
E·XFL

NXP USA Inc. - SPAKDSP321VF275 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details	
Product Status	Obsolete
Туре	Fixed Point
Interface	Host Interface, SSI, SCI
Clock Rate	275MHz
Non-Volatile Memory	ROM (576B)
On-Chip RAM	576kB
Voltage - I/O	3.30V
Voltage - Core	1.60V
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	196-BGA
Supplier Device Package	196-MAPBGA (15x15)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spakdsp321vf275

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

External Memory Expansion Port (Port A)

Signal Name	Туре	State During Reset, Stop, or Wait	Signal Description
TA	Input	Ignored Input	Transfer Acknowledge—If the DSP56321 is the bus master and there is no external bus activity, or the DSP56321 is not the bus master, the TA input is ignored. The TA input is a data transfer acknowledge (DTACK) function that can extend an external bus cycle indefinitely. Any number of wait states (1, 2infinity) can be added to the wait states inserted by the bus control register (BCR) by keeping TA deasserted. In typical operation, TA is deasserted at the start of a bus cycle, is asserted to enable completion of the bus cycle, and is
BR	Output	Reset: Output (deasserted) State during Stop/Wait depends on BRH bit setting: • BRH = 0: Output (deasserted) • BRH = 1: Maintains last state (that is, if asserted, remains asserted)	Bus Request —Asserted when the DSP requests bus mastership. \overline{BR} is deasserted when the DSP no longer needs the bus. \overline{BR} may be asserted or deasserted independently of whether the DSP56321 is a bus master or a bus slave. Bus "parking" allows \overline{BR} to be deasserted even though the DSP56321 is the bus master. (See the description of bus "parking" in the \overline{BB} signal description.) The bus request hold (BRH) bit in the BCR allows \overline{BR} to be asserted under software control even though the DSP does not need the bus. \overline{BR} is typically sent to an external bus arbitrator that controls the priority, parking, and tenure of each master on the same external bus. \overline{BR} is affected only by DSP requests for the external bus, never for the internal bus. During hardware reset, \overline{BR} is deasserted and the arbitration is reset to the bus slave state.
BG	Input	Ignored Input	Bus Grant—Asserted by an external bus arbitration circuit when the DSP56321 becomes the next bus master. When BG is asserted, the DSP56321 must wait until BB is deasserted before taking bus mastership. When BG is deasserted, bus mastership is typically given up at the end of the current bus cycle. This may occur in the middle of an instruction that requires more than one external bus cycle for execution. To ensure proper operation, the user must set the asynchronous bus arbitration enable (ABE) bit (Bit 13) in the Operating Mode Register. When this bit is set, BG and BB are synchronized internally. This adds a required delay between the deassertion of an initial BG input and the assertion of a subsequent BG input.
BB	Input/ Output	Ignored Input	 Bus Busy—Indicates that the bus is active. Only after BB is deasserted can the pending bus master become the bus master (and then assert the signal again). The bus master may keep BB asserted after ceasing bus activity regardless of whether BR is asserted or deasserted. Called "bus parking," this allows the current bus master to reuse the bus without rearbitration until another device requires the bus. BB is deasserted by an "active pull-up" method (that is, BB is driven high and then released and held high by an external pull-up resistor). Notes: 1. See BG for additional information. 2. BB requires an external pull-up resistor.

