

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

E·XFl

betans	
Product Status	Active
Туре	Fixed Point
Interface	Host Interface, SSI, SCI
Clock Rate	200MHz
Non-Volatile Memory	ROM (576B)
On-Chip RAM	576kB
Voltage - I/O	3.30V
Voltage - Core	1.60V
Operating Temperature	-40°C ~ 100°C
Mounting Type	Surface Mount
Package / Case	196-LBGA
Supplier Device Package	196-MAPBGA (15x15)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=dsp56321vf200

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Feature	Description											
	 192 × 24-bit bootstrap ROM 192 K × 24-bit RAM total Program RAM, instruction cache, X data RAM, and Y data RAM sizes are programmable: 											
	Program RAM Size	Instruction Cache Size	X Data RAM Size*	Y Data RAM Size*	Instruction Cache	MSW2	MSW1	MSWO				
	$32 \text{ K} \times 24 \text{-bit}$	0	80 K × 24-bit	80 K × 24-bit	disabled	0	0	0				
	31 K × 24-bit	1024×24 -bit	80 K × 24-bit	80 K × 24-bit	enabled	0	0	0				
	40 K × 24-bit	0	76 K × 24-bit	76 K × 24-bit	disabled	0	0	1				
	$39 \text{ K} \times 24 \text{-bit}$	1024×24 -bit	76 K × 24-bit	76 K × 24-bit	enabled	0	0	1				
	48 K × 24-bit	0	72 K \times 24-bit	$72 \text{ K} \times 24 \text{-bit}$	disabled	0	1	0				
	47 K × 24-bit	1024×24 -bit	72 K \times 24-bit	$72 \text{ K} \times 24$ -bit	enabled	0	1	0				
Internal Memories	64 K × 24-bit	0	64 K × 24-bit	$64 \text{ K} \times 24$ -bit	disabled	0	1	1				
	63 K × 24-bit	1024×24 -bit	64 K \times 24-bit	$64 \text{ K} \times 24$ -bit	enabled	0	1	1				
	$72 \text{ K} \times 24 \text{-bit}$	0	60 K × 24-bit	60 K × 24-bit	disabled	1	0	0				
	71 K × 24-bit	1024×24 -bit	60 K imes 24-bit	60 K × 24-bit	enabled	1	0	0				
	80 K × 24-bit	0	56 K \times 24-bit	56 K × 24-bit	disabled	1	0	1				
	$79 \text{ K} \times 24 \text{-bit}$	1024×24 -bit	56 K \times 24-bit	56 K × 24-bit	enabled	1	0	1				
	96 K × 24-bit	0	48 K \times 24-bit	48 K × 24-bit	disabled	1	1	0				
	95 K \times 24-bit	1024×24 -bit	48 K \times 24-bit	48 K \times 24-bit	enabled	1	1	0				
	112 K × 24-bit	0	40 K \times 24-bit	40 K \times 24-bit	disabled	1	1	1				
	111 K × 24-bit	1024×24 -bit	40 K \times 24-bit	40 K \times 24-bit	enabled	1	1	1				
	*Includes 12 K >	< 24-bit shared m	emory (that is, 24	4 K total memory	shared by the	e core and	the EFC	OP)				
External Memory Expansion	 Data memory lines Program mem address lines External memory Chip select log 	bit words memor	y space using	the stand								
Power Dissipation	Wait and StopFully static des	 Very low-power CMOS design Wait and Stop low-power standby modes Fully static design specified to operate down to 0 Hz (dc) Optimized power management circuitry (instruction-dependent, peripheral-dependent, and mode- 										
Packaging	Molded array	plastic-ball grid a	rray (MAP-BGA)	package in lead-f	ree or lead-be	earing vers	sions.					

Table 1. DSP56321 Features (Continued)

Target Applications

DSP56321 applications require high performance, low power, small packaging, and a large amount of internal memory. The EFCOP can accelerate general filtering applications. Examples include:

- Wireless and wireline infrastructure applications
- Multi-channel wireless local loop systems
- Security encryption systems
- Home entertainment systems
- DSP resource boards
- High-speed modem banks
- IP telephony

1.4 External Memory Expansion Port (Port A)

Note: When the DSP56321 enters a low-power standby mode (stop or wait), it releases bus mastership and tristates the relevant Port A signals: A[0–17], D[0–23], AA[0–3], RD, WR, BB.

1.4.1 External Address Bus

Signal Name	Туре	State During Reset, Stop, or Wait	Signal Description
A[0–17]	Output	Tri-stated	Address Bus—When the DSP is the bus master, A[0–17] are active-high outputs that specify the address for external program and data memory accesses. Otherwise, the signals are tri-stated. To minimize power dissipation, A[0–17] do not change state when external memory spaces are not being accessed.

Table 1-5. External Address Bus Signals

1.4.2 External Data Bus

 Table 1-6.
 External Data Bus Signals

Signal Name	Туре	State During Reset	State During Stop or Wait	Signal Description
D[0–23]	Input/ Output	Ignored Input	Last state: <i>Input</i> : Ignored <i>Output</i> : Last value	Data Bus —When the DSP is the bus master, D[0–23] are active-high, bidirectional input/outputs that provide the bidirectional data bus for external program and data memory accesses. Otherwise, D[0–23] drivers are tristated. If the last state is output, these lines have weak keepers to maintain the last output state if all drivers are tristated.

