

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

E·XFl

Details	
Product Status	Active
Туре	Fixed Point
Interface	Host Interface, SSI, SCI
Clock Rate	220MHz
Non-Volatile Memory	ROM (576B)
On-Chip RAM	576kB
Voltage - I/O	3.30V
Voltage - Core	1.60V
Operating Temperature	-40°C ~ 100°C (TJ)
Mounting Type	Surface Mount
Package / Case	196-BGA
Supplier Device Package	196-MAPBGA (15x15)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=dsp56321vf220

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features

 Table 1 lists the features of the DSP56321 device.

Feature	Description
High-Performance DSP56300 Core	 275 million multiply-accumulates per second (MMACS) (550 MMACS using the EFCOP in filtering applications) with a 275 MHz clock at 1.6 V core and 3.3 V I/O Object code compatible with the DSP56000 core with highly parallel instruction set Data arithmetic logic unit (Data ALU) with fully pipelined 24 × 24-bit parallel Multiplier-Accumulator (MAC), 56-bit parallel barrel shifter (fast shift and normalization; bit stream generation and parsing), conditional ALU instructions, and 24-bit or 16-bit arithmetic support under software control Program control unit (PCU) with position independent code (PIC) support, addressing modes optimized for DSP applications (including immediate offsets), internal instruction cache controller, internal memory-expandable hardware stack, nested hardware DO loops, and fast auto-return interrupts Direct memory access (DMA) with six DMA channels supporting internal and external accesses; one-, two-, and three-dimensional transfers (including circular buffering); end-of-block-transfer interrupts; and triggering from interrupt lines and all peripherals Phase-lock loop (PLL) allows change of low-power divide factor (DF) without loss of lock and output clock with skew elimination Hardware debugging support including on-chip emulation (OnCE) module, Joint Test Action Group (JTAG) test access port (TAP)
Enhanced Filter Coprocessor (EFCOP)	 Internal 24 × 24-bit filtering and echo-cancellation coprocessor that runs in parallel to the DSP core Operation at the same frequency as the core (up to 275 MHz) Support for a variety of filter modes, some of which are optimized for cellular base station applications: Real finite impulse response (FIR) with real taps Complex FIR with complex taps Complex FIR generating pure real or pure imaginary outputs alternately A 4-bit decimation factor in FIR filters, thus providing a decimation ratio up to 16 Direct form 1 (DFI) Infinite Impulse Response (IIR) filter Four scaling factors (1, 4, 8, 16) for IIR output Adaptive FIR filter with true least mean square (LMS) coefficient updates Adaptive FIR filter with delayed LMS coefficient updates
Internal Peripherals	 Enhanced 8-bit parallel host interface (HI08) supports a variety of buses (for example, ISA) and provides glueless connection to a number of industry-standard microcomputers, microprocessors, and DSPs Two enhanced synchronous serial interfaces (ESSI), each with one receiver and three transmitters (allows six-channel home theater) Serial communications interface (SCI) with baud rate generator Triple timer module Up to 34 programmable general-purpose input/output (GPIO) pins, depending on which peripherals are enabled

Table 1. DSP56321 Features

DSP56321 Technical Data, Rev. 11

Signals/Connections

The DSP56321 input and output signals are organized into functional groups as shown in **Table 1-1**. **Figure 1-1** diagrams the DSP56321 signals by functional group. The remainder of this chapter describes the signal pins in each functional group.

Functional Group		
Power (V _{CC})		20
Ground (GND)		66
Clock		2
Address bus		18
Data bus	Port A ¹	24
Bus control		10
Interrupt and mode control		6
Host interface (HI08) Port B ²		16
Enhanced synchronous serial interface (ESSI) Ports C and D ³		12
Serial communication interface (SCI) Port E ⁴		3
Timer		
OnCE/JTAG Port		
 Port A signals define the external memory interface port, including the Port B signals are the HI08 port signals multiplexed with the GPIO sig Port C and D signals are the two ESSI port signals multiplexed with the Port E signals are the SCI port signals multiplexed with the GPIO signals 	nals. ne GPIO signals.	nd control signals.

Table 1-1.	DSP56321	Functional	Signal	Groupings
	DOI 00021	i unononui	orginar	aroupingo

Chapter 3). There are also two reserved lines.

Eight signal lines are not connected internally. These are designated as no connect (NC) in the package description (see

Note: This chapter refers to a number of configuration registers used to select individual multiplexed signal functionality. See the *DSP56321 Reference Manual* for details on these configuration registers.

5.

1.1 Power

Power Name	Description
V _{CCQL}	Quiet Core (Low) Power—An isolated power for the core processing and clock logic. This input must be isolated externally from all other chip power inputs.
V _{CCQH}	Quiet External (High) Power—A quiet power source for I/O lines. This input must be tied externally to all other chip power inputs, <i>except</i> V _{CCQL} .
V _{CCA}	Address Bus Power—An isolated power for sections of the address bus I/O drivers. This input must be tied externally to all other chip power inputs, <i>except</i> V _{CCQL} .
V _{CCD}	Data Bus Power —An isolated power for sections of the data bus I/O drivers. This input must be tied externally to all other chip power inputs, <i>except</i> V _{CCQL} .
V _{CCC}	Bus Control Power—An isolated power for the bus control I/O drivers. This input must be tied externally to all other chip power inputs, <i>except</i> V _{CCQL} .
V _{CCH}	Host Power—An isolated power for the HI08 I/O drivers. This input must be tied externally to all other chip power inputs, <i>except</i> V _{CCQL} .
V _{CCS}	ESSI, SCI, and Timer Power —An isolated power for the ESSI, SCI, and timer I/O drivers. This input must be tied externally to all other chip power inputs, <i>except</i> V _{CCQL} .
Note: The user m	ust provide adequate external decoupling capacitors for all power connections.