als/Connections

		Table 1-10.	Host Interface (Continued)
Signal Name	Туре	State During Reset ^{1,2}	Signal Description
HA0	Input	Ignored Input	Host Address Input 0—When the HI08 is programmed to interface with a nonmultiplexed host bus and the HI function is selected, this signal is line 0 of the host address input bus.
HAS/HAS	Input		Host Address Strobe —When the HI08 is programmed to interface with a multiplexed host bus and the HI function is selected, this signal is the host address strobe (HAS) Schmitt-trigger input. The polarity of the address strobe is programmable but is configured active-low (HAS) following reset.
PB8	Input or Output		Port B 8 —When the HI08 is configured as GPIO through the HI08 Port Control Register, this signal is individually programmed as an input or output through the HI08 Data Direction Register.
HA1	Input	Ignored Input	Host Address Input 1 —When the HI08 is programmed to interface with a nonmultiplexed host bus and the HI function is selected, this signal is line 1 of the host address (HA1) input bus.
HA8	Input		Host Address 8 —When the HI08 is programmed to interface with a multiplexed host bus and the HI function is selected, this signal is line 8 of the host address (HA8) input bus.
PB9	Input or Output		Port B 9 —When the HI08 is configured as GPIO through the HI08 Port Control Register, this signal is individually programmed as an input or output through the HI08 Data Direction Register.
HA2	Input	Ignored Input	Host Address Input 2 —When the HI08 is programmed to interface with a nonmultiplexed host bus and the HI function is selected, this signal is line 2 of the host address (HA2) input bus.
HA9	Input		Host Address 9 —When the HI08 is programmed to interface with a multiplexed host bus and the HI function is selected, this signal is line 9 of the host address (HA9) input bus.
PB10	Input or Output		Port B 10 —When the HI08 is configured as GPIO through the HI08 Port Control Register, this signal is individually programmed as an input or output through the HI08 Data Direction Register.
HCS/HCS	Input	Ignored Input	Host Chip Select —When the HI08 is programmed to interface with a nonmultiplexed host bus and the HI function is selected, this signal is the host chip select (HCS) input. The polarity of the chip select is programmable but is configured active-low (HCS) after reset.
HA10	Input		Host Address 10 —When the HI08 is programmed to interface with a multiplexed host bus and the HI function is selected, this signal is line 10 of the host address (HA10) input bus.
PB13	Input or Output		Port B 13 —When the HI08 is configured as GPIO through the HI08 Port Control Register, this signal is individually programmed as an input or output through the HI08 Data Direction Register.
HRW	Input	Ignored Input	Host Read/Write—When the HI08 is programmed to interface with a single- data-strobe host bus and the HI function is selected, this signal is the Host Read/Write (HRW) input.

Table 1-10. Host Interface (Continued)

HI08 Data Direction Register.

is configured as active-low (HRD) after reset.

Host Read Data—When the HI08 is programmed to interface with a doubledata-strobe host bus and the HI function is selected, this signal is the HRD strobe Schmitt-trigger input. The polarity of the data strobe is programmable but

Port B 11—When the HI08 is configured as GPIO through the HI08 Port Control

Register, this signal is individually programmed as an input or output through the

HRD/HRD

PB11

Input

Input or Output

1.11 JTAG and OnCE Interface

The DSP56300 family and in particular the DSP56321 support circuit-board test strategies based on the IEEE® Std. 1149.1[™] test access port and boundary scan architecture, the industry standard developed under the sponsorship of the Test Technology Committee of IEEE and the JTAG. The OnCE module provides a means to interface nonintrusively with the DSP56300 core and its peripherals so that you can examine registers, memory, or on-chip peripherals. Functions of the OnCE module are provided through the JTAG TAP signals. For programming models, see the chapter on debugging support in the DSP56300 Family Manual.

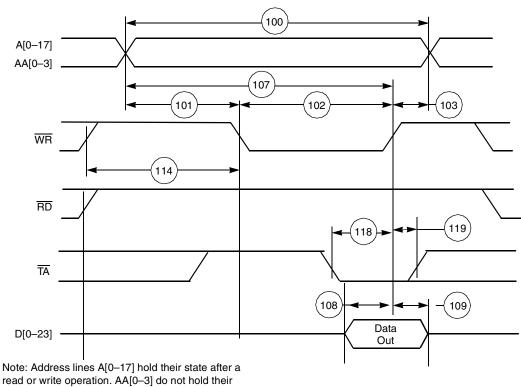
Signal Name	Туре	State During Reset	Signal Description
тск	Input	Input	Test Clock—A test clock input signal to synchronize the JTAG test logic.
TDI	Input	Input	Test Data Input —A test data serial input signal for test instructions and data. TDI is sampled on the rising edge of TCK and has an internal pull-up resistor.
TDO	Output	Tri-stated	Test Data Output —A test data serial output signal for test instructions and data. TDO is actively driven in the shift-IR and shift-DR controller states. TDO changes on the falling edge of TCK.
TMS	Input	Input	Test Mode Select —Sequences the test controller's state machine. TMS is sampled on the rising edge of TCK and has an internal pull-up resistor.
TRST	Input	Input	Test Reset —Înitializes the test controller asynchronously. TRST has an internal pull-up resistor. TRST must be asserted during and after power-up (see EB610/D for details).
DE	Input/ Output	Input	Debug Event —As an input, initiates Debug mode from an external command controller, and, as an open-drain output, acknowledges that the chip has entered Debug mode. As an input, DE causes the DSP56300 core to finish executing the current instruction, save the instruction pipeline information, enter Debug mode, and wait for commands to be entered from the debug serial input line. This signal is asserted as an output for three clock cycles when the chip enters Debug mode as a result of a debug request or as a result of meeting a breakpoint condition. The DE has an internal pull-up resistor. This signal is not a standard part of the JTAG TAP controller. The signal connects directly to the OnCE module to initiate debug mode directly or to provide a direct external indication that the chip has entered Debug mode. All other interface with the OnCE module must occur through the JTAG port.