1.4.3 External Bus Control

Table 1-7.	External Bus Control Signals
------------	------------------------------

Signal Name	Туре	State During Reset, Stop, or Wait	Signal Description
			Address Attribute—When defined as AA, these signals can be used as chip selects or additional address lines. The default use defines a priority scheme under which only one AA signal can be asserted at a time. Setting the AA priority disable (APD) bit (Bit 14) of the Operating Mode Register, the priority mechanism is disabled and the lines can be used together as four external lines that can be decoded externally into 16 chip select signals.
RD	Output	Tri-stated	Read Enable —When the DSP is the bus master, \overline{RD} is an active-low output that is asserted to read external memory on the data bus (D[0–23]). Otherwise, \overline{RD} is tri-stated.
WR	Output	Tri-stated	Write Enable —When the DSP is the bus master, \overline{WR} is an active-low output that is asserted to write external memory on the data bus (D[0–23]). Otherwise, the signals are tri-stated.

1.5 Interrupt and Mode Control

The interrupt and mode control signals select the chip operating mode as it comes out of hardware reset. After **RESET** is deasserted, these inputs are hardware interrupt request lines.

Signal Name	Туре	State During Reset	Signal Description
MODA	Input	Schmitt-trigger Input	Mode Select A —MODA, MODB, MODC, and MODD select one of 16 initial chip operating modes, latched into the Operating Mode Register when the RESET signal is deasserted.
ĪRQĀ	Input		External Interrupt Request A —After reset, this input becomes a level- sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. If the processor is in the STOP or WAIT standby state and IRQA is asserted, the processor exits the STOP or WAIT state.
MODB	Input	Schmitt-trigger Input	Mode Select B —MODA, MODB, MODC, and MODD select one of 16 initial chip operating modes, latched into the Operating Mode Register when the RESET signal is deasserted.
ĪRQB	Input		External Interrupt Request B —After reset, this input becomes a level- sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. If the processor is in the WAIT standby state and IRQB is asserted, the processor exits the WAIT state.
MODC	Input	Schmitt-trigger Input	Mode Select C —MODA, MODB, MODC, and MODD select one of 16 initial chip operating modes, latched into the Operating Mode Register when the RESET signal is deasserted.
IRQC	Input		External Interrupt Request C —After reset, this input becomes a level- sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. If the processor is in the WAIT standby state and IRQC is asserted, the processor exits the WAIT state.
MODD	Input	Schmitt-trigger Input	Mode Select D —MODA, MODB, MODC, and MODD select one of 16 initial chip operating modes, latched into the Operating Mode Register when the RESET signal is deasserted.
ĪRQD	Input		External Interrupt Request D —After reset, this input becomes a level- sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. If the processor is in the WAIT standby state and IRQD is asserted, the processor exits the WAIT state.
RESET	Input	Schmitt-trigger Input	Reset —Places the chip in the Reset state and resets the internal phase generator. The Schmitt-trigger input allows a slowly rising input (such as a capacitor charging) to reset the chip reliably. When the RESET signal is deasserted, the initial chip operating mode is latched from the MODA, MODB, MODC, and MODD inputs. The RESET signal must be asserted after powerup.
PINIT	Input	Schmitt-trigger Input	PLL Initial —During assertion of RESET, the value of PINIT determines whether the DPLL is enabled or disabled.
NMI	Input		Nonmaskable Interrupt—After RESET deassertion and during normal instruction processing, this Schmitt-trigger input is the negative-edge-triggered NMI request.

2.2 Thermal Characteristics

Thermal Resistance Characteristic	Symbol	MAP-BGA Value	Unit
Junction-to-ambient, natural convection, single-layer board (1s) ^{1,2}	R _{θJA}	44	°C/W
Junction-to-ambient, natural convection, four-layer board (2s2p) ^{1,3}	R _{θJMA}	25	°C/W
Junction-to-ambient, @200 ft/min air flow, single-layer board (1s) ^{1,3}	$R_{\theta JMA}$	35	°C/W
Junction-to-ambient, @200 ft/min air flow, four-layer board (2s2p) ^{1,3}	$R_{ extsf{ heta}JMA}$	22	°C/W
Junction-to-board ⁴	R _{θJB}	13	°C/W
Junction-to-case thermal resistance ⁵	R _{θJC}	7	°C/W

Table 2-2. Thermal Characteristics

Notes: 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

2. Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.

3. Per JEDEC JESD51-6 with the board horizontal.

4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).

2.3 DC Electrical Characteristics

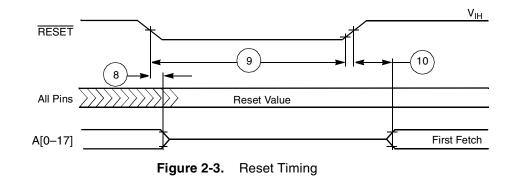

Characteristics	Symbol	Min	Тур	Max	Unit
Supply voltage ¹ : • Core (V _{CCQL}) • I/O (V _{CCQH} , V _{CCA} , V _{CCD} , V _{CCC} , V _{CCH} , and V _{CCS})		1.5 3.0	1.6 3.3	1.7 3.6	V V
Input high voltage • D[0-23], BG, BB, TA • MOD/IRQ ² RESET, PINIT/NMI and all JTAG/ESSI/SCI/Timer/HI08 pins • EXTAL ⁹	V _{IH} V _{IHP} V _{IHX}	2.0 2.0 0.8 × V _{CCQH}	 	V _{CCQH} + 0.3 V _{CCQH} + 0.3 V _{CCQH}	> > >
Input low voltage • D[0–23], BG, BB, TA, MOD/IRQ ² , RESET, PINIT • All JTAG/ESSI/SCI/Timer/HI08 pins • EXTAL ⁹	V _{IL} V _{ILP} V _{ILX}	-0.3 -0.3 -0.3		0.8 0.8 $0.2 \times V_{CCQH}$	V V V
Input leakage current	I _{IN}	-10	—	10	μΑ
High impedance (off-state) input current (@ 2.4 V / 0.4 V)	I _{TSI}	-10	—	10	μA
Output high voltage ⁸ • TTL $(I_{OH} = -0.4 \text{ mA})^6$ • CMOS $(I_{OH} = -10 \mu A)^6$	V _{OH}	2.4 V _{CCQH} – 0.01			V V
Output low voltage ⁸ • TTL ($I_{OL} = 3.0 \text{ mA}$) ⁶ • CMOS ($I_{OL} = 10 \text{ µA}$) ⁶	V _{OL}		—	0.4 0.01	V V