Table 1-2. Power Inputs

1.2 Ground

Table 1-3. Grounds

Name	Description	
GND	Ground—Connected to an internal device ground plane.	
Note: The user must provide adequate external decoupling capacitors for all GND connections.		

1.3 Clock

Table 1-4. Clock Signals

Signal Name	Туре	State During Reset	Signal Description
EXTAL	Input	Input	External Clock/Crystal Input—Interfaces the internal crystal oscillator input to an external crystal or an external clock.
XTAL	Output	Chip-driven	Crystal Output —Connects the internal crystal oscillator output to an external crystal. If an external clock is used, leave XTAL unconnected.

1.6 Host Interface (HI08)

The HI08 provides a fast, 8-bit, parallel data port that connects directly to the host bus. The HI08 supports a variety of standard buses and connects directly to a number of industry-standard microcomputers, microprocessors, DSPs, and DMA hardware.

1.6.1 Host Port Usage Considerations

Careful synchronization is required when the system reads multiple-bit registers that are written by another asynchronous system. This is a common problem when two asynchronous systems are connected (as they are in the Host port). The considerations for proper operation are discussed in **Table 1-9**.

Action	Description
Asynchronous read of receive byte registers	When reading the receive byte registers, Receive register High (RXH), Receive register Middle (RXM), or Receive register Low (RXL), the host interface programmer should use interrupts or poll the Receive register Data Full (RXDF) flag that indicates data is available. This assures that the data in the receive byte registers is valid.
Asynchronous write to transmit byte registers	The host interface programmer should not write to the transmit byte registers, Transmit register High (TXH), Transmit register Middle (TXM), or Transmit register Low (TXL), unless the Transmit register Data Empty (TXDE) bit is set indicating that the transmit byte registers are empty. This guarantees that the transmit byte registers transfer valid data to the Host Receive (HRX) register.
Asynchronous write to host vector	The host interface programmer must change the Host Vector (HV) register only when the Host Command bit (HC) is clear. This practice guarantees that the DSP interrupt control logic receives a stable vector.

Table 1-9.	Host Port Usage Considerations
------------	--------------------------------

1.6.2 Host Port Configuration

HI08 signal functions vary according to the programmed configuration of the interface as determined by the 16 bits in the HI08 Port Control Register.

Signal Name	Туре	State During Reset ^{1,2}	Signal Description
H[0–7]	Input/Output	Ignored Input	Host Data —When the HI08 is programmed to interface with a non-multiplexed host bus and the HI function is selected, these signals are lines 0–7 of the bidirectional Data bus.
HAD[0-7]	Input/Output		Host Address —When the HI08 is programmed to interface with a multiplexed host bus and the HI function is selected, these signals are lines 0–7 of the bidirectional multiplexed Address/Data bus.
PB[0-7]	Input or Output		Port B 0–7 —When the HI08 is configured as GPIO through the HI08 Port Control Register, these signals are individually programmed as inputs or outputs through the HI08 Data Direction Register.

Table 1-10. Host Interface

als/Connections

1.7 Enhanced Synchronous Serial Interface 0 (ESSI0)

Two synchronous serial interfaces (ESSI0 and ESSI1) provide a full-duplex serial port for serial communication with a variety of serial devices, including one or more industry-standard codecs, other DSPs, microprocessors, and peripherals that implement the Freescale serial peripheral interface (SPI).

Signal Name	Туре	State During Reset ^{1,2}	Signal Description
SC00	Input or Output	Ignored Input	Serial Control 0 —For asynchronous mode, this signal is used for the receive clock I/O (Schmitt-trigger input). For synchronous mode, this signal is used either for transmitter 1 output or for serial I/O flag 0.
PC0	Input or Output		Port C 0 —The default configuration following reset is GPIO input PC0. When configured as PC0, signal direction is controlled through the Port C Direction Register. The signal can be configured as ESSI signal SC00 through the Port C Control Register.
SC01	Input/Output	Ignored Input	Serial Control 1 —For asynchronous mode, this signal is the receiver frame sync I/O. For synchronous mode, this signal is used either for transmitter 2 output or for serial I/O flag 1.
PC1	Input or Output		Port C 1 —The default configuration following reset is GPIO input PC1. When configured as PC1, signal direction is controlled through the Port C Direction Register. The signal can be configured as an ESSI signal SC01 through the Port C Control Register.
SC02	Input/Output	Ignored Input	Serial Control Signal 2—The frame sync for both the transmitter and receiver in synchronous mode, and for the transmitter only in asynchronous mode. When configured as an output, this signal is the internally generated frame sync signal. When configured as an input, this signal receives an external frame sync signal for the transmitter (and the receiver in synchronous operation).
PC2	Input or Output		Port C 2 —The default configuration following reset is GPIO input PC2. When configured as PC2, signal direction is controlled through the Port C Direction Register. The signal can be configured as an ESSI signal SC02 through the Port C Control Register.
SCK0	Input/Output	Ignored Input	Serial Clock —Provides the serial bit rate clock for the ESSI. The SCK0 is a clock input or output, used by both the transmitter and receiver in synchronous modes or by the transmitter in asynchronous modes.
			Although an external serial clock can be independent of and asynchronous to the DSP system clock, it must exceed the minimum clock cycle time of 6T (that is, the system clock frequency must be at least three times the external ESSI clock frequency). The ESSI needs at least three DSP phases inside each half of the serial clock.
PC3	Input or Output		Port C 3 —The default configuration following reset is GPIO input PC3. When configured as PC3, signal direction is controlled through the Port C Direction Register. The signal can be configured as an ESSI signal SCK0 through the Port C Control Register.
SRD0	Input	Ignored Input	Serial Receive Data—Receives serial data and transfers the data to the ESSI Receive Shift Register. SRD0 is an input when data is received.
PC4	Input or Output		Port C 4 —The default configuration following reset is GPIO input PC4. When configured as PC4, signal direction is controlled through the Port C Direction Register. The signal can be configured as an ESSI signal SRD0 through the Port C Control Register.