Table 1-15.	JTAG/OnCE Interface

Specifications

The DSP56321 is fabricated in high-density CMOS with Transistor-Transistor Logic (TTL) compatible inputs and outputs.

2.1 Maximum Ratings


CAUTION

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, normal precautions should be taken to avoid exceeding maximum voltage ratings. Reliability is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V_{CC}).

In the calculation of timing requirements, adding a maximum value of one specification to a minimum value of another specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. Therefore, a "maximum" value for a specification never occurs in the same device that has a "minimum" value for another specification; adding a maximum to a minimum represents a condition that can never exist.

Rating ¹		Symbol	Value ^{1, 2}	Unit		
Supply Voltage ³			V _{CCQL}	-0.1 to 2.25	V	
Input/Out	put Supp	ly Voltage ³	V _{CCQH}	-0.3 to 4.35	V	
All input v	voltages		V _{IN}	GND – 0.3 to V _{CCQH} + 0.3	V	
Current drain per pin excluding V _{CC} and GND			I	10	mA	
Operating temperature range			Т _Ј	-40 to +100	°C	
Storage to	emperatu	ıre	T _{STG}	-55 to +150	°C	
Notes:	 Ab: the Port 	e maximum rating may affect device reliabili	only, and functional ty or cause permar	operation at the maximum is not guaranteed.	-	

state after a read or write operation.

2.4.5.2 Asynchronous Bus Arbitration Timings

No.	Characteristics	Expression	200 MHz		220 MHz		240 MHz		275 Mhz		Uni
NO.	Unaracteristics		Min	Max	Min	Max	Min	Max	Min	Max	t
250	$\overline{\text{BB}}$ assertion window from $\overline{\text{BG}}$ input deassertion.	2.5 × Tc + 5		17.5		16.4		15.4	—	14.1	ns
251	Delay from \overline{BB} assertion to \overline{BG} assertion	2 × Tc + 5	15	—	14.1		13.3		12.27	—	ns
Notes	Notes: 1. Bit 13 in the Operating Mode Register must be set to enable Asynchronous Arbitration mode.										

Table 2-9.	Asynchronous	Bus Timings
------------	--------------	--------------------

2. To guarantee timings 250 and 251, it is recommended that you assert non-overlapping BG inputs to different DSP56300 devices (on the same bus), as shown in Figure 2-12, where BG1 is the BG signal for one DSP56300 device while BG2 is the BG signal for a second DSP56300 device.