Table 2-3.	DC Electrical	Characteristics ⁷
------------	---------------	------------------------------

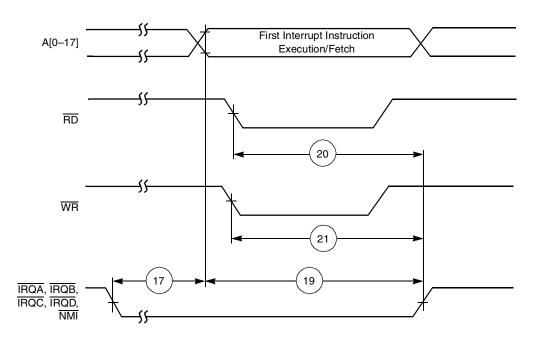
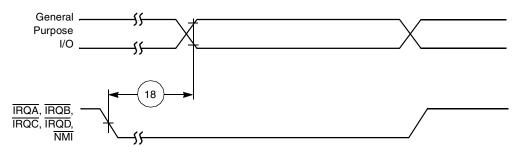


Table 2-7. Reset, Stop, Mode Select, and Interrupt Timing⁵ (CONTINUED)


				200 MHz		220 MHz		240	240 MHz		275 MHz	
No.		Characteristics	Expression	Min	Max	Min	Max	Min	Мах	Min	Мах	Unit
Notes:	1.	When fast interrupts are used and IRQA, IRQB, IRQC, and IRQD are defined as level-sensitive, timings 19 through 21 apply to prevent multiple interrupt service. To avoid these timing restrictions, the deasserted Edge-triggered mode is recommended when fast interrupts are used. Long interrupts are recommended for Level-sensitive mode.										
	2.	This timing depends on seve • For DPLL disable, using int Bit 1 = 0), a stabilization dela Stop delay (Operating Mode it is not recommended, and t • For DPLL disable, using inte delay is required and recove • For DPLL disable, using ex PCTL Bit 1 and Operating M • For DPLL enable, if PCTL E DPLL lock procedure duration by the stop delay counter. St • The DPLT value for DPLL of	ral settings: ernal oscillator (DPLL Contr by is required to assure that Register Bit 6 = 0) provides hese specifications do not g ernal oscillator (PCTL Bit 2 = ry is minimal (Operating Mo ternal clock (PCTL Bit 2 = 1 ode Register Bit 6 settings. Bit 1 is 0, the DPLL is shut d n is defined in Table 2-6 and op recovery ends when the	rol Regi the ose the pro- guarant = 0) and ode Reg l), no si lown du	ister (PC cillator is oper dela cee timing d oscillat gister Bit tabilizatio uring Sto e refined	TL) Bit 2 stable I ay. While gs for th or enabl 6 settin on delay p. Recov after sili	2 = 0) an before pri e Operat at case. ed durin g is igno r is requi vering fro con chai	d oscilla rograms ing Mod g Stop (I red). red and om Stop racteriza	are exec e Registe PCTL Bit recovery requires tion. This	cuted. Re er Bit 6 = 1 = 1), r time is the DPI	esetting = 1 can t no stabili defined _L to loc	the be set izatior by the k. The
	3. 4. 5. 6.	 Periodically sampled and not 100 percent tested. For an external clock generator, RESET duration is measured while RESET is asserted, V_{CC} is valid, and the EXTAL active and valid. For an internal oscillator, RESET duration is measured while RESET is asserted and V_{CC} is valid. The specified timin the crystal oscillator stabilization time after power-up. This number is affected both by the specifications of the crystal components connected to the oscillator and reflects worst case conditions. When the V_{CC} is valid, but the other "required RESET duration" conditions (as specified above) have not been yet m device circuitry is in an uninitialized state that can result in significant power consumption and heat-up. Designs should this state to the shortest possible duration. 								timing re /stal and et met, t	eflects d othe	
	7.	WS = number of wait states Use the expression to compu	(measured in clock cycles,	number	· · · · C).							

a) First Interrupt Instruction Execution

b) General-Purpose I/O

Figure 2-4. External Fast Interrupt Timing

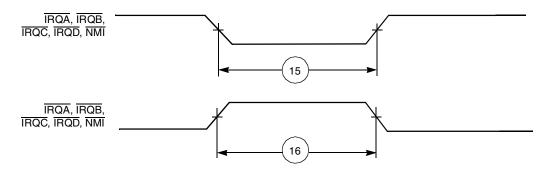
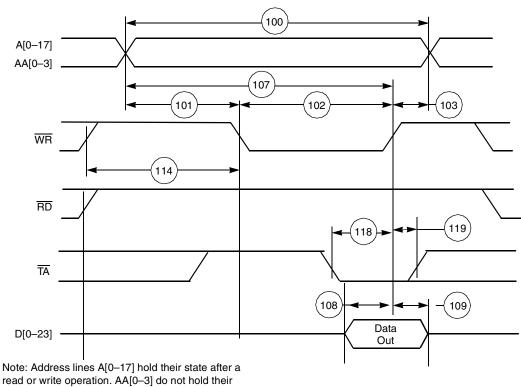



Figure 2-5. External Interrupt Timing (Negative Edge-Triggered)

state after a read or write operation.

