
E·XFL

NXP USA Inc. - SPAKDSP321VF240 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Details	
Product Status	Obsolete
Туре	Fixed Point
Interface	Host Interface, SSI, SCI
Clock Rate	240MHz
Non-Volatile Memory	ROM (576B)
On-Chip RAM	576kB
Voltage - I/O	3.30V
Voltage - Core	1.60V
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	196-BGA
Supplier Device Package	196-MAPBGA (15x15)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spakdsp321vf240

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

		Data Sheet Conventions	ii
		Features	iii
		Target Applications	iv
		Product Documentation	v
Chapter 1	Signa	als/Connections	
-	1.1	Power	
	1.2	Ground	
	1.3	Clock	
	1.4	External Memory Expansion Port (Port A)	
	1.5	Interrupt and Mode Control	
	1.6	Host Interface (HI08)	
	1.7	Enhanced Synchronous Serial Interface 0 (ESSI0)	
	1.8	Enhanced Synchronous Serial Interface 1 (ESSI1)	
	1.9	Serial Communication Interface (SCI)	
	1.10	Timers	
	1.11	JTAG and OnCE Interface	1-14
Chapter 2	Spec	ifications	
•	2.1	Maximum Ratings	
	2.2	Thermal Characteristics	
	2.3	DC Electrical Characteristics	
	2.4	AC Electrical Characteristics	
Chapter 3	Pack	aging	
•	3.1	Package Description	
	3.2	MAP-BGA Package Mechanical Drawing	
Chapter 4	Desid	gn Considerations	
•	4.1	Thermal Design Considerations	
	4.2	Electrical Design Considerations	
	4.3	Power Consumption Considerations	
	4.4	Input (EXTAL) Jitter Requirements	

Appendix A Power Consumption Benchmark

Data Sheet Conventions

 OVERBAR
 Indicates a signal that is active when pulled low (For example, the RESET pin is active when low.)

"asserted" Means that a high true (active high) signal is high or that a low true (active low) signal is low "deasserted" Means that a high true (active high) signal is low or that a low true (active low) signal is high

Examples:	Signal/Symbol	Logic State	Signal State	Voltage
	PIN	True	Asserted	V _{IL} /V _{OL}
	PIN	False	Deasserted	V_{IH}/V_{OH}
	PIN	True	Asserted	V_{IH}/V_{OH}
	PIN	False	Deasserted	V_{IL}/V_{OL}

Note: Values for V_{IL} , V_{OL} , V_{IH} , and V_{OH} are defined by individual product specifications.

Feature		Description						
	• 192 K × 24-bit	 192 × 24-bit bootstrap ROM 192 K × 24-bit RAM total Program RAM, instruction cache, X data RAM, and Y data RAM sizes are programmable: 						
	Program RAM Size	Instruction Cache Size	X Data RAM Size*	Y Data RAM Size*	Instruction Cache	MSW2	MSW1	MSWO
	$32 \text{ K} \times 24 \text{-bit}$	0	80 K × 24-bit	80 K × 24-bit	disabled	0	0	0
	31 K × 24-bit	1024×24 -bit	80 K × 24-bit	80 K × 24-bit	enabled	0	0	0
	40 K × 24-bit	0	76 K × 24-bit	76 K × 24-bit	disabled	0	0	1
	$39 \text{ K} \times 24 \text{-bit}$	1024×24 -bit	76 K × 24-bit	76 K × 24-bit	enabled	0	0	1
	48 K × 24-bit	0	72 K \times 24-bit	$72 \text{ K} \times 24 \text{-bit}$	disabled	0	1	0
	47 K × 24-bit	1024×24 -bit	72 K \times 24-bit	$72 \text{ K} \times 24$ -bit	enabled	0	1	0
Internal Memories	64 K × 24-bit	0	64 K × 24-bit	$64 \text{ K} \times 24$ -bit	disabled	0	1	1
	63 K × 24-bit	1024×24 -bit	64 K \times 24-bit	$64 \text{ K} \times 24$ -bit	enabled	0	1	1
	$72 \text{ K} \times 24 \text{-bit}$	0	60 K × 24-bit	60 K × 24-bit	disabled	1	0	0
	71 K × 24-bit	1024×24 -bit	60 K imes 24-bit	60 K × 24-bit	enabled	1	0	0
	80 K × 24-bit	0	56 K \times 24-bit	56 K \times 24-bit	disabled	1	0	1
	$79 \text{ K} \times 24 \text{-bit}$	1024×24 -bit	56 K \times 24-bit	56 K \times 24-bit	enabled	1	0	1
	96 K × 24-bit	0	48 K \times 24-bit	48 K × 24-bit	disabled	1	1	0
	95 K \times 24-bit	1024×24 -bit	48 K \times 24-bit	48 K \times 24-bit	enabled	1	1	0
	112 K × 24-bit	0	40 K \times 24-bit	40 K \times 24-bit	disabled	1	1	1
	111 K × 24-bit	1024×24 -bit	40 K \times 24-bit	40 K \times 24-bit	enabled	1	1	1
	*Includes 12 K \times 24-bit shared memory (that is, 24 K total memory shared by the core and the EFCOP)							
External Memory Expansion	 Data memory expansion to two 256 K × 24-bit word memory spaces using the standard external address lines Program memory expansion to one 256 K × 24-bit words memory space using the standard external address lines External memory expansion port Chip select logic for glueless interface to static random access memory (SRAMs) 							
Power Dissipation	 Very low-power CMOS design Wait and Stop low-power standby modes Fully static design specified to operate down to 0 Hz (dc) Optimized power management circuitry (instruction-dependent, peripheral-dependent, and mode-dependent) 							
Packaging	Molded array	plastic-ball grid a	rray (MAP-BGA)	package in lead-f	ree or lead-be	earing vers	sions.	

Table 1. DSP56321 Features (Continued)

Target Applications

DSP56321 applications require high performance, low power, small packaging, and a large amount of internal memory. The EFCOP can accelerate general filtering applications. Examples include:

- Wireless and wireline infrastructure applications
- Multi-channel wireless local loop systems
- Security encryption systems
- Home entertainment systems
- DSP resource boards
- High-speed modem banks
- IP telephony

Product Documentation

The documents listed in **Table 2** are required for a complete description of the DSP56321 device and are necessary to design properly with the part. Documentation is available from a local Freescale distributor, a Freescale semiconductor sales office, or a Freescale Semiconductor Literature Distribution Center. For documentation updates, visit the Freescale DSP website. See the contact information on the back cover of this document.