	Characteristic ¹⁰	Expression	200 MHz		220	MHz	240 MHz		275 MHz		Uni
No.			Min	Мах	Min	Max	Min	Max	Min	Мах	t
323	HAS deassertion to data strobe assertion ⁴		0.0	_	0.0	_	0.0	_	0.0	_	ns
324	Host data input setup time before write data strobe deassertion ⁶		4.95	—	4.5	—	4.13	—	4.0	—	ns
325	Host data input hold time after write data strobe deassertion ⁶		1.65	—	1.5	_	1.38	_	1.23	—	ns
326	Read data strobe assertion to output data active from high impedance ⁵ HACK assertion to output data active from high impedance		1.65	_	1.5	_	1.38	_	1.23	_	ns
327	Read data strobe assertion to output data valid ⁵ HACK assertion to output data valid		—	14.78	—	13.45	_	12.32		10.2	ns
328	Read data strobe deassertion to output data high impedance ⁵ HACK deassertion to output data high impedance		_	4.95	_	4.5		4.13	4.0	_	ns
329	Output data hold time after read data strobe deassertion ⁵ Output data hold time after HACK deassertion		1.65	—	1.5	-	1.38	-	1.23	-	ns
330	HCS assertion to read data strobe deassertion ⁵	T _C + 4.95	9.95	_	9.05	—	8.3	—	7.77	—	ns
331	HCS assertion to write data strobe deassertion ⁶		8	—	8	—	8	—	8	—	ns
332	HCS assertion to output data valid		—	17	—	16	_	15		14	ns
333	HCS hold time after data strobe deassertion ⁴		0.0	—	0.0	_	0.0	_	0.0	_	ns
334	Address (HAD[0-7]) setup time before HAS deassertion (HMUX=1)		2.31	—	2.1	_	1.93	_	1.76	_	ns
335	Address (HAD[0–7]) hold time after HAS deassertion (HMUX=1)		1.65	—	1.5	_	1.38	_	1.23	_	ns
336	HA[8–10] (HMUX=1), HA[0–2] (HMUX=0), HR/W setup time before data strobe assertion ⁴ • Read • Write		0 2.31	_	0 2.1		0 1.93		0 1.76	_	ns ns
337	HA[8–10] (HMUX=1), HA[0–2] (HMUX=0), HR/ \overline{W} hold time after data strobe deassertion ⁴		1.65	—	1.5	—	1.38	—	1.23	—	ns
338	Delay from read data strobe deassertion to host request assertion for "Last Data Register" read ^{5, 7, 8}	T _C + 2.64	7.64	_	7.19	-	6.81	-	6.28	-	ns
339	Delay from write data strobe deassertion to host request assertion for "Last Data Register" write ^{6, 7, 8}	1.5 × T _C + 2.64	10.14	—	9.47	—	8.9	—	8.1	—	ns
340	Delay from data strobe assertion to host request deassertion for "Last Data Register" read or write (HROD=0) ^{4, 7, 8}		_	12.14	_	11.04		10.12		9.0	ns
341	Delay from data strobe assertion to host request deassertion for "Last Data Register" read or write (HROD=1, open drain host request) ^{4, 7, 8, 9}		_	300.0	_	300.0	_	300.0		300.0	ns
-	•		•			•		•			

 Table 2-10.
 Host Interface Timings^{1,2,12} (Continued)

