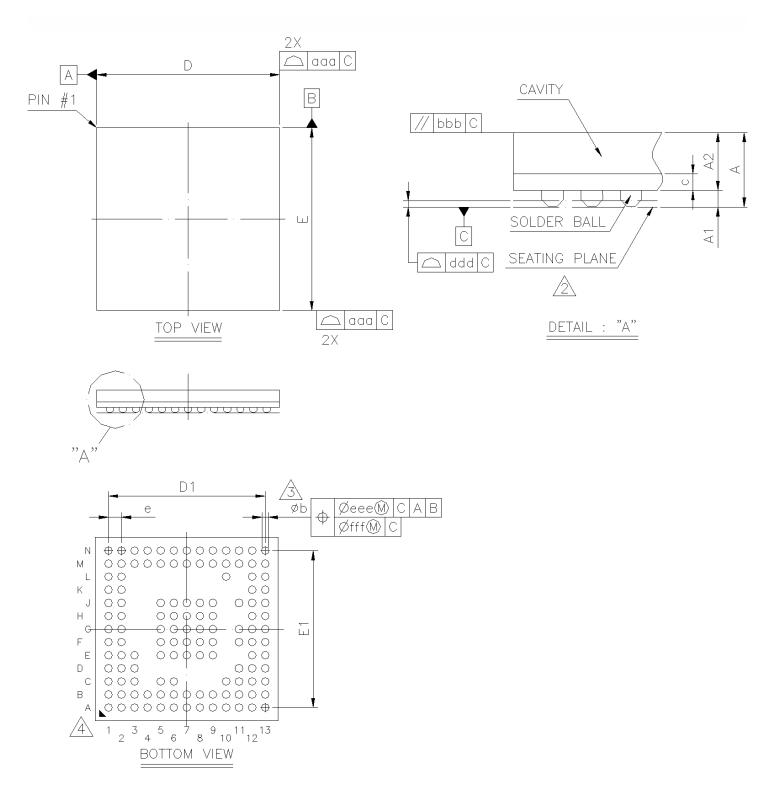


Figure 7.1. BGA125 Package Drawing

7.2 BGA125 PCB Land Pattern

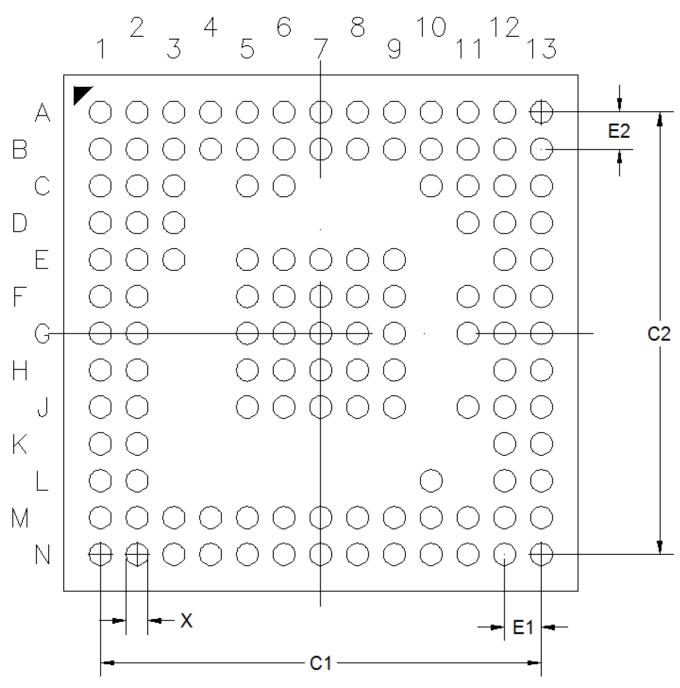


Figure 7.2. BGA125 PCB Land Pattern Drawing