Name	Description	Order Number
DSP56321 Reference Manual	Detailed functional description of the DSP56321 memory configuration, operation, and register programming	DSP56321RM
DSP56300 Family Manual	Detailed description of the DSP56300 family processor core and instruction set	DSP56300FM
Application Notes	Documents describing specific applications or optimized device operation including code examples	See the DSP56321 product website

Table 2. DSP56321 Documentation

- Notes: 1. The HI08 port supports a non-multiplexed or a multiplexed bus, single or double data strobe (DS), and single or double host request (HR) configurations. Since each of these modes is configured independently, any combination of these modes is possible. These HI08 signals can also be configured alternatively as GPIO signals (PB[0–15]). Signals with dual designations (for example, HAS/HAS) have configurable polarity.
 - 2. The ESSI0, ESSI1, and SCI signals are multiplexed with the Port C GPIO signals (PC[0-5]), Port D GPIO signals (PD[0-5]), and Port E GPIO signals (PE[0-2]), respectively.
 - **3.** TIO[0–2] can be configured as GPIO signals.

Figure 1-1. Signals Identified by Functional Group

als/Connections

Signal Name	Туре	State During Reset ^{1,2}	Signal Description	
SCK1	Input/Output	Ignored Input	Serial Clock—Provides the serial bit rate clock for the ESSI. The SCK1 is a clock input or output used by both the transmitter and receiver in synchronous modes or by the transmitter in asynchronous modes.	
			Although an external serial clock can be independent of and asynchronous to the DSP system clock, it must exceed the minimum clock cycle time of 6T (that is, the system clock frequency must be at least three times the external ESSI clock frequency). The ESSI needs at least three DSP phases inside each half of the serial clock.	
PD3	Input or Output		Port D 3 —The default configuration following reset is GPIO input PD3. When configured as PD3, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal SCK1 through the Port D Control Register.	
SRD1	Input	Ignored Input	Serial Receive Data—Receives serial data and transfers the data to the ESSI Receive Shift Register. SRD1 is an input when data is being received.	
PD4	Input or Output		Port D 4 —The default configuration following reset is GPIO input PD4. When configured as PD4, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal SRD1 through the Port D Control Register.	
STD1	Output	Ignored Input	Serial Transmit Data—Transmits data from the Serial Transmit Shift Register. STD1 is an output when data is being transmitted.	
PD5	Input or Output		Port D 5 —The default configuration following reset is GPIO input PD5. When configured as PD5, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal STD1 through the Port D Control Register.	
 In the Stop state, the signal maintains the last state as follows: If the last state is input, the signal is an ignored input. If the last state is output, these lines have weak keepers that maintain the last output state even if the drivers are tri-stated. The Wait processing state does not affect the signal state. 				

 Table 1-12.
 Enhanced Serial Synchronous Interface 1 (Continued)

1.9 Serial Communication Interface (SCI)

The SCI provides a full duplex port for serial communication with other DSPs, microprocessors, or peripherals such as modems.

Signal Name	Туре	State During Reset ^{1,2}	Signal Description
RXD	Input	Ignored Input	Serial Receive Data—Receives byte-oriented serial data and transfers it to the SCI Receive Shift Register.
PE0	Input or Output		Port E 0 —The default configuration following reset is GPIO input PE0. When configured as PE0, signal direction is controlled through the Port E Direction Register. The signal can be configured as an SCI signal RXD through the Port E Control Register.
TXD	Output	Ignored Input	Serial Transmit Data—Transmits data from the SCI Transmit Data Register.
PE1	Input or Output		Port E 1 —The default configuration following reset is GPIO input PE1. When configured as PE1, signal direction is controlled through the Port E Direction Register. The signal can be configured as an SCI signal TXD through the Port E Control Register.

 Table 1-13.
 Serial Communication Interface

Table 1-13.	Serial Communication	Interface	(Continued)
-------------	----------------------	-----------	-------------

Signal Name	Туре	State During Reset ^{1,2}	Signal Description	
SCLK	Input/Output	Ignored Input	Serial Clock—Provides the input or output clock used by the transmitter and/or the receiver.	
PE2	Input or Output		Port E 2 —The default configuration following reset is GPIO input PE2. When configured as PE2, signal direction is controlled through the Port E Direction Register. The signal can be configured as an SCI signal SCLK through the Port E Control Register.	
 Notes: 1. In the Stop state, the signal maintains the last state as follows: If the last state is input, the signal is an ignored input. If the last state is output, these lines have weak keepers that maintain the last output state even if the drivers are tri-stated. The Wait processing state does not affect the signal state. 				

1.10 Timers

The DSP56321 has three identical and independent timers. Each timer can use internal or external clocking and can either interrupt the DSP56321 after a specified number of events (clocks) or signal an external device after counting a specific number of internal events.

Signal Name	Туре	State During Reset ^{1,2}	Signal Description
TIO0	Input or Output	Ignored Input	Timer 0 Schmitt-Trigger Input/Output — When Timer 0 functions as an external event counter or in measurement mode, TIO0 is used as input. When Timer 0 functions in watchdog, timer, or pulse modulation mode, TIO0 is used as output.
			The default mode after reset is GPIO input. TIO0 can be changed to output or configured as a timer I/O through the Timer 0 Control/Status Register (TCSR0).
TIO1	Input or Output	Ignored Input	Timer 1 Schmitt-Trigger Input/Output — When Timer 1 functions as an external event counter or in measurement mode, TIO1 is used as input. When Timer 1 functions in watchdog, timer, or pulse modulation mode, TIO1 is used as output.
			The default mode after reset is GPIO input. TIO1 can be changed to output or configured as a timer I/O through the Timer 1 Control/Status Register (TCSR1).
TIO2 Input or Output Ignored Input		Ignored Input	Timer 2 Schmitt-Trigger Input/Output — When Timer 2 functions as an external event counter or in measurement mode, TIO2 is used as input. When Timer 2 functions in watchdog, timer, or pulse modulation mode, TIO2 is used as output.
			The default mode after reset is GPIO input. TIO2 can be changed to output or configured as a timer I/O through the Timer 2 Control/Status Register (TCSR2).
 Notes: 1. In the Stop state, the signal maintains the last state as follows: If the last state is input, the signal is an ignored input. If the last state is output, these lines have weak keepers that maintain the last output state even if the drivers are tri-stated. 2. The Wait processing state does not affect the signal state. 			