2.4.5.2 Asynchronous Bus Arbitration Timings

No.	Characteristics	Expression	200 MHz		220 MHz		240 MHz		275 Mhz		Uni
			Min	Max	Min	Max	Min	Max	Min	Max	t
250	$\overline{\text{BB}}$ assertion window from $\overline{\text{BG}}$ input deassertion.	2.5 × Tc + 5		17.5		16.4	—	15.4	—	14.1	ns
251	Delay from \overline{BB} assertion to \overline{BG} assertion	2 × Tc + 5	15	—	14.1		13.3		12.27	_	ns
Notes	Notes: 1. Bit 13 in the Operating Mode Register must be set to enable Asynchronous Arbitration mode.										

Table 2-9.	Asynchronous	Bus Timings
------------	--------------	--------------------

2. To guarantee timings 250 and 251, it is recommended that you assert non-overlapping BG inputs to different DSP56300 devices (on the same bus), as shown in Figure 2-12, where BG1 is the BG signal for one DSP56300 device while BG2 is the BG signal for a second DSP56300 device.

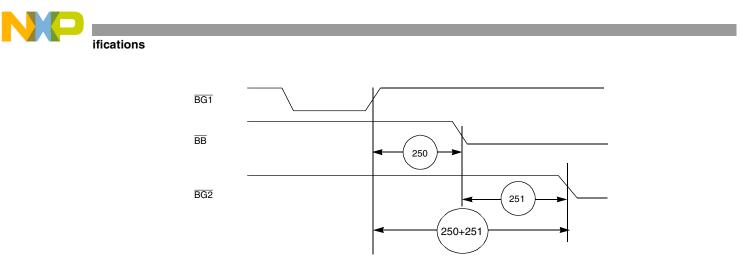


Figure 2-12. Asynchronous Bus Arbitration Timing

The asynchronous bus arbitration is enabled by internal synchronization circuits on \overline{BG} and \overline{BB} inputs. These synchronization circuits add delay from the external signal until it is exposed to internal logic. As a result of this delay, a DSP56300 part may assume mastership and assert \overline{BB} , for some time after \overline{BG} is deasserted. This is the reason for timing 250.

Once \overline{BB} is asserted, there is a synchronization delay from \overline{BB} assertion to the time this assertion is exposed to other DSP56300 components that are potential masters on the same bus. If \overline{BG} input is asserted before that time, and \overline{BG} is asserted and \overline{BB} is deasserted, another DSP56300 component may assume mastership at the same time. Therefore, some non-overlap period between one \overline{BG} input active to another \overline{BG} input active is required. Timing 251 ensures that overlaps are avoided.

2.4.6 Host Interface Timing

No.	Characteristic ¹⁰	Expression	200 MHz		220 MHz		240 MHz		275 MHz		Uni
NO.	Characteristic	Expression	Min	Max	Min	Max	Min	Max	Min	Max	t
317	Read data strobe assertion width ⁵ HACK assertion width	T _C + 4.95	9.95	_	9.05	—	8.3	_	7.77		ns
318	Read data strobe deassertion width ⁵ HACK deassertion width		4.95	_	4.5	—	4.13	—	4.0	_	ns
319	Read data strobe deassertion width ⁵ after "Last Data Register" reads ^{8,11} , or between two consecutive CVR, ICR, or ISR reads ³ HACK deassertion width after "Last Data Register" reads ^{8,11}	2.5 × T _C + 3.3	15.8	_	14.7	—	13.7	_	12.39		ns
320	Write data strobe assertion width ⁶		6.6	_	6.0		5.5	_	5.1		ns
321	 Write data strobe deassertion width⁸ HACK write deassertion width after ICR, CVR and "Last Data Register" writes 	2.5 × T _C + 3.3	15.8	_	14.7	_	13.7	_	12.39	_	ns
	 after IVR writes, or after TXH:TXM:TXL writes (with HLEND= 0), or after TXL:TXM:TXH writes (with HLEND = 1) 		8.25	_	7.5	_	6.88	_	6.28	_	ns
322	HAS assertion width		4.95	—	4.5	_	4.13	_	4.0	_	ns

Table 2-10.Host Interface Timings^{1,2,12}

 Table 2-10.
 Host Interface Timings^{1,2,12} (Continued)

No		Characteristic ¹⁰ Expression	200 MHz		220 MHz		240 MHz		275 MHz		Uni	
No.			Expression	Min	Max	Min	Max	Min	Max	Min	Мах	t
Notes:	1.	See the Programmer's Model section in	n the chapter on	the HI08	3 in the <i>l</i>	DSP563	21 Refe	rence M	anual.			
	2.	In the timing diagrams below, the controls pins are drawn as active low. The pin polarity is programmable.										
	3.	This timing is applicable only if two consecutive reads from one of these registers are executed.										
	4.	The data strobe is Host Read (HRD) or Host Write (HWR) in the Dual Data Strobe mode and Host Data Strobe (HDS) in the Single Data Strobe mode.										
	5.	The read data strobe is HRD in the Dual Data Strobe mode and HDS in the Single Data Strobe mode.										
	6.	The write data strobe is HWR in the Dual Data Strobe mode and HDS in the Single Data Strobe mode.										
	7.	The host request is HREQ in the Single Host Request mode and HRRQ and HTRQ in the Double Host Request mode.										
	8.	The "Last Data Register" is the register at address \$7, which is the last location to be read or written in data transfers. This is RXL/TXL in the Big Endian mode (HLEND = 0; HLEND is the Interface Control Register bit 7—ICR[7]), or RXH/TXH in the Little Endian mode (HLEND = 1).										
	9.	In this calculation, the host request signal is pulled up by a 4.7 k Ω resistor in the Open-drain mode.										
	10.	$V_{CCOH} = 3.3 V \pm 0.3 V$, $V_{CCOL} = 1.6 V$										
	11.											
	12	After the external host writes a new value to the ICR, the HI08 will be ready for operation after three DSP clock cycles $(3 \times Tc)$.										