Table 1-11.	Enhanced Synchronous Serial Interface 0
	Ennancea eynomeneae eena maenaee e

2.2 Thermal Characteristics

Thermal Resistance Characteristic	Symbol	MAP-BGA Value	Unit
Junction-to-ambient, natural convection, single-layer board (1s) ^{1,2}	R _{θJA}	44	°C/W
Junction-to-ambient, natural convection, four-layer board (2s2p) ^{1,3}	R _{θJMA}	25	°C/W
Junction-to-ambient, @200 ft/min air flow, single-layer board (1s) ^{1,3}	R _{θJMA}	35	°C/W
Junction-to-ambient, @200 ft/min air flow, four-layer board (2s2p) ^{1,3}	R _{θJMA}	22	°C/W
Junction-to-board ⁴	R _{θJB}	13	°C/W
Junction-to-case thermal resistance ⁵	R _{θJC}	7	°C/W

Table 2-2. Thermal Characteristics

Notes: 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

2. Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.

3. Per JEDEC JESD51-6 with the board horizontal.

4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

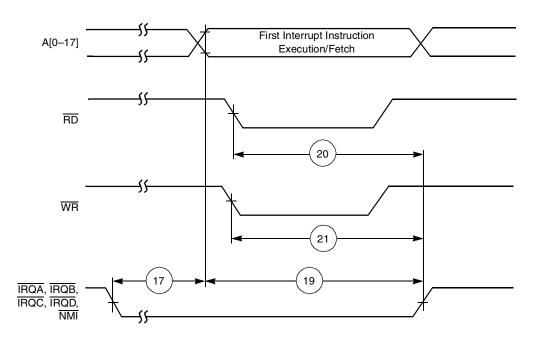
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).

2.3 DC Electrical Characteristics

Characteristics	Symbol	Min	Тур	Max	Unit
Supply voltage ¹ : • Core (V _{CCQL}) • I/O (V _{CCQH} , V _{CCA} , V _{CCD} , V _{CCC} , V _{CCH} , and V _{CCS})		1.5 3.0	1.6 3.3	1.7 3.6	V V
Input high voltage • D[0-23], BG, BB, TA • MOD/IRQ ² RESET, PINIT/NMI and all JTAG/ESSI/SCI/Timer/HI08 pins • EXTAL ⁹	V _{IH} V _{IHP} V _{IHX}	2.0 2.0 0.8 × V _{CCQH}	 	V _{CCQH} + 0.3 V _{CCQH} + 0.3 V _{CCQH}	> > >
Input low voltage • D[0–23], BG, BB, TA, MOD/IRQ ² , RESET, PINIT • All JTAG/ESSI/SCI/Timer/HI08 pins • EXTAL ⁹	V _{IL} V _{ILP} V _{ILX}	-0.3 -0.3 -0.3		0.8 0.8 $0.2 \times V_{CCQH}$	V V V
Input leakage current	I _{IN}	-10	—	10	μΑ
High impedance (off-state) input current (@ 2.4 V / 0.4 V)	I _{TSI}	-10	_	10	μA
Output high voltage ⁸ • TTL $(I_{OH} = -0.4 \text{ mA})^6$ • CMOS $(I_{OH} = -10 \mu A)^6$	V _{OH}	2.4 V _{CCQH} – 0.01			V V
Output low voltage ⁸ • TTL ($I_{OL} = 3.0 \text{ mA}$) ⁶ • CMOS ($I_{OL} = 10 \text{ µA}$) ⁶	V _{OL}		—	0.4 0.01	V V

Table 2-3.	DC Electrical	Characteristics ⁷
------------	---------------	------------------------------

 Table 2-6.
 CLKGEN and DPLL Characteristics (Continued)


	Characteristics		0	200	MHz	220	MHz	240	MHz	275	MHz	11
Characteristics		Symbol	Min	Мах	Min	Мах	Min	Мах	Min	Мах	Unit	
Notes:	1.	Refer to the DSP56321 L	the DSP56321 User's Manual for a detailed description of register reset values.									
	2.	The total multiplication fa	ctor (MF) in	ncludes bo	oth integer	and fracti	onal parts	(that is, M	F = MFI +	MFN/MFE	D).	
	3.	The numerator (MFN) sh	ould be les	s than the	denomina	tor (MFD)).					
	4.	DPLL lock procedure dur	ation is spe	ecified for	the case w	hen an e	kternal cloo	ck source	is supplied	I to the EX	TAL pin.	
	5.	Frequency-only Lock Mo	ock Mode or non-integer MF, after partial reset.									
	6.	Frequency and Phase Lo	ck Mode, i	nteger MF	, after full	reset.						