Table 1-14.	Triple Timer Signals
	The Third Orginalo

190	_	mA
200	_	mA
210	_	mA
235	_	mA
25	_	mA
15	—	mA
—	10	pF
v	U _{CCQH} voltage m	UCCQH voltage must always be high

- 2. Refers to MODA/IRQA, MODB/IRQB, MODC/IRQC, and MODD/IRQD pins.
- 3. Section 4.3 provides a formula to compute the estimated current requirements in Normal mode. To obtain these results, all inputs must be terminated (that is, not allowed to float). Measurements are based on synthetic intensive DSP benchmarks (see **Appendix A**). The power consumption numbers in this specification are 90 percent of the measured results of this benchmark. This reflects typical DSP applications.
- 4. To obtain these results, all inputs must be terminated (that is, not allowed to float).
- 5. To obtain these results, all inputs not disconnected at Stop mode must be terminated (that is, not allowed to float), and the DPLL and on-chip crystal oscillator must be disabled.
- 6. Periodically sampled and not 100 percent tested.
- 7. $V_{CCQH} = 3.3 \text{ V} \pm 0.3 \text{ V}$, $V_{CQLC} = 1.6 \text{ V} \pm 0.1 \text{ V}$; $T_J = -40^{\circ}\text{C}$ to $+100 \text{ }^{\circ}\text{C}$, $C_L = 50 \text{ pF}$
- 8. This characteristic does not apply to XTAL.
- 9. Driving EXTAL to the low V_{IHX} or the high V_{ILX} value may cause additional power consumption (DC current). To minimize power consumption, the minimum V_{IHX} should be no lower than
 - $0.9 \times$ V_{CCQH} and the maximum V_{ILX} should be no higher than 0.1 \times V_{CCQH}

2.4 AC Electrical Characteristics

The timing waveforms shown in the AC electrical characteristics section are tested with a V_{IL} maximum of 0.3 V and a V_{IH} minimum of 2.4 V for all pins except EXTAL, which is tested using the input levels shown in Notes 7 and 9 of the previous table. AC timing specifications, which are referenced to a device input signal, are measured in production with respect to the 50 percent point of the respective input signal's transition. DSP56321 output levels are measured with the production test machine V_{OL} and V_{OH} reference levels set at 0.4 V and 2.4 V, respectively.

Note: Although the minimum value for the frequency of EXTAL is 0 MHz, the device AC test conditions are 16 MHz and rated speed with the DPLL enabled.

2.4.1 Internal Clocks

Characteristics	Symbol			
Cildiacteristics	Symbol	Min	Тур	Мах
Internal operating frequency With DPLL disabled With DPLL enabled 	f		Ef/2 (Ef × MF)/(PDF × DF)	
Internal clock cycle time With DPLL disabled With DPLL enabled 	т _с		$2 \times \text{ET}_{\text{C}}$ ET _C × PDF × DF/MF	
Internal clock high period With DPLL disabled With DPLL enabled 	Т _Н	$0.49 \times T_{C}$	et _c —	 0.51 × T _C

Table 2-4. Internal Clocks

Table 2-7.	Reset, Stop, Mode Select, and Interrupt Timing ⁵	(CONTINUED)
------------	---	-------------

			200	MHz	220	MHz	240	MHz	275	MHz	
No.	Characteristics	Expression	Min	Max	Min	Мах	Min	Max	Min	Max	Unit
	$ \begin{array}{c c} \mbox{Delay from \overline{RD} assertion to interrupt}\\ \mbox{request deassertion for level sensitive}\\ \mbox{fast interrupts}^{1, \ 6, \ 7} \end{array} (WS + 3.25) \times T_C - 10.94 \\ \end{array} $			Note 7		Note 7	_	Note 7	_	Note 7	ns
	Delay from $\overline{\text{WR}}$ assertion to interrupt request deassertion for level sensitive fast interrupts ^{1, 6, 7} • SRAM WS = 3 • SRAM WS \geq 4	(WS + 3) × T _C – 10.94 (WS + 2.5) × T _C – 10.94		Note 7 Note 7		Note 7 Note 7		Note 7 Note 7		Note 7 Note 7	ns ns
	Duration for IRQA assertion to recover from Stop state		8.0	—	8.0	—	8.0	—	8.0	—	ns
	 Delay from IRQA assertion to fetch of first instruction (when exiting Stop)^{2, 3} DPLL is not active during Stop (PCTL Bit 1 = 0) and Stop delay is enabled (Operating Mode Register Bit 6 = 0) 	DPLT + (128K × T _C)	662.2 μs	209.9 ms	662.2 μs	209.9 ms	662.2 μs	209.9 ms	662.2 μs	209.9 ms	_
	 DPLL is not active during Stop (PCTL Bit 1 = 0) and Stop delay is not enabled (Operating Mode Register Bit 6 = 1) DPLL is active during Stop (PCTL Bit 1 = 1; Implies No Stop Delay) 	DPLT + (23.75 ± 0.5) × T _C (10.0 ± 1.75) × T _C	6.9 41.25	188.8 58.8	6.9 37.5	188.8 53.3	6.9 34.4	188.8 49.0	6.9 30.0	43.0	μs ns
	 Duration of level sensitive IRQA assertion to ensure interrupt service (when exiting Stop)^{2, 3} DPLL is not active during Stop (PCTL bit 1 = 0) and Stop delay is enabled (Operating Mode Register Transport of the sensitive of	DPLT + (128 K × T _C)	805.4		805.4		805.4		805.4	_	μs
	 (PCTL bit 1 = 0) and Stop delay is not enabled (Operating Mode Register Bit 6 = 1) DPLL is active during Stop ((PCTL 	DPLT + (20.5 ±0.5) × T _C 5.5 × T _C	150.1 27.5	_	150.1 25	_	150.1 22.9	_	150.1 20.0	_	μs ns
27	bit 1 = 0; implies no Stop delay) Interrupt Request Rate • HI08, ESSI, SCI, Timer • DMA • IRQ, <u>NMI</u> (edge trigger) • IRQ, <u>NMI</u> (level trigger)	it 1 = 0; implies no Stop delay) rupt Request Rate II08, ESSI, SCI, Timer $12T_C$ MA $8T_C$ RQ, NMI (edge trigger) $8T_C$		60.0 40.0 40.0 60.0	 	54.6 36.4 36.4 54.6		50.0 33.4 33.4 50.0		43.7 29.2 29.2 43.7	ns ns ns ns
28	 DMA Request Rate Data read from HI08, ESSI, SCI Data write to HI08, ESSI, SCI Timer IRQ, NMI (edge trigger) 	6T _C 7T _C 2T _C 3T _C	 	30.0 35.0 10.0 15.0		27.3 31.9 9.1 13.7		25.0 29.2 8.3 12.5	 	21.84 25.48 7.28 10.92	ns ns ns ns
	Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to external memory (DMA source) access address out valid	4.25 × T _C + 2.0	23.25		21.34		19.72		17.45	_	ns