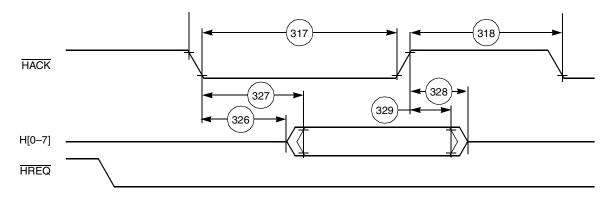
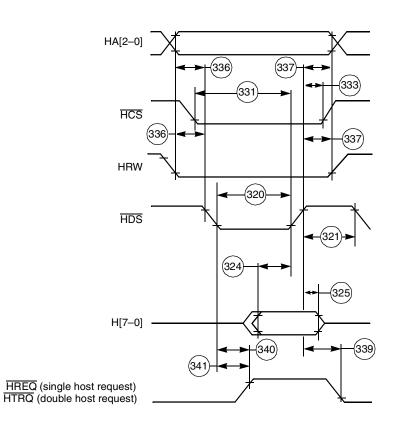
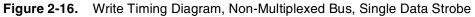




Figure 2-13. Host Interrupt Vector Register (IVR) Read Timing Diagram

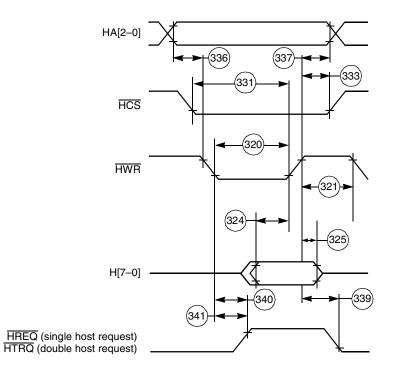


Figure 2-17. Write Timing Diagram, Non-Multiplexed Bus, Double Data Strobe

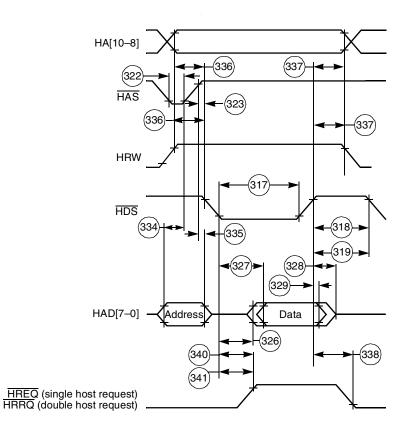


Figure 2-18. Read Timing Diagram, Multiplexed Bus, Single Data Strobe

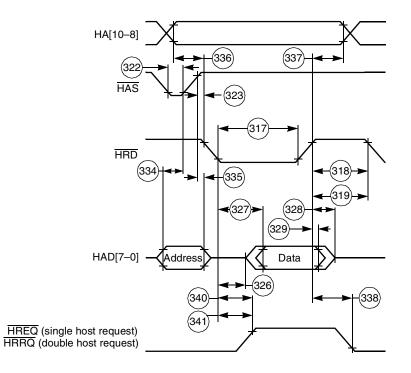
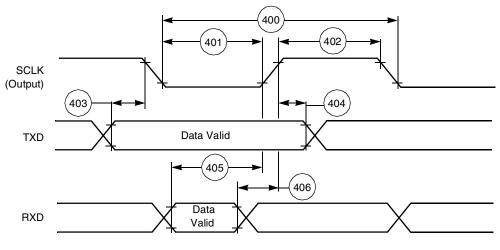
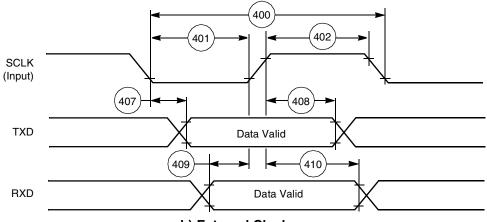




Figure 2-19. Read Timing Diagram, Multiplexed Bus, Double Data Strobe

a) Internal Clock

b) External Clock

Figure 2-22. SCI Synchronous Mode Timing

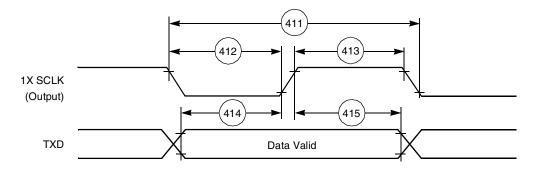
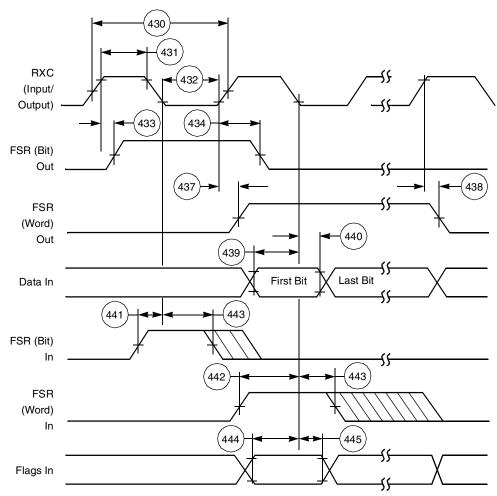