2.4.4 Reset, Stop, Mode Select, and Interrupt Timing

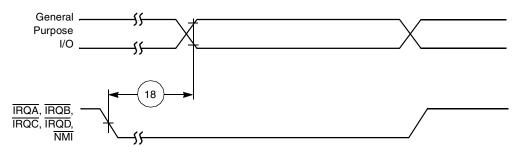

			200	MHz	220	MHz	240	MHz	275	MHz	
No.	Characteristics	Expression	Min	Max	Min	Max	Min	Max	Min	Max	Unit
	Delay from RESET assertion to all pins at reset value ³	—	—	26	—	26		26	-	26	ns
9	 Required RESET duration⁴ Power on, external clock generator, DPLL disabled Power on, external clock generator, DPLL enabled Power on, internal oscillator During STOP, XTAL disabled During STOP, XTAL enabled During normal operation 	$50 \times \text{ET}_{\text{C}}$ $1000 \times \text{ET}_{\text{C}}$ $75000 \times \text{ET}_{\text{C}}$ $75000 \times \text{ET}_{\text{C}}$ $2.5 \times \text{T}_{\text{C}}$ $2.5 \times \text{T}_{\text{C}}$	250.0 5.0 0.375 0.375 12.5 17		227.5 4.55 0.341 0.341 11.38 16		208.5 4.17 0.313 0.313 10.43 15		182.0 3.64 0.273 0.273 9.1 9.1		ns μs ms ms ns ns
10	Delay from asynchronous RESET deassertion to first external address output (internal reset deassertion) • Minimum • Maximum	3.25 × T _C + 2.0	18.25 —	 180	16.77	 163	15.55 —	 150	13.82 —	 140	ns ns
13	Mode select setup time		30.0	_	30.0	-	30.0	-	30.0	_	ns
14	Mode select hold time		0.0	_	0.0	_	0.0	_	0.0	_	ns
15	Minimum edge-triggered interrupt request assertion width		4.0	_	4.0	_	4.0	_	4.0	—	ns
16	Minimum edge-triggered interrupt request deassertion width		4.0	-	4.0	_	4.0	_	4.0	—	ns
17	 Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to external memory access address out valid Caused by first interrupt instruction fetch Caused by first interrupt instruction execution 	$4.25 \times T_{C} + 2.0$ $7.25 \times T_{C} + 2.0$	23.25 38.25	_	21.24 34.99	_	19.72 32.23	_	17.45 28.36	_	ns ns
	Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to general-purpose transfer output valid caused by first interrupt instruction execution	$8.9 imes T_{C}$	44.5	_	40.45	_	37.0	_	32.37	_	ns
	Delay from address output valid caused by first interrupt instruction execute to interrupt request deassertion for level sensitive fast interrupts ^{1, 6, 7}	(WS + 3.75) × T _C – 10.94	_	Note 7		Note 7		Note 7	_	Note 7	ns

 Table 2-7.
 Reset, Stop, Mode Select, and Interrupt Timing⁵

a) First Interrupt Instruction Execution

b) General-Purpose I/O

Figure 2-4. External Fast Interrupt Timing

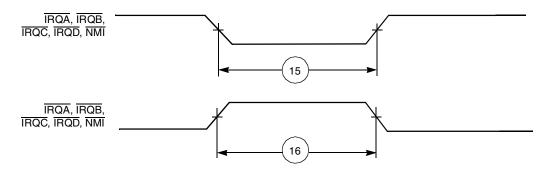


Figure 2-5. External Interrupt Timing (Negative Edge-Triggered)

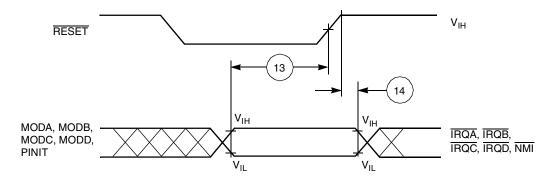


Figure 2-6. Operating Mode Select Timing

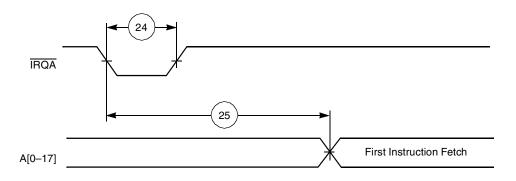
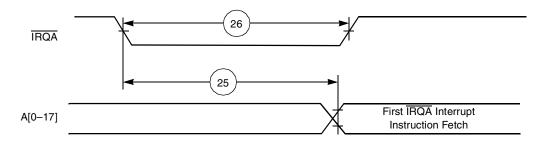
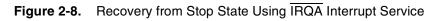