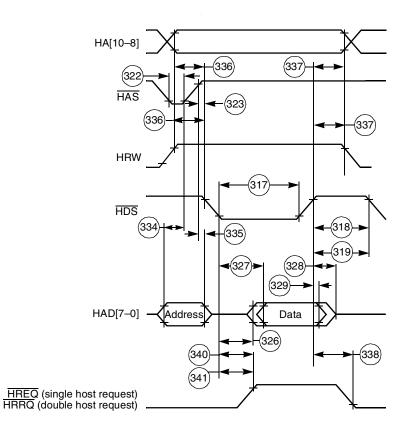


Figure 2-18. Read Timing Diagram, Multiplexed Bus, Single Data Strobe

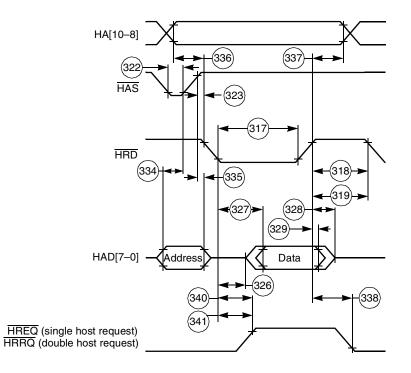


Figure 2-19. Read Timing Diagram, Multiplexed Bus, Double Data Strobe

2.4.8 ESSI0/ESSI1 Timing

No	Characteristics ^{4, 6}	Symbol	Expression	200 MHz		220 MHz		240 MHz		Hz 275 MHz		Cond-	Unit
No.			Expression	Min Max	Min	Max	Min	Max	Min	Max	ition ⁵	Unit	
430	Clock cycle ¹	T _{ECCX} T _{ECCI}	$6 \times T_C \\ 8 \times T_C$	30.0 40.0	_	27.3 36.6	_	25.0 33.3	_	21.5 25.0	_	x ck i ck	ns ns
431	Clock high period • For internal clock • For external clock		T _{ECCX} /2 – 3.7 T _{ECCI} /2 – 10.0	11.3 10.0	_	9.9 8.2	_	8.8 6.7	_	7.21 2.5	-		ns ns
432	Clock low period • For internal clock • For external clock		T _{ECCX} /2 – 3.7 T _{ECCI} /2 –10.0	11.3 10.0		9.9 8.2		8.8 6.7		7.21 2.5			ns ns
433	RXC rising edge to FSR out (bit-length) high			_	12.5 8.3	_	12.5 8.3	_	12.5 8.3	_	12.5 8.3	x ck i ck a	ns
434	RXC rising edge to FSR out (bit-length) low			_	12.5 8.3	_	12.5 8.3	_	12.5 8.3	_	12.5 8.3	x ck i ck a	ns
435	RXC rising edge to FSR out (word- length-relative) high ²			_	12.5 8.3	_	12.5 8.3	_	12.5 8.3	_	12.5 8.3	x ck i ck a	ns
436	RXC rising edge to FSR out (word- length-relative) low ²			_	12.5 8.3	_	12.5 8.3	_	12.5 8.3	_	12.5 8.3	x ck i ck a	ns
437	RXC rising edge to FSR out (word- length) high			_	12.5 8.3	_	12.5 8.3	_	12.5 8.3	_	12.5 8.3	x ck i ck a	ns
438	RXC rising edge to FSR out (word- length) low			_	12.5 8.3	_	12.5 8.3	_	12.5 8.3	_	12.5 8.3	x ck i ck a	ns
439	Data in setup time before RXC (SCK in Synchronous mode) falling edge			5.0 10.0	_ _	5.0 10.0	_ _	5.0 10.0	_	5.0 10.0	_	x ck i ck	ns
440	Data in hold time after RXC falling edge			3.8 5.0	_	3.8 5.0	_	3.8 5.0	_	3.8 5.0	_	x ck i ck	ns
441	FSR input (bl, wr) high before RXC falling edge ²			5.0 10.0	_	5.0 10.0	_	5.0 10.0	_	5.0 10.0	_	x ck i ck a	ns
442	FSR input (wl) high before RXC falling edge			5.0 10.0	_	5.0 10.0	_	5.0 10.0	_	5.0 10.0	_	x ck i ck a	ns
443	FSR input hold time after RXC falling edge			3.8 5.0	_	3.8 5.0	_	3.8 5.0	_	3.8 5.0	_	x ck i ck a	ns
444	Flags input setup before RXC falling edge			5.0 10.0	_ _	5.0 10.0	_ _	5.0 10.0	_	5.0 10.0	_	x ck i ck s	ns
445	Flags input hold time after RXC falling edge			3.8 5.0	_ _	3.8 5.0	_ _	3.8 5.0	_	3.8 5.0	_	x ck i ck s	ns
446	TXC rising edge to FST out (bit-length) high			_	12.5 8.3	_	12.5 8.3	_	12.5 8.3	_	12.5 8.3	x ck i ck	ns
447	TXC rising edge to FST out (bit-length) low			_	12.5 8.3	_	12.5 8.3	_	12.5 8.3	_	12.5 8.3	x ck i ck	ns
448	TXC rising edge to FST out (word- length-relative) high ²			_	12.5 8.3	_	12.5 8.3	_	12.5 8.3	_	12.5 8.3	x ck i ck	ns
449	TXC rising edge to FST out (word- length-relative) low ²			_	12.5 8.3	_	12.5 8.3	_	12.5 8.3	_	12.5 8.3	x ck i ck	ns
450	TXC rising edge to FST out (word- length) high			_	12.5 8.3	_	12.5 8.3	_	12.5 8.3	_	12.5 8.3	x ck i ck	ns