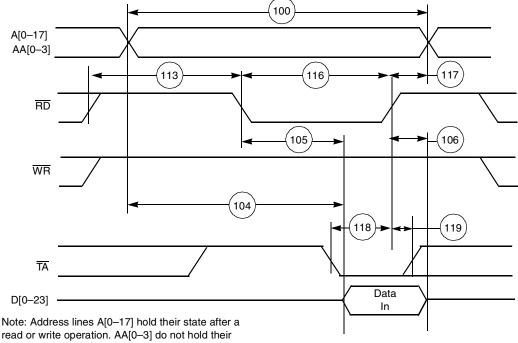
2.4.5 External Memory Expansion Port (Port A)

2.4.5.1 SRAM Timing

			ot		200 MHz 220 MHz			240 MHz 275			MHz	
No.			Min	Max	Min	Max	Min	Max	Min	Max	Unit	
100	Address valid and AA assertion pulse width ²	t _{RC} , t _{WC}	$\begin{array}{c} (WS+2) \times T_{C} - 4.0 \\ [3 \leq WS \leq 7] \\ (WS+3) \times T_{C} - 4.0 \\ [WS \geq 8] \end{array}$	21.0 51.0		18.8 46.0	_	16.9 41.9	_	15.0 36.0	_	ns ns
101	Address and AA valid to WR assertion	t _{AS}	$0.75 \times T_{C} - 3.0$ [WS = 3] 1.25 × T_{C} - 3.0 [WS ≥ 4]	0.75 3.25	_	0.41 2.69	_	0.13 2.21	_	-0.27 1.54	_	ns ns
102	WR assertion pulse width	t _{WP}		11.0 13.5	_	9.65 11.93	_	8.51 10.6	_	6.9 8.72	_	ns ns
103	WR deassertion to address not valid	t _{WR}	$\begin{array}{c} 1.25 \times {\rm T_C}-4.0 \\ [3 \leq \!\! WS \leq \!\! 7] \\ 2.25 \times {\rm T_C}-4.0 \\ [WS \geq 8] \end{array}$	2.25 7.25	_	1.69 6.24	_	1.21 5.38	_	0.54 4.18	_	ns ns
104	Address and AA valid to input data valid	t _{AA} , t _{AC}	$\begin{array}{c} (WS + 0.75) \times T_C - 5.8 \\ [WS \geq 3] \end{array}$	—	12.9	_	11.2	—	9.8	—	7.84	ns
105	RD assertion to input data valid	t _{OE}	$\begin{array}{c} (\text{WS} + 0.25) \times \text{T}_{\text{C}} - 6.5 \\ [\text{WS} \geq 3] \end{array}$	—	9.75	—	8.29	—	7.05	—	5.31	ns
106	RD deassertion to data not valid (data hold time)	t _{OHZ}		0.0	—	0.0	—	0.0	—	0.0	—	ns
107	Address valid to WR deassertion ²	t _{AW}	$\begin{array}{c} (\text{WS} + 0.75) \times \text{T}_{\text{C}} - 4.0 \\ [\text{WS} \geq 3] \end{array}$	14.75	—	13.06	—	11.64	—	9.63	—	ns
108	Data valid to WR deassertion (data setup time)	t _{DS} (t _{DW})	$\begin{array}{c} (WS - 0.25) \times \ T_C - 5.4 \\ [WS \geq 3] \end{array}$	8.35	—	7.11	—	6.07	—	4.6	—	ns
109	Data hold time from WR deassertion	t _{DH}	1.25 × T _C −4.0 [3 ≤WS ≤7] 2.25 × T _C −4.0 [WS ≥ 8]	2.25 7.25	_	1.69 6.23	_	1.21 5.38	_	0.54 4.18	_	ns ns
110	WR assertion to data active	_	$0.25 \times T_{C} - 4.0$ [WS = 3] $-0.25 \times T_{C} - 4.0$ [WS ≥ 4]	-2.75 -5.25	_	-2.86 -5.14	_	-2.96 -5.04	_	-3.1 -4.91	_	ns ns
111	WR deassertion to data high impedance	—	1.25 × T _C	6.25	—	5.69	—	5.21	—	4.55	—	ns
112	Previous RD deassertion to data active (write)	_	$2.25 \times T_{C}$ –4.0	7.25	—	6.23	—	5.38	—	4.18	—	ns
113	RD deassertion time	_	$\begin{array}{c} 1.75 \times {\rm T_C} - 3.0 \\ [3 \leq \!\! WS \leq \!\! 7] \\ 2.75 \times {\rm T_C} - 3.0 \\ [WS \geq 8] \end{array}$	5.75 10.75	_	4.96 9.51	_	4.3 8.47	_	3.36 7.0	_	ns ns
114	WR deassertion time ⁴	—	$\begin{array}{c} 2.0 \times T_{C} -3.0 \\ [3 \leq WS \leq 7] \\ 3.0 \times T_{C} -3.0 \\ [WS \geq 8] \end{array}$	7.0 12.0	_	6.1 10.6	_	5.3 9.5	_	4.27 7.91	_	ns ns