Figure 2-7. Recovery from Stop State Using IRQA

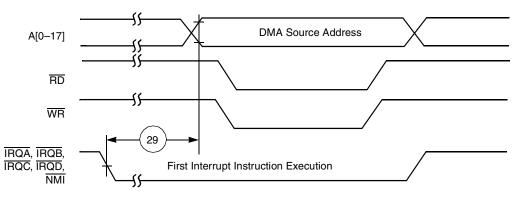


Figure 2-9. External Memory Access (DMA Source) Timing

 Table 2-10.
 Host Interface Timings^{1,2,12} (Continued)

No.		Characteristic ¹⁰	Expression	200	MHz	220	MHz	240	MHz	275	MHz	Uni	
NO.		Characteristic	Expression	Min	Max	Min	Max	Min	Max	Min	Мах	t	
Notes:	1.	See the Programmer's Model section in	n the chapter on	the HI08	3 in the <i>l</i>	DSP563	21 Refe	rence M	anual.				
	2.	In the timing diagrams below, the contr	ols pins are drav	vn as ac	tive low.	. The pir	n polarity	is progr	ammabl	e.			
	3.	This timing is applicable only if two con	secutive reads f	rom one	of these	e registe	rs are ex	ecuted.					
	4.	The data strobe is Host Read (HRD) or Single Data Strobe mode.	⁻ Host Write (HW	(R) in the	e Dual D	ata Stro	be mode	e and Ho	ost Data	Strobe	(HDS) ir	n the	
	5.	The read data strobe is HRD in the Dua	al Data Strobe m	ode and	I HDS in	the Sin	gle Data	Strobe	mode.				
	6.	The write data strobe is HWR in the Dual Data Strobe mode and HDS in the Single Data Strobe mode.											
	7.	The host request is HREQ in the Single	e Host Request r	node an	d HRRC	and H	rRQ in th	ne Doub	le Host I	Request	mode.		
	8.	e e	The "Last Data Register" is the register at address \$7, which is the last location to be read or written in data transfers. This is RXL/TXL in the Big Endian mode (HLEND = 0; HLEND is the Interface Control Register bit 7—ICR[7]), or RXH/TXH in the										
	9.	In this calculation, the host request signal is pulled up by a 4.7 k Ω resistor in the Open-drain mode.											
	10.	$V_{CCOH} = 3.3 V \pm 0.3 V$, $V_{CCOL} = 1.6 V$											
	11.		om the "Last Da	ta Regis	ter" is fo	llowed b	y a read		e RXL, F	XM, or I	RXH reg	isters	
	12	After the external host writes a new value to the ICR, the HI08 will be ready for operation after three DSP clock cycles ($3 \times$ Tc).											

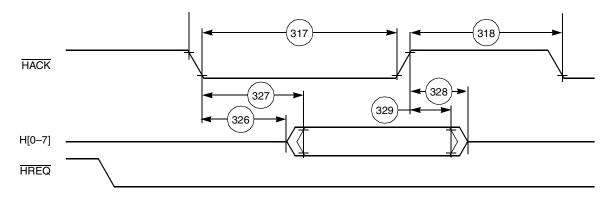


Figure 2-13. Host Interrupt Vector Register (IVR) Read Timing Diagram

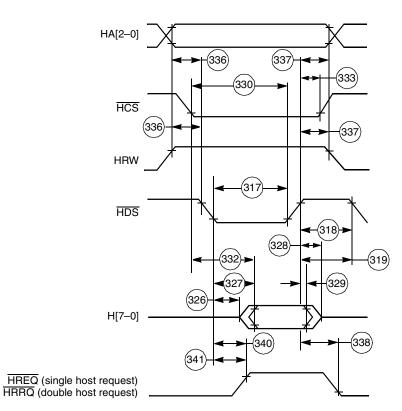


Figure 2-14. Read Timing Diagram, Non-Multiplexed Bus, Single Data Strobe

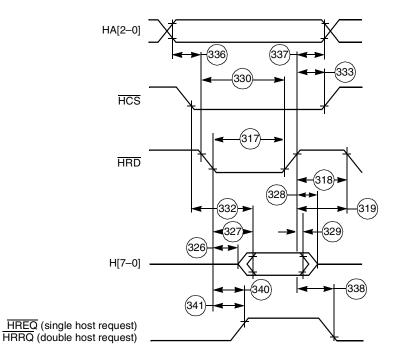
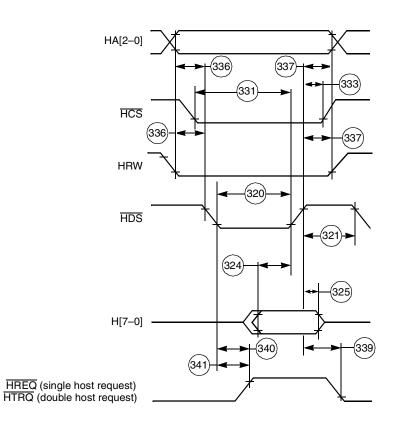
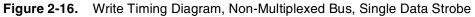