Figure 2-23. SCI Asynchronous Mode Timing

2.4.9 Timer Timing

Table 2-13. Timer Timings

No.	Characteristics	Expression	200 MHz		220 MHz		240 MHz		240 MHz		Unit
NO.			Min	Max	Min	Max	Min	Max	Min	Max	Unit
480 T	TIO Low	$2 \times T_{C} + 2.0$	12.0		11.1	-	10.3	—	9.27	_	ns
481 T	TIO High	$2 \times T_{C} + 2.0$	12.0		11.1		10.3	_	9.27	_	ns
ri a	Synchronous delay time from Timer input rising edge to the external memory address out valid caused by the first nterrupt instruction execution	10.25 × T _C + 10.0	61.2 5	_	56.6 4	_	52.7 4	—	47.2 7	_	ns

The maximum frequency of pulses generated by a timer will be defined after device characterization is completed.

 In the timing diagrams below, TIO is drawn using the rising edge as the reference. TIO polarity is programmable in the Timer Control/Status Register (TCSR). Refer to the DSP56321 Reference Manual for details.

2.4.11 JTAG Timing

NI -	Ob any standarding	All freq	All frequencies			
No.	Characteristics	Min	Max	– Unit		
500	TCK frequency of operation (1/($T_C \times 3$); absolute maximum 22 MHz)	0.0	22.0	MHz		
501	TCK cycle time in Crystal mode	45.0	_	ns		
502	TCK clock pulse width measured at 1.6 V	20.0	_	ns		
503	TCK rise and fall times	0.0	3.0	ns		
504	Boundary scan input data setup time	5.0	_	ns		
505	Boundary scan input data hold time	24.0	_	ns		
506	TCK low to output data valid	0.0	40.0	ns		
507	TCK low to output high impedance	0.0	40.0	ns		
508	TMS, TDI data setup time	5.0	_	ns		
509	TMS, TDI data hold time	25.0	_	ns		
510	TCK low to TDO data valid	0.0	44.0	ns		
511	TCK low to TDO high impedance	0.0	44.0	ns		
512	TRST assert time	100.0	—	ns		
513	TRST setup time to TCK low	40.0	—	ns		

Table 2-14. JTAG Timing

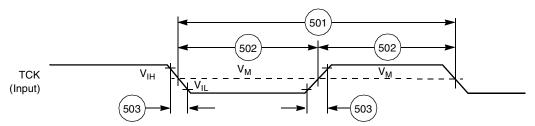


Figure 2-28. Test Clock Input Timing Diagram

2.4.12 OnCE Module TimIng

DE

No.	Characteristics	Expression	All Freq	Unit			
NO.	Characteristics	Expression	Min	Max	Unit		
500	TCK frequency of operation (1/(T _C \times 3); maximum 22 MHz)	Max 22.0 MHz	0.0	22.0	MHz		
514	DE assertion time in order to enter Debug mode	$1.5 imes T_{C} + 10.0$	20.0	—	ns		
515	Response time when DSP56321 is executing NOP instructions from internal memory	5.5 × T _C + 30.0	—	67.0	ns		
516	Debug acknowledge assertion time	$3 \times T_{C} + 5.0$	25.0	—	ns		
Note:	: $V_{CCQH} = 3.3 \text{ V} \pm 0.3 \text{ V}, V_{CCQL} = 1.6 \text{ V} \pm 0.1 \text{ V}; T_J = -40^{\circ}\text{C} \text{ to } +100 ^{\circ}\text{C}, C_L = 50 \text{ pF}$						

 Table 2-15.
 OnCE Module Timing

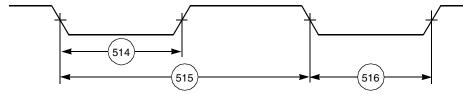


Figure 2-32. OnCE—Debug Request

3.1 Package Description

Top and bottom views of the MAP-BGA packages are shown in Figure 3-1 and Figure 3-2 with their pin-outs.

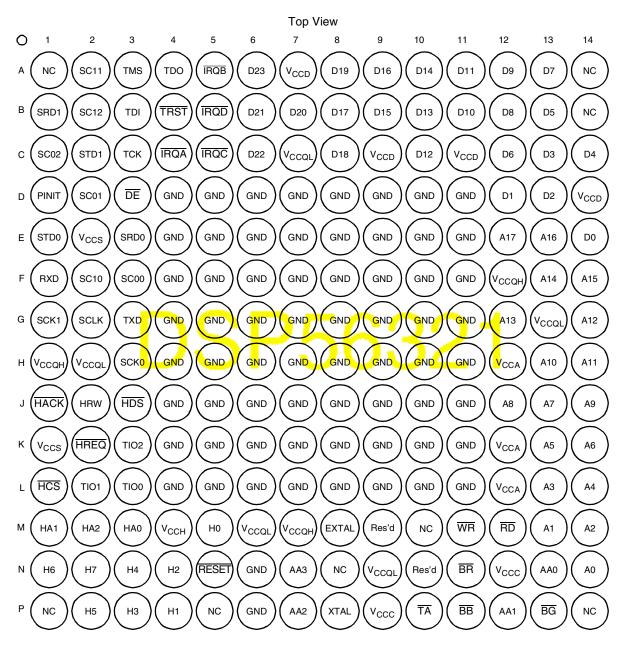


Figure 3-1. DSP56321 MAP-BGA Package, Top View

on Considerations

Equation 4: $I = 50 \times 10^{-12} \times 3.3 \times 33 \times 10^{6} = 5.48 \ mA$

The maximum internal current (I_{CCI} max) value reflects the typical possible switching of the internal buses on bestcase operation conditions—not necessarily a real application case. The typical internal current (I_{CCItyp}) value reflects the average switching of the internal buses on typical operating conditions.