Table 2-12. ESSI Timings

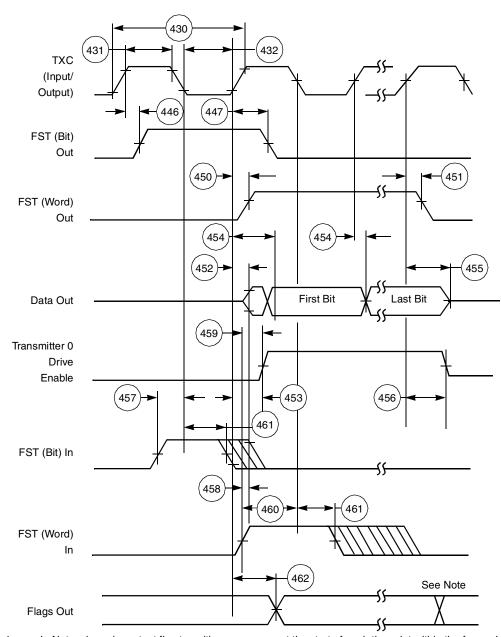
ifications

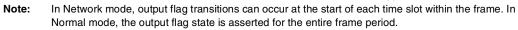
No.	Characteristics ^{4, 6}	Symbol	Everenciar	200 MHz		200 MHz 220 MHz		240 MHz		Hz 275 MHz		Cond-	Unit
			Expression		Min	Max	Min	Max	ition ⁵	Unit			
451	TXC rising edge to FST out (word- length) low				12.5 8.3		12.5 8.3		12.5 8.3	_	12.5 8.3	x ck i ck	ns
452	TXC rising edge to data out enable from high impedance			_	12.5 8.3		12.5 8.3		12.5 8.3	_	12.5 8.3	x ck i ck	ns
453	TXC rising edge to Transmitter 0 drive enable assertion			_	12.5 13.5		12.5 13.5		12.5 13.5	_	12.5 13.5	x ck i ck	ns
454	TXC rising edge to data out valid			_	12.5 8.3		12.5 8.3		12.5 8.3	_	12.5 8.3	x ck i ck	ns
455	TXC rising edge to data out high impedance ³			_	30.0 8.3		30.0 8.3		30.0 8.3	_	30.0 8.3	x ck i ck	ns
456	TXC rising edge to Transmitter 0 drive enable deassertion ³			_	12.5 8.3		12.5 8.3		12.5 8.3	_	12.5 8.3	x ck i ck	ns
457	FST input (bl, wr) setup time before TXC falling edge ²			5.0 10.0	_	5.0 10.0	_	5.0 10.0	_	5.0 10.0	_	x ck i ck	ns
458	FST input (wI) to data out enable from high impedance			_	15.0 8.0		15.0 8.0		15.0 8.0	_	15.0 8.0	x ck i ck	ns
459	FST input (wI) to Transmitter 0 drive enable assertion			_	15.0 18.0		15.0 18.0		15.0 18.0	_	15.0 18.0	x ck i ck	ns
460	FST input (wl) setup time before TXC falling edge			5.0 10.0	_ _	5.0 10.0	_ _	5.0 10.0	_	5.0 10.0	_	x ck i ck	ns
461	FST input hold time after TXC falling edge			3.8 5.0	_ _	3.8 5.0	_ _	3.8 5.0	_	3.8 5.0	_	x ck i ck	ns
462	Flag output valid after TXC rising edge			_	12.5 8.3	_	12.5 8.3	_	12.5 8.3		12.5 8.3	x ck i ck	ns

Table 2-12.ESSI Timings (Continued)

ESSI control register. T_{ECCX} must be ≥ T_C × 3, in accordance with the note below Table 7-1 in the DSP56321 Reference Manual. T_{ECCI} must be ≥ T_C × 4, in accordance with the explanation of CRA[PSR] and the ESSI Clock Generator Functional Block Diagram shown in Figure 7-3 of the DSP56321 Reference Manual.
 The word length relative frame sume signal waveform expresses the same wave as the bit length frame sume signal waveform but

2. The word-length-relative frame sync signal waveform operates the same way as the bit-length frame sync signal waveform, but spreads from one serial clock before the first bit clock (same as the Bit Length Frame Sync signal) until the one before last bit clock of the first word in the frame.


- 3. Periodically sampled and not 100 percent tested
- 4. $V_{CCQH} = 3.3 \text{ V} \pm 0.3 \text{ V}$, $V_{CCQL} = 1.6 \text{ V} \pm 0.1 \text{ V}$; $T_J = 0^{\circ}\text{C}$ to +85°C, $C_L = 50 \text{ pF}$


 TXC (SCK Pin) = Transmit Clock RXC (SC0 or SCK Pin) = Receive Clock FST (SC2 Pin) = Transmit Frame Sync FSR (SC1 or SC2 Pin) Receive Frame Sync

i ck = Internal Clock; x ck = External Clock
 i ck a = Internal Clock, Asynchronous Mode (asynchronous implies that TXC and RXC are two different clocks)
 i ck s = Internal Clock, Synchronous Mode (synchronous implies that TXC and RXC are the same clock)

7. In the timing diagrams below, the clocks and frame sync signals are drawn using the clock falling edge as a the first reference. Clock and frame sync polarities are programmable in Control Register B (CRB). Refer to the *DSP56321 Reference Manual* for details.