Figure 2-15. Read Timing Diagram, Non-Multiplexed Bus, Double Data Strobe

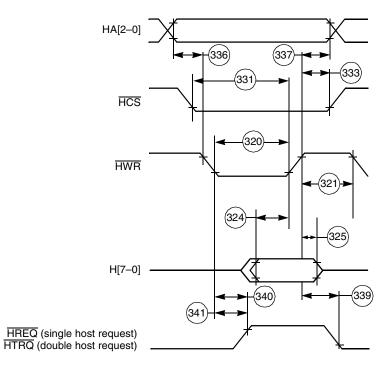


Figure 2-17. Write Timing Diagram, Non-Multiplexed Bus, Double Data Strobe

Table 3-1.	Signal List by Ball Number
------------	----------------------------

Ball No.	Signal Name	Ball No.	Signal Name	Ball No.	Signal Name
A1	Not Connected (NC)	B12	D8	D9	GND
A2	SC11 or PD1	B13	D5	D10	GND
A3	TMS	B14	NC	D11	GND
A4	TDO	C1	SC02 or PC2	D12	D1
A5	MODB/IRQB	C2	STD1 or PD5	D13	D2
A6	D23	C3	тск	D14	V _{CCD}
A7	V _{CCD}	C4	MODA/IRQA	E1	STD0 or PC5
A8	D19	C5	MODC/IRQC	E2	V _{CCS}
A9	D16	C6	D22	E3	SRD0 or PC4
A10	D14	C7	V _{CCQL}	E4	GND
A11	D11	C8	D18	E5	GND
A12	D9	C9	V _{CCD}	E6	GND
A13	D7	C10	D12	E7	GND
A14	NC	C11	V _{CCD}	E8	GND
B1	SRD1 or PD4	C12	D6	E9	GND
B2	SC12 or PD2	C13	D3	E10	GND
B3	TDI	C14	D4	E11	GND
B4	TRST	D1	PINIT/NMI	E12	A17
B5	MODD/IRQD	D2	SC01 or PC1	E13	A16
B6	D21	D3	DE	E14	D0
B7	D20	D4	GND	F1	RXD or PE0
B8	D17	D5	GND	F2	SC10 or PD0
B9	D15	D6	GND	F3	SC00 or PC0
B10	D13	D7	GND	F4	GND
B11	D10	D8	GND	F5	GND

aging

Table 3-2.	Signal List b	y Signal Name	(Continued)
------------	---------------	---------------	-------------

Signal Name	Ball No.	Signal Name	Ball No.	Signal Name	Ball No.
GND	F9	GND	K4	HA1	M1
GND	F10	GND	K5	HA10	L1
GND	F11	GND	K6	HA2	M2
GND	G4	GND	K7	HA8	M1
GND	G5	GND	K8	HA9	M2
GND	G6	GND	K9	HACK/HACK	J1
GND	G7	GND	K10	HAD0	M5
GND	G8	GND	K11	HAD1	P4
GND	G9	GND	L4	HAD2	N4
GND	G10	GND	L5	HAD3	P3
GND	G11	GND	L6	HAD4	N3
GND	H4	GND	L7	HAD5	P2
GND	H5	GND	L8	HAD6	N1
GND	H6	GND	L9	HAD7	N2
GND	H7	GND	L10	HAS/HAS	M3
GND	H8	GND	L11	HCS/HCS	L1
GND	H9	GND	N6	HDS/HDS	J3
GND	H10	GND	P6	HRD/HRD	J2
GND	H11	HO	M5	HREQ/HREQ	K2
GND	J4	H1	P4	HRRQ/HRRQ	J1
GND	J5	H2	N4	HRW	J2
GND	J6	НЗ	P3	HTRQ/HTRQ	K2
GND	J7	H4	N3	HWR/HWR	J3
GND	J8	H5	P2	ĪRQĀ	C4
GND	J9	H6	N2	IRQB	A5
GND	J10	H7	N2	IRQC	C5
GND	J11	HA0	М3	ĪRQD	B5

on Considerations

- To define a value approximately equal to a junction-to-board thermal resistance, the thermal resistance is measured from the junction to the point at which the leads attach to the case.
- If the temperature of the package case (T_T) is determined by a thermocouple, thermal resistance is computed from the value obtained by the equation $(T_J T_T)/P_D$.

As noted earlier, the junction-to-case thermal resistances quoted in this data sheet are determined using the first definition. From a practical standpoint, that value is also suitable to determine the junction temperature from a case thermocouple reading in forced convection environments. In natural convection, the use of the junction-to-case thermal resistance to estimate junction temperature from a thermocouple reading on the case of the package will yield an estimate of a junction temperature slightly higher than actual temperature. Hence, the new thermal metric, thermal characterization parameter or Ψ_{JT} , has been defined to be $(T_J - T_T)/P_D$. This value gives a better estimate of the junction temperature in natural convection when the surface temperature of the package is used. Remember that surface temperature readings of packages are subject to significant errors caused by inadequate attachment of the sensor to the surface and to errors caused by heat loss to the sensor. The recommended technique is to attach a 40-gauge thermocouple wire and bead to the top center of the package with thermally conductive epoxy.

4.2 Electrical Design Considerations

CAUTION

This device contains protective circuitry to guard against damage due to high static voltage or electrical fields. However, normal precautions are advised to avoid application of any voltages higher than maximum rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V_{CC}).

Use the following list of recommendations to ensure correct DSP operation.