Perform the following steps for applications that require very low current consumption:

- **1.** Set the EBD bit when you are not accessing external memory.
- 2. Minimize external memory accesses, and use internal memory accesses.
- **3.** Minimize the number of pins that are switching.
- 4. Minimize the capacitive load on the pins.
- 5. Connect the unused inputs to pull-up or pull-down resistors.
- 6. Disable unused peripherals.
- 7. Disable unused pin activity (for example, CLKOUT, XTAL).

One way to evaluate power consumption is to use a current-per-MIPS measurement methodology to minimize specific board effects (that is, to compensate for measured board current not caused by the DSP). A benchmark power consumption test algorithm is listed in **Appendix A**. Use the test algorithm, specific test current measurements, and the following equation to derive the current-per-MIPS value.

Equation 5: / MIPS =
$$I$$
/ MHz = $(I_{typF2} - I_{typF1})$ / (F2 - F1)

Where:

uency)
ency lower than F2)

Note: F1 should be significantly less than F2. For example, F2 could be 66 MHz and F1 could be 33 MHz. The degree of difference between F1 and F2 determines the amount of precision with which the current rating can be determined for an application.

4.4 Input (EXTAL) Jitter Requirements

The allowed jitter on the frequency of EXTAL is 0.5 percent. If the rate of change of the frequency of EXTAL is slow (that is, it does not jump between the minimum and maximum values in one cycle) or the frequency of the jitter is fast (that is, it does not stay at an extreme value for a long time), then the allowed jitter can be 2 percent. The phase and frequency jitter performance results are valid only if the input jitter is less than the prescribed values.

M IALO EOU O ; IRQA Mode Interrupt Priority Level (low) M_IAL1 EQU 1 ; IRQA Mode Interrupt Priority Level (high) ; IRQA Mode Trigger Mode M_IAL2 EQU 2 ; IRQB Mode Mask M_IBL EQU \$38 ; IRQB Mode Interrupt Priority Level (low) M_IBL0 EQU 3 BLUBLJBLJEQUICLEQU \$1C0ICLICLEQU 6ICLIEQU 7ICL2EQU 8IDLEQU 900IDLEQU 10IDL 200EQU 11EQU 400EQU 400EQU 53000EQU 5400EQU 5400EQU 55EQU 5000EQU 5000EQU 5000EQU 515EQU 515EQU 52000EQU 53000EQU 53000EQU 54000EQU 55EQU 5000EQU 5000EQU 5000EQU 5000EQU 5000EQU 5000EQU 5000EQU 5000EQU 5000EQU 50000EQU 500000EQU 500000EQU 500000EQU 50000 ; IRQB Mode Interrupt Priority Level (high) ; IRQB Mode Trigger Mode M_IBL1 EQU 4 M_HPL EQU \$3 ; Host Interrupt Priority Level Mask M_HPL0 EQU 0 ; Host Interrupt Priority Level (low) M_HPL1 EQU 1; Host Interrupt Priority Level (high)M_SOL EQU \$C; SSI0 Interrupt Priority Level MaskM_SOL0 EQU 2; SSI0 Interrupt Priority Level (low)M_SOL1 EQU 3; SSI0 Interrupt Priority Level (high)M_S1L EQU \$30; SSI1 Interrupt Priority Level (MaskM_S1L0 EQU 4; SSI1 Interrupt Priority Level (low)M_S1L1 EQU 5; SSI1 Interrupt Priority Level (low)M_S2L2 EQU \$C0; SCI Interrupt Priority Level (high)M_SCL0 EQU 6; SCI Interrupt Priority Level (low)M_SCL1 EQU 7; SCI Interrupt Priority Level (high)M_T0L EQU \$300; TIMER Interrupt Priority Level MaskM_T0L0 EQU 8; TIMER Interrupt Priority Level (low) M_HPL1 EQU 1 ; Host Interrupt Priority Level (high) M_TOLO EQU 8 ; TIMER Interrupt Priority Level (low) M_TOL1 EQU 9 ; TIMER Interrupt Priority Level (high) ;------; EQUATES for TIMER ; ; Register Addresses Of TIMER0 ; ; Timer 0 Control/Status Register M_TCSR0 EQU \$FFFF8F