200 MHz 220 MHz 240 MHz 275 MHz **Characteristics** Expression¹ Unit No. Symbol Min Max Min Max Min Max Min Max Address valid to RD 0.5 0.3 -0.18 115 $0.5\times\,T_C\,\text{--}2.0$ 0.1 ns assertion RD assertion pulse width $(WS+0.25)\times\,T_C\,-3.0$ 13.25 11.59 10.55 8.81 116 ____ ____ _ ____ _ ns $[WS \ge 3]$ RD deassertion to 117 $1.25 imes T_C - 4.0$ 2.25 1.69 1.21 0.54 _ ns address not valid [3 ≤WS ≤7] $2.25\times\,T_{C}\,{-}4.0$ 6.24 7.25 5.38 4.18 ns ____ ____ [WS ≥ 8] 118 TA setup before RD or $0.25 imes T_{C}$ + 2.0 3.25 3.14 3.04 2.91 ns ____ ____ _ WR deassertion⁵ TA hold after RD or WR 119 0 0 _ 0 0 ns ____ _ deassertion

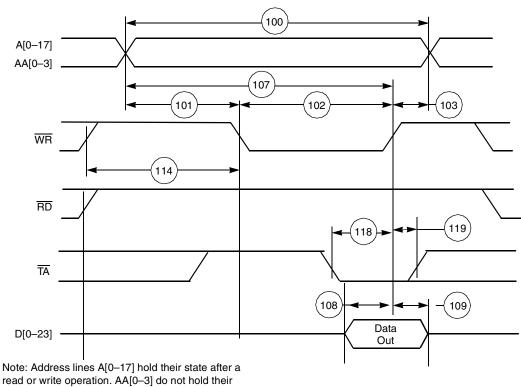
 Table 2-8.
 SRAM Timing (Continued)


Notes: 1. WS is the number of wait states specified in the BCR. The value is given for the minimum for a given category. (For example, for a category of [3 ≤WS ≤7] timing is specified for 3 wait states.) Three wait states is the minimum value otherwise.

2. Timings 100 and 107 are guaranteed by design, not tested.

3. All timings are measured from 0.5 \times V_{CCQH} to 0.5 \times V_{CCQH}.

4. The WS number applies to the access in which the deassertion of WR occurs and assumes the next access uses a minimal number of wait states.


5. Timing 118 is relative to the deassertion edge of RD or WR even if TA remains asserted.

state after a read or write operation.

Figure 2-10. SRAM Read Access

state after a read or write operation.

2.4.5.2 Asynchronous Bus Arbitration Timings

No.	Characteristics Expression		200 MHz		220 MHz		240 MHz		275 Mhz		Uni
NO.	Unaracteristics	Expression	Min	Max	Min	Max	Min	Max	Min	Max	t
250	$\overline{\text{BB}}$ assertion window from $\overline{\text{BG}}$ input deassertion.	2.5 × Tc + 5		17.5		16.4		15.4	—	14.1	ns
251	Delay from \overline{BB} assertion to \overline{BG} assertion	2 × Tc + 5	15	—	14.1		13.3		12.27	—	ns
Notes	Notes: 1. Bit 13 in the Operating Mode Register must be set to enable Asynchronous Arbitration mode.										

Table 2-9.	Asynchronous	Bus Timings
------------	--------------	--------------------

2. To guarantee timings 250 and 251, it is recommended that you assert non-overlapping BG inputs to different DSP56300 devices (on the same bus), as shown in Figure 2-12, where BG1 is the BG signal for one DSP56300 device while BG2 is the BG signal for a second DSP56300 device.