- Provide a low-impedance path from the board power supply to each V_{CC} pin on the DSP and from the board ground to each GND pin.
- Use at least four 0.01–0.1 μ F bypass capacitors for V_{CCQL} (core) and at least six 0.01–0.1 μ F bypass capacitors for the other V_{CC} (I/O) power connections positioned as closely as possible to the four sides of the package to connect the power sources to GND.
- Ensure that capacitor leads and associated printed circuit traces that connect to the chip V_{CC} and GND pins are less than 0.5 inch per capacitor lead.
- Use at least a four-layer PCB with two inner layers for V_{CC} and GND.
- Because the DSP output signals have fast rise and fall times, PCB trace lengths should be minimal. This recommendation particularly applies to the address and data buses as well as the IRQA, IRQB, IRQC, IRQD, TA, and BG pins. Maximum PCB trace lengths on the order of 6 inches are recommended.

Pr Consumption Benchmark

M HOD EOU \$8 ; Host Request Open Drain mode , Host Request Open Brain Mode
; Host Data Strobe Polarity
; Host Address Strobe Polarity
; Host Multiplexed bus select
; Host Double/Single Strobe select
; Host Chip Select Polarity
; Host Request Polaritv M_HDSP EQU \$9 M_HASP EQU \$A M_HMUX EQU \$B M_HD_HS EQU \$C M_HCSP EQU \$D ; Host Request Polarity M_HRP EQU \$E M_HAP EQU \$F ; Host Acknowledge Polarity ;-----; EOUATES for Serial Communications Interface (SCI) ; ; M_STXH EQU \$FFFF97 ; SCI Transmit Data Register (high) M_STXM EQU \$FFFF96 ; SCI Transmit Data Register (middle) M_STXL EQU \$FFFF95 ; SCI Transmit Data Register (low) M_SRXH EQU \$FFFF9A ; SCI Receive Data Register (high) M_SRXM EQU \$FFFF99 ; SCI Receive Data Register (middle) M_SRXL EQU \$FFFF98 ; SCI Receive Data Register (low) M_STXA EQU \$FFFF94 ; SCI Receive Data Register (low) M_STXA EQU \$FFFF94 ; SCI Transmit Address Register M_SCR EQU \$FFFF95 ; SCI Control Register M_SCR EQU \$FFFF95 ; SCI Status Register M_SCCR EQU \$FFFF98 ; SCI Clock Control Register ; SCI Control Register ; Register Addresses SCI Control Register Bit Flags ; M_WDS EQU \$7 ; Word Select Mask (WDS0-WDS3) ; we ; SCI Shi. ; Send Break ; Wakeup Mode Select ; Receiver Wakeup Enable ; Wired-OR Mode Select ; SCI Receiver Enable ; SCI Transmitter Enable ; SCI Transmitter Enable ; Idle Line Interrupt Enable ; SCI Receive Interrupt Enable ; SCI Transmit Interrupt Enable ; Timer Interrupt Enable ; Timer Interrupt Rate ; SCI Clock Polarity SCI Error Interrupt Enable (F M_WDS0 EQU 0 ; Word Select 0 M_WDS1 EQU 1 M_WDS2 EQU 2 M_SSFTD EQU 3 M_SBK EQU 4 M_WAKE EQU 5 M_RWU EQU 6 M_WOMS EQU 7 M_SCRE EQU 8 M_SCTE EQU 9 M_ILIE EQU 10 M_SCRIE EQU 11 M_SCTIE EQU 12 M_TMIE EQU 13 M_TIR EQU 14 M_SCKP EQU 15 M_REIE EQU 16 ; SCI Error Interrupt Enable (REIE) SCI Status Register Bit Flags ; M TRNE EOU 0 ; Transmitter Empty M_TDRE EQU 1 ; Transmit Data Register Empty M_RDRF EQU 2 ; Receive Data Register Full M_IDLE EQU 3 ; Idle Line Flag M_OR EQU 4 ; Overrun Error Flag M_PE EQU 5 ; Parity Error ; Framing Error Flag M_FE EQU 6 M_R8 EQU 7 ; Received Bit 8 (R8) Address ; SCI Clock Control Register