Pr Consumption Benchmark

```
M DPR0 EOU 17
                                     ; DMA Channel Priority Level (low)
                                     ; DMA Channel Priority Level (high)
M_DPR1 EQU 18
M_DTM EQU $380000
                                   ; DMA Transfer Mode Mask (DTM2-DTM0)
                                    ; DMA Transfer Mode 0
M_DTM0 EQU 19
                                    ; DMA Transfer Mode 1
M_DTM1 EQU 20
M_DTM2 EQU 21
                                     ; DMA Transfer Mode 2
M DIE EOU 22
                                     ; DMA Interrupt Enable bit
M_DE EQU 23
                                     ; DMA Channel Enable bit
         DMA Status Register
;
M DTD EOU $3F
                                    ; Channel Transfer Done Status MASK (DTD0-DTD5)
                                    ; DMA Channel Transfer Done Status 0
M DTDO EOU O
                                    ; DMA Channel Transfer Done Status 1
M DTD1 EOU 1
M_DTD2 EQU 2
                                   ; DMA Channel Transfer Done Status 2
M_DTD3 EQU 3
                                   ; DMA Channel Transfer Done Status 3
                                   ; DMA Channel Transfer Done Status 4
M_DTD4 EQU 4
                                   ; DMA Channel Transfer Done Status 5
; DMA Active State
M_DTD5 EQU 5
M_DACT EQU 8
M_DCH EQU $E00
                                   ; DMA Active Channel Mask (DCH0-DCH2)
M_DCH0 EQU 9
                                   ; DMA Active Channel 0
                                    ; DMA Active Channel 1
M_DCH1 EQU 10
M_DCH2 EQU 11
                                     ; DMA Active Channel 2
;-----
;
         EQUATES for Enhanced Filter Co-Processor (EFCOP)
;
;
;------
M_FDIREQU$FFFFB0; EFCOP Data Input RegisterM_FDOREQU$FFFFB1; EFCOP Data Output RegisterM_FKIREQU$FFFFB2; EFCOP K-Constant RegisterM_FCNTEQU$FFFFB3; EFCOP Filter CounterM_FCSREQU$FFFFB4; EFCOP Control Status RegisterM_FACREQU$FFFFB5; EFCOP ALU Control RegisterM_FDBAEQU$FFFFB6; EFCOP Data Base AddressM_FCBAEQU$FFFFB7; EFCOP Coefficient Base AddressM_FDCHEQU$FFFFB8; EFCOP Decimation/Channel Register
;------
;
        EQUATES for Phase Locked Loop (PLL)
;
;------
        Register Addresses Of PLL
;
                 $FFFFD0
M_DMFR EQU
M_DPSC EQU
                  $FFFFD0
M_PCTL EQU
                   $FFFFD1
                                 ; PLL Control Register
       PLL Control Register
;
                 $F

        M_MFI
        EQU
        $F

        M_MFN
        EQU
        $7F0

        M_MFD
        EQU
        $3F800

        M_PDF
        EQU
        $3C0000

M MFI
         EQU
                                   ; Multiplication Factor Intager Bits Mask (MFI0-MFI3)
                                  ; Multiplication Factor Bits Mask (MFN0-MFN6)
; Multiplication Factor Bits Mask (MFD0-MFD6)
                                   ; PreDivider Factor Bits Mask (PD0-PD3)
M_CPLM EQU 22
                                     ;
                23
M_MFO EQU
                                    ;
        EQU $70
M_CDF
                                     ; Division Factor Bits Mask (DF0-DF2)
```


; Non-Maskable interrupts •_____ ; Hardware RESET I_RESET EQU I_VEC+\$00 I STACK EQU I_VEC+\$02 ; Stack Error ; Illegal Instruction I_ILL EQU I_VEC+\$04 I_DBG EQU I_VEC+\$06 ; Debug Request ; Trap I_TRAP EQU I_VEC+\$08 I_NMI EQU I_VEC+\$0A ; Non Maskable Interrupt :-----; Interrupt Request Pins ;------; IRQA I_IRQA EQU I_VEC+\$10 I_IRQB EQU I_VEC+\$12 ; IRQB I_IRQC EQU I_VEC+\$14 ; IRQC I_IRQD EQU I_VEC+\$16 ; IRQD ;------; DMA Interrupts ; DMA Channel 0 I_DMA0 EQU I_VEC+\$18 I_DMA1 EQU I_VEC+\$1A ; DMA Channel 1 I_DMA2 EQU I_VEC+\$1C ; DMA Channel 2 I_DMA3 EQU I_VEC+\$1E I_DMA4 EQU I_VEC+\$20 ; DMA Channel 3 ; DMA Channel 4 I_DMA5 EQU I_VEC+\$22 ; DMA Channel 5 ;------; Timer Interrupts ; TIMER 0 compare I_TIMOC EQU I_VEC+\$24 ; TIMER 0 overflow I_TIM1C EQU I_VEC+\$28 ; TIMER 1 compare I_TIM10F EQU I_VEC+\$2A ; TIMER 1 overflow I_TIM2C EQU I_VEC+\$2C ; TIMER 2 compare I_TIM2OF EQU I_VEC+\$2E ; TIMER 2 overflow ; ESSI Interrupts ;------I_SIORD EQU I_VEC+\$30 ; ESSI0 Receive Data I_SIORDE EQU I_VEC+\$32 I_SIORLS EQU I_VEC+\$34 ; ESSI0 Receive Data w/ exception Status ; ESSI0 Receive last slot I_SIOTD EQU I_VEC+\$36 ; ESSIO Transmit data I_SIOTDE EQU I_VEC+\$38 ; ESSI0 Transmit Data w/ exception Status I_SIOTLS EQU I_VEC+\$3A ; ESSI0 Transmit last slot ; ESSI1 Receive Data I_SI1RD EQU I_VEC+\$40 ; ESSI1 Receive Data w/ exception Status I_SI1RDE EQU I_VEC+\$42 ; ESSI1 Receive last slot I_SI1TD EQU I_VEC+\$46 ; ESSI1 Transmit data ; ESSI1 Transmit Data w/ exception Status I_SI1TDE EQU I_VEC+\$48 I_SI1TLS EQU I_VEC+\$4A ; ESSI1 Transmit last slot ;------; SCI Interrupts I_SCIRD EQU I_VEC+\$50 ; SCI Receive Data I_SCIRDE EQU I_VEC+\$52 I_SCITD EQU I_VEC+\$54 I_SCIIL EQU I_VEC+\$56 ; SCI Receive Data With Exception Status ; SCI Transmit Data ; SCI Idle Line I_SCITM EQU I_VEC+\$58 ; SCI Timer