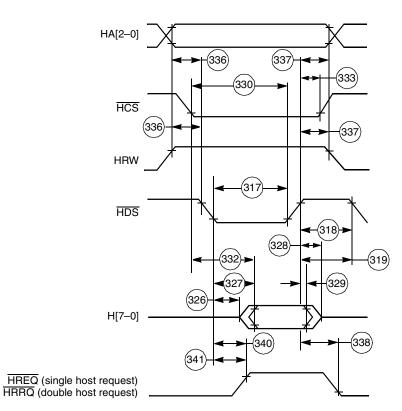


Figure 2-14. Read Timing Diagram, Non-Multiplexed Bus, Single Data Strobe

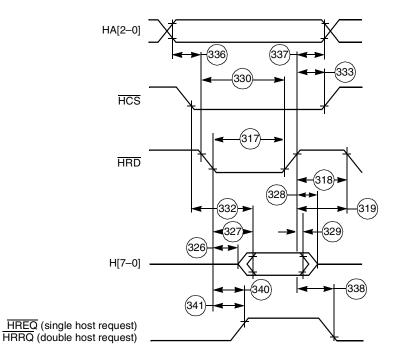


Figure 2-15. Read Timing Diagram, Non-Multiplexed Bus, Double Data Strobe

SCI Timing 2.4.7

N	0.5	Characteristics ¹ Symbol Expre		200 MHz 22			220 MHz		MHz	275 MHz		Uni
No.	Characteristics'	Symbol	Expression	Min	Мах	Min	Мах	Min	Max	Min	Мах	t
400	Synchronous clock cycle	t _{SCC} ²	$16 \times T_C$	80.0		72.8	_	66.7	—	58.0	_	ns
401	Clock low period		t _{SCC} /2 -10.0	30.0		26.4		23.4		19.0		ns
402	Clock high period		t _{SCC} /2 -10.0	30.0		26.4		23.4		19.0		ns
403	Output data setup to clock falling edge (internal clock)		$t_{SCC}/4 + 0.5 \times T_C - 17.0$	5.5	—	3.5	—	1.76	—	-0.68	_	ns
404	Output data hold after clock rising edge (internal clock)		$t_{SCC}/4$ –1.5 × T _C	13	_	11.5	_	10	_	9.04	_	ns
405	Input data setup time before clock rising edge (internal clock)		$t_{SCC}/4 + 0.5 \times T_{C} + 25.0$	47.5	_	45.5	_	43.8	—	41.32	_	ns
406	Input data not valid before clock rising edge (internal clock)		$t_{SCC}/4 + 0.5 \times T_C - 5.5$	_	17.0	_	15.0	_	13.8	_	10.81	ns
407	Clock falling edge to output data valid (external clock)			_	32.0	_	32.0	_	32.0	_	32.0	ns
408	Output data hold after clock rising edge (external clock)		T _C + 8.0	13.0	_	12.6		12.2	_	11.64	_	ns
409	Input data setup time before clock rising edge (external clock)			0.0	_	0.0	_	0.0		0.0		ns
410	Input data hold time after clock rising edge (external clock)			9.0		9.0	_	9.0		9.0	_	ns
411	Asynchronous clock cycle	t _{ACC} ³	$64 imes T_C$	320.0		291.2		266.9		232.0		ns
412	Clock low period		t _{ACC} /2 -10.0	150.0		135.6		123.5		106.0		ns
413	Clock high period		t _{ACC} /2 -10.0	150.0		135.6		123.5	_	106.0		ns
414	Output data setup to clock rising edge (internal clock)		t _{ACC} /2 -30.0	130.0	_	115.6	_	103.5	—	86.0	_	ns
415	Output data hold after clock rising edge (internal clock)		t _{ACC} /2 -30.0	130.0	_	115.6		103.5	—	86.0		ns

Table 2-11. **SCI** Timings

2.

 $V_{CCQH} = 3.3 V \pm 0.3 V$, $V_{CCQL} = 1.6 V \pm 0.1 V$; $T_J = -40^{\circ}C$ to +100 °C, $C_L = 50 \text{ pF}$. $t_{SCC} =$ synchronous clock cycle time (for internal clock, t_{SCC} is determined by the SCI clock control register and T_C). $t_{ACC} =$ asynchronous clock cycle time; value given for 1X Clock mode (for internal clock, t_{ACC} is determined by the SCI clock 3. control register and T_C).

4. In the timing diagrams that follow, the SCLK is drawn using the clock falling edge as a the first reference. Clock polarity is programmable in the SCI Control Register (SCR). Refer to the DSP56321 Reference Manual for details.

Packaging

This section includes diagrams of the DSP56321 package pin-outs and tables showing how the signals described in **Chapter 1** are allocated for the package. The DSP56321 is available in a 196-pin molded array plastic-ball grid array (MAP-BGA) package.

Table 3-1.	Signal List by Ball Number
------------	----------------------------

Ball No.	Signal Name	Ball No.	Signal Name	Ball No.	Signal Name
A1	Not Connected (NC)	B12	D8	D9	GND
A2	SC11 or PD1	B13	D5	D10	GND
A3	TMS	B14	NC	D11	GND
A4	TDO	C1	SC02 or PC2	D12	D1
A5	MODB/IRQB	C2	STD1 or PD5	D13	D2
A6	D23	C3	тск	D14	V _{CCD}
A7	V _{CCD}	C4	MODA/IRQA	E1	STD0 or PC5
A8	D19	C5	MODC/IRQC	E2	V _{CCS}
A9	D16	C6	D22	E3	SRD0 or PC4
A10	D14	C7	V _{CCQL}	E4	GND
A11	D11	C8	D18	E5	GND
A12	D9	C9	V _{CCD}	E6	GND
A13	D7	C10	D12	E7	GND
A14	NC	C11	V _{CCD}	E8	GND
B1	SRD1 or PD4	C12	D6	E9	GND
B2	SC12 or PD2	C13	D3	E10	GND
B3	TDI	C14	D4	E11	GND
B4	TRST	D1	PINIT/NMI	E12	A17
B5	MODD/IRQD	D2	SC01 or PC1	E13	A16
B6	D21	D3	DE	E14	D0
B7	D20	D4	GND	F1	RXD or PE0
B8	D17	D5	GND	F2	SC10 or PD0
B9	D15	D6	GND	F3	SC00 or PC0
B10	D13	D7	GND	F4	GND
B11	D10	D8	GND	F5	GND

- Consider all device loads as well as parasitic capacitance due to PCB traces when you calculate capacitance. This is especially critical in systems with higher capacitive loads that could create higher transient currents in the V_{CC} and GND circuits.
- All inputs must be terminated (that is, not allowed to float) by CMOS levels except for the three pins with internal pull-up resistors (TRST, TMS, DE).
- The following pins must be asserted during the power-up sequence: $\overline{\text{RESET}}$ and $\overline{\text{TRST}}$. A stable EXTAL signal should be supplied before deassertion of $\overline{\text{RESET}}$. If the V_{CC} reaches the required level before EXTAL is stable or other "required $\overline{\text{RESET}}$ duration" conditions are met (see **Table 2-7**), the device circuitry can be in an uninitialized state that may result in significant power consumption and heat-up. Designs should minimize this condition to the shortest possible duration.
- Ensure that during power-up, and throughout the DSP56321 operation, V_{CCQH} is always higher or equal to the V_{CCQL} voltage level.
- If multiple DSP devices are on the same board, check for cross-talk or excessive spikes on the supplies due to synchronous operation of the devices.
- The Port A data bus (D[0–23]), HI08, ESSI0, ESSI1, SCI, and timers all use internal keepers to maintain the last output value even when the internal signal is tri-stated. Typically, no pull-up or pull-down resistors should be used with these signal lines. However, if the DSP is connected to a device that requires pull-up resistors (such as an MPC8260), the recommended resistor value is 10 KΩ or less. If more than one DSP must be connected in parallel to the other device, the pull-up resistor value requirement changes as follows:
 - 2 DSPs = 5 K Ω (mask sets 0K91M and 1K91M)/7 K Ω (mask set 0K93M) or less
 - 3 DSPs = 3 K Ω (mask sets 0K91M and 1K91M)/4 K Ω (mask set 0K93M) or less
 - 4 DSPs = 2 K Ω (mask sets 0K91M and 1K91M)/3 K Ω (mask set 0K93M) or less
 - 5 DSPs = 1.5 K Ω (mask sets 0K91M and 1K91M)/2 K Ω (mask set 0K93M) or less
 - 6 DSPs = 1 K Ω (mask sets 0K91M and 1K91M)/1.5 K Ω (mask set 0K93M) or less
- **Note:** Refer to *EB610/D DSP56321/DSP56321T Power-Up Sequencing Guidelines* for detailed information about minimizing power consumption during startup.