M IALO EOU O ; IRQA Mode Interrupt Priority Level (low) M_IAL1 EQU 1 ; IRQA Mode Interrupt Priority Level (high) ; IRQA Mode Trigger Mode M_IAL2 EQU 2 ; IRQB Mode Mask M_IBL EQU \$38 ; IRQB Mode Interrupt Priority Level (low) M_IBL0 EQU 3 BLUBLJBLJEQUICLEQU \$1C0ICLICLEQU 6ICLIEQU 7ICL2EQU 8IDLEQU 900IDLEQU 10IDL 200EQU 11EQU 400EQU 400EQU 53000EQU 5400EQU 5400EQU 55EQU 5000EQU 5000EQU 5000EQU 515EQU 515EQU 52000EQU 52000EQU 53000EQU 53000EQU 54000EQU 55EQU 5000EQU 5000EQU 5000EQU 5000EQU 5000EQU 5000EQU 5000EQU 5000EQU 50000EQU 500000EQU 500000EQU 500000EQU 5000 ; IRQB Mode Interrupt Priority Level (high) ; IRQB Mode Trigger Mode M_IBL1 EQU 4 M_HPL EQU \$3 ; Host Interrupt Priority Level Mask M_HPL0 EQU 0 ; Host Interrupt Priority Level (low) M_HPL1 EQU 1; Host Interrupt Priority Level (high)M_SOL EQU \$C; SSI0 Interrupt Priority Level MaskM_SOL0 EQU 2; SSI0 Interrupt Priority Level (low)M_SOL1 EQU 3; SSI0 Interrupt Priority Level (high)M_S1L EQU \$30; SSI1 Interrupt Priority Level (MaskM_S1L0 EQU 4; SSI1 Interrupt Priority Level (low)M_S1L1 EQU 5; SSI1 Interrupt Priority Level (low)M_S2L2 EQU \$C0; SCI Interrupt Priority Level (high)M_SCL0 EQU 6; SCI Interrupt Priority Level (low)M_SCL1 EQU 7; SCI Interrupt Priority Level (high)M_T0L EQU \$300; TIMER Interrupt Priority Level MaskM_T0L0 EQU 8; TIMER Interrupt Priority Level (low) M_HPL1 EQU 1 ; Host Interrupt Priority Level (high) M_TOLO EQU 8 ; TIMER Interrupt Priority Level (low) M_TOL1 EQU 9 ; TIMER Interrupt Priority Level (high) ;------; EQUATES for TIMER ; ; Register Addresses Of TIMER0 ; ; Timer 0 Control/Status Register M_TCSR0 EQU \$FFFF8F

r Consumption Benchmark

M_TLR0 EQU \$FFFF8E ; TIMER0 Load Reg M_ILKO EQU ŞFFFF8E M_TCPR0 EQU ŞFFFF8D M_TCR0 EQU ŞFFFF8C ; TIMER0 Compare Register ; TIMER0 Count Register Register Addresses Of TIMER1 ; M_TCSR1 EQU \$FFFF8B; TIMER1 Control/Status ReM_TLR1 EQU \$FFFF8A; TIMER1 Load RegM_TCPR1 EQU \$FFFF89; TIMER1 Compare RegisterM_TCR1 EQU \$FFFF88; TIMER1 Count Register ; TIMER1 Control/Status Register Register Addresses Of TIMER2 ; M_TCSR2 EQU \$FFFF87; TIMER2 Control/Status RegisterM_TLR2 EQU \$FFFF86; TIMER2 Load RegM_TCPR2 EQU \$FFFF85; TIMER2 Compare RegisterM_TCR2 EQU \$FFFF84; TIMER2 Count RegisterM_TPLR EQU \$FFFF83; TIMER Prescaler Load RegisterM_TPCR EQU \$FFFF82; TIMER Prescalar Count Register : Timer Control/Status Register Bit Flags M_TE EQU 0 M_TOIE EQU 1 M_TCIE EQU 2 M_TC EQU \$F0 M_INV EQU 8 M_TRM EQU 9 M_DIR EQU 11 M_DI EQU 12 M_DO EQU 13 M_PCE EQU 15 M_TOF EQU 20 M TCF EOU 21 M TE EOU O ; Timer Enable ; Timer Overflow Interrupt Enable ; Timer Compare Interrupt Enable ; Timer Control Mask (TC0-TC3) ; Inverter Bit ; Timer Restart Mode ; Direction Bit ; Data Input ; Data Output ; Prescaled Clock Enable ; Timer Overflow Flag M_TCF EQU 21 ; Timer Compare Flag ; Timer Prescaler Register Bit Flags M_PS EQU \$600000 ; Prescaler Source Mask M_PS0 EQU 21 M_PS1 EQU 22 ; Timer Control Bits M_TC0 EQU 4 M_TC1 EQU 5 ; Timer Control 0 M_TC1 EQU 5 M_TC2 EQU 6 ; Timer Control 1 ; Timer Control 2 M_TC3 EQU 7 ; Timer Control 3 ;-----; EQUATES for Direct Memory Access (DMA) ; ; ;------Register Addresses Of DMA M_DSTR EQU FFFF4 ; DMA Status Register M_DOR0 EQU \$FFFFF3 ; DMA Offset Register 0 M_DOR1 EQU \$FFFFF2 ; DMA Offset Register 1 M_DOR2 EQU \$FFFFF1 ; DMA Offset Register 2 M_DOR3 EQU \$FFFFF0 ; DMA Offset Register 3

Ordering Information

Consult a Freescale Semiconductor sales office or authorized distributor to determine product availability and place an order.

Part	Supply Voltage	Package Type	Pin Count	Core Frequency (MHz)	Solder Spheres	Order Number
DSP56321	1.6 V core	Molded Array Process-Ball Grid	196	200	Lead-free	DSP56321VL200
	3.3 V I/O	Array (MAP-BGA)			Lead-bearing	DSP56321VF200
				220	Lead-free	DSP56321VL220
					Lead-bearing	DSP56321VF220
				240	Lead-free	DSP56321VL240
					Lead-bearing	DSP56321VF240
				275	Lead-free	DSP56321VL275
					Lead-bearing	DSP56321VF275

How to Reach Us:

Home Page: www.freescale.com

E-mail:

support@freescale.com

USA/Europe or Locations not listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GMBH Technical Information Center Schatzbogen 7 81829 München, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064, Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T. Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Order No.: DSP56321 Rev. 11 2/2005 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2001, 2005.