4.3 Power Consumption Considerations

Power dissipation is a key issue in portable DSP applications. Some of the factors affecting current consumption are described in this section. Most of the current consumed by CMOS devices is alternating current (ac), which is charging and discharging the capacitances of the pins and internal nodes.

Current consumption is described by this formula:

Equation 3:
$$I = C \times V \times f$$

Where:

C = node/pin capacitance V = voltage swing f = frequency of node/pin toggle

Example 4-1. Current Consumption

For a Port A address pin loaded with 50 pF capacitance, operating at 3.3 V, with a 66 MHz clock, toggling at its maximum possible rate (33 MHz), the current consumption is expressed in **Equation 4**.

on Considerations

Equation 4: $I = 50 \times 10^{-12} \times 3.3 \times 33 \times 10^{6} = 5.48 \ mA$

The maximum internal current (I_{CCI} max) value reflects the typical possible switching of the internal buses on bestcase operation conditions—not necessarily a real application case. The typical internal current (I_{CCItyp}) value reflects the average switching of the internal buses on typical operating conditions.

Perform the following steps for applications that require very low current consumption:

- **1.** Set the EBD bit when you are not accessing external memory.
- 2. Minimize external memory accesses, and use internal memory accesses.
- **3.** Minimize the number of pins that are switching.
- 4. Minimize the capacitive load on the pins.
- 5. Connect the unused inputs to pull-up or pull-down resistors.
- 6. Disable unused peripherals.
- 7. Disable unused pin activity (for example, CLKOUT, XTAL).

One way to evaluate power consumption is to use a current-per-MIPS measurement methodology to minimize specific board effects (that is, to compensate for measured board current not caused by the DSP). A benchmark power consumption test algorithm is listed in **Appendix A**. Use the test algorithm, specific test current measurements, and the following equation to derive the current-per-MIPS value.

Equation 5: / MIPS =
$$I$$
/ MHz = $(I_{typF2} - I_{typF1})$ / (F2 - F1)

Where:

uency)
ency lower than F2)

Note: F1 should be significantly less than F2. For example, F2 could be 66 MHz and F1 could be 33 MHz. The degree of difference between F1 and F2 determines the amount of precision with which the current rating can be determined for an application.

4.4 Input (EXTAL) Jitter Requirements

The allowed jitter on the frequency of EXTAL is 0.5 percent. If the rate of change of the frequency of EXTAL is slow (that is, it does not jump between the minimum and maximum values in one cycle) or the frequency of the jitter is fast (that is, it does not stay at an extreme value for a long time), then the allowed jitter can be 2 percent. The phase and frequency jitter performance results are valid only if the input jitter is less than the prescribed values.

```
ioequ ident 1,0
  EQUATES for I/O Port Programming
  ;
  :
  M_HDR EQU $FFFFC9 ; Host port GPIO data Register
M_HDDR EQU $FFFFC8 ; Host port GPIO direction Register
M_PCRC EQU $FFFFBF ; Port C Control Register
M_PRRC EQU $FFFFBE ; Port C Direction Register
M_PCRD EQU $FFFFAF ; Port D Control register
M_PRRD EQU $FFFFAF ; Port D Direction Data Register
M_PDRD EQU $FFFFAF ; Port D Direction Data Register
M_PCRE EQU $FFFFAF ; Port D GPIO Data Register
M_PCRE EQU $FFFF9F ; Port E Control register
M_PRRE EQU $FFFF9F ; Port E Direction Register
M_PDRE EQU $FFFF9F ; Port E Direction Register
M_PDRE EQU $FFFF9D ; Port E Data Register
M_OGDB EQU $FFFFFC ; OnCE GDB Register
           Register Addresses
 ;
 ;------
 ;
          EQUATES for Host Interface
 ;
 ;
  Register Addresses
 ;
 M_HCR EQU $FFFFC2 ; Host Control Register
M_HSR EQU $FFFFC3 ; Host Status Register
M_HPCR EQU $FFFFC4 ; Host Polarity Control Register
M_HBAR EQU $FFFFC5 ; Host Base Address Register
M_HRX EQU $FFFFC6 ; Host Receive Register
M_HTX EQU $FFFFC7 ; Host Transmit Register
 M_HTX EQU $FFFFC7
                                          ; Host Transmit Register
          HCR bits definition
 M_HRIE EQU $0
                                         ; Host Receive interrupts Enable
 M_HTIE EQU $1
                                         ; Host Transmit Interrupt Enable
 M_HCIE EQU $2
                                         ; Host Command Interrupt Enable
 M_HF2 EQU $3
                                         ; Host Flag 2
 M_HF3 EQU $4
                                           ; Host Flag 3
 ; HSR bits definition
 M_HRDF EQU $0
                                          ; Host Receive Data Full
 M_HTDE EQU $1
                                         ; Host Receive Data Empty
 M_HCP EQU $2
                                         ; Host Command Pending
 M_HF0 EQU $3
                                         ; Host Flag 0
 M_HF1 EQU $4
                                          ; Host Flag 1
      HPCR bits definition
 M_HGEN EQU $0
                                          ; Host Port GPIO Enable
                                         ; Host Address 8 Enable
 M_HA8EN EQU $1
 M_HA9EN EQU $2
                                         ; Host Address 9 Enable
 M_HCSEN EQU $3
                                         ; Host Chip Select Enable
 M_HREN EQU $4
                                         ; Host Request Enable
                                         ; Host Acknowledge Enable
 M_HAEN EQU $5
                                           ; Host Enable
 M_HEN EQU $6
```


M CD EOU \$FFF ; Clock Divider Mask (CD0-CD11) ; Clock Out Divider M_COD EQU 12 ; Clock Prescaler M_SCP EQU 13 ; Receive Clock Mode Source Bit M_RCM EQU 14 ; Transmit Clock Source Bit M_TCM EQU 15 ;------; EQUATES for Synchronous Serial Interface (SSI) ; Register Addresses Of SSI0 ; Register Addresses Of SSIO M_TX00 EQU \$FFFFBC ; SSIO Transmit Data Register 0 M_TX01 EQU \$FFFFBB ; SSIO Transmit Data Register 1 M_TX02 EQU \$FFFFBA ; SSIO Transmit Data Register 2 M_TSRO EQU \$FFFFB9 ; SSIO Transmit Data Register M_RX0 EQU \$FFFFB8 ; SSIO Transmit Data Register M_SSISRO EQU \$FFFFB7 ; SSIO Receive Data Register M_CRB0 EQU \$FFFFB6 ; SSIO Control Register B M_CRA0 EQU \$FFFFB5 ; SSIO Control Register A M_TSMA0 EQU \$FFFFB3 ; SSIO Transmit Slot Mask Register B M_RSMA0 EQU \$FFFFB2 ; SSIO Receive Slot Mask Register A M_RSMB0 EQU \$FFFFB1 ; SSIO Receive Slot Mask Register B ; Kegister Addresses Of SSI1 M_TX10 EQU \$FFFFAC ; SSI1 Transmit Data Register 0 M_TX11 EQU \$FFFFAB ; SSI1 Transmit Data Register 1 M_TX12 EQU \$FFFFAA ; SSI1 Transmit Data Register 2 M_TSR1 EQU \$FFFFA9 ; SSI1 Time Slot Register M_RX1 EQU \$FFFFA8 ; SSI1 Receive Data Register M_CRB1 EQU \$FFFFA6 ; SSI1 Control Register B M_CRA1 EQU \$FFFFA5 ; SSI1 Control Register A M_TSMA1 EQU \$FFFFA4 ; SSI1 Transmit Slot Mask Register A M_TSMB1 EQU \$FFFFA2 ; SSI1 Receive Slot Mask Register A M_RSMB1 EQU \$FFFFA1 ; SSI1 Receive Slot Mask Register B Register Addresses Of SSI1 SSI Control Register A Bit Flags ; M_PM EQU \$FF ; Prescale Modulus Select Mask (PM0-PM7) M_PSR EQU 11 ; Prescaler Range M_DC EQU \$1F000 ; Frame Rate Divider Control Mask (DC0-DC7) M_ALC EQU 18 ; Alignment Control (ALC) M_WL EQU \$380000 ; Word Length Control Mask (WL0-WL7) M_SSC1 EQU 22 ; Select SC1 as TR #0 drive enable (SSC1) SSI Control Register B Bit Flags ; M OF EOU \$3 ; Serial Output Flag Mask ; Serial Output Flag 0 M_OF0 EQU 0 ; Serial Output Flag 1 M_OF1 EQU 1 M_SCD EQU \$1C , Serial Control Direction Ma ; Serial Control 0 Direction ; Serial Control 1 Direction ; Serial Control 2 Direction ; Clock Source Direction ; Shift Direction ; Serial Control Direction Mask M_SCD0 EQU 2 M_SCD1 EQU 3 M_SCD2 EQU 4 M_SCKD EQU 5 M_SHFD EQU 6 M_FSL EQU \$180 ; Shift Direction ; Frame Sync Length Mask (FSL0-FSL1) ; Frame Sync Length 0 M_FSL0 EQU 7

r Consumption Benchmark

M_TLR0 EQU \$FFFF8E ; TIMER0 Load Reg M_ILKO EQU ŞFFFF8E M_TCPR0 EQU ŞFFFF8D M_TCR0 EQU ŞFFFF8C ; TIMER0 Compare Register ; TIMER0 Count Register Register Addresses Of TIMER1 ; M_TCSR1 EQU \$FFFF8B; TIMER1 Control/Status ReM_TLR1 EQU \$FFFF8A; TIMER1 Load RegM_TCPR1 EQU \$FFFF89; TIMER1 Compare RegisterM_TCR1 EQU \$FFFF88; TIMER1 Count Register ; TIMER1 Control/Status Register Register Addresses Of TIMER2 ; M_TCSR2 EQU \$FFFF87; TIMER2 Control/Status RegisterM_TLR2 EQU \$FFFF86; TIMER2 Load RegM_TCPR2 EQU \$FFFF85; TIMER2 Compare RegisterM_TCR2 EQU \$FFFF84; TIMER2 Count RegisterM_TPLR EQU \$FFFF83; TIMER Prescaler Load RegisterM_TPCR EQU \$FFFF82; TIMER Prescalar Count Register : Timer Control/Status Register Bit Flags M_TE EQU 0 M_TOIE EQU 1 M_TCIE EQU 2 M_TC EQU \$F0 M_INV EQU 8 M_TRM EQU 9 M_DIR EQU 11 M_DI EQU 12 M_DO EQU 13 M_PCE EQU 15 M_TOF EQU 20 M TCF EOU 21 M TE EOU O ; Timer Enable ; Timer Overflow Interrupt Enable ; Timer Compare Interrupt Enable ; Timer Control Mask (TC0-TC3) ; Inverter Bit ; Timer Restart Mode ; Direction Bit ; Data Input ; Data Output ; Prescaled Clock Enable ; Timer Overflow Flag M_TCF EQU 21 ; Timer Compare Flag ; Timer Prescaler Register Bit Flags M_PS EQU \$600000 ; Prescaler Source Mask M_PS0 EQU 21 M_PS1 EQU 22 ; Timer Control Bits M_TC0 EQU 4 M_TC1 EQU 5 ; Timer Control 0 M_TC1 EQU 5 M_TC2 EQU 6 ; Timer Control 1 ; Timer Control 2 M_TC3 EQU 7 ; Timer Control 3 ;-----; EQUATES for Direct Memory Access (DMA) ; ; ;------Register Addresses Of DMA M_DSTR EQU FFFF4 ; DMA Status Register M_DOR0 EQU \$FFFFF3 ; DMA Offset Register 0 M_DOR1 EQU \$FFFFF2 ; DMA Offset Register 1 M_DOR2 EQU \$FFFFF1 ; DMA Offset Register 2 M_DOR3 EQU \$FFFFF0 ; DMA Offset Register 3