Figure 2-24.	ESSI	Transmitter	Timing
--------------	------	-------------	--------

2.4.11 JTAG Timing

NI -	Ob any standarding	All freq	All frequencies				
No.	Characteristics	Min	Max	– Unit			
500	TCK frequency of operation (1/($T_C \times 3$); absolute maximum 22 MHz)	0.0	22.0	MHz			
501	TCK cycle time in Crystal mode	45.0	_	ns			
502	TCK clock pulse width measured at 1.6 V	20.0	_	ns			
503	TCK rise and fall times	0.0	3.0	ns			
504	Boundary scan input data setup time	5.0	_	ns			
505	Boundary scan input data hold time	24.0	_	ns			
506	TCK low to output data valid	0.0	40.0	ns			
507	TCK low to output high impedance	0.0	40.0	ns			
508	TMS, TDI data setup time	5.0	_	ns			
509	TMS, TDI data hold time	25.0	_	ns			
510	TCK low to TDO data valid	0.0	44.0	ns			
511	TCK low to TDO high impedance	0.0	44.0	ns			
512	TRST assert time	100.0	—	ns			
513	TRST setup time to TCK low	40.0	—	ns			

Table 2-14. JTAG Timing

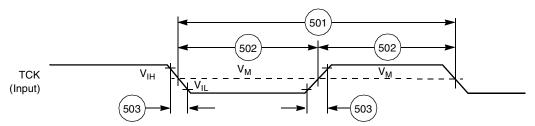


Figure 2-28. Test Clock Input Timing Diagram

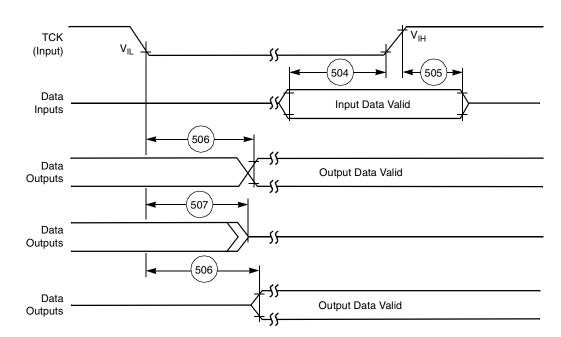
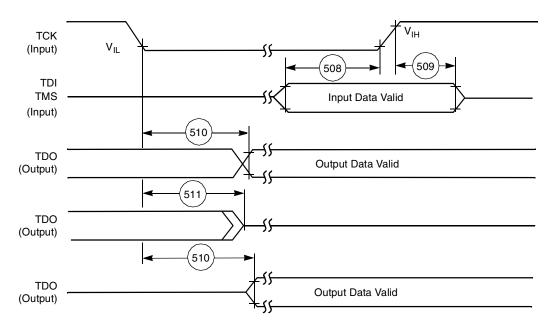
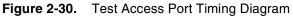




Figure 2-29. Boundary Scan (JTAG) Timing Diagram

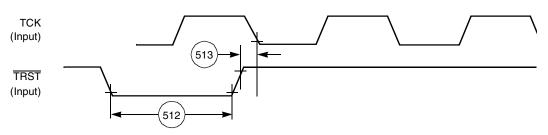


Figure 2-31. TRST Timing Diagram

2.4.12 OnCE Module TimIng

DE

No.	Characteristics	Expression	All Freq	Unit			
NO.	Characteristics	Expression	Min	Max	Unit		
500	TCK frequency of operation (1/(T _C \times 3); maximum 22 MHz)	Max 22.0 MHz	0.0	22.0	MHz		
514	DE assertion time in order to enter Debug mode	$1.5 imes T_{C} + 10.0$	20.0	—	ns		
515	$\frac{5}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$						
516	Debug acknowledge assertion time	$3 \times T_{C} + 5.0$	25.0	—	ns		
Note:	: $V_{CCQH} = 3.3 \text{ V} \pm 0.3 \text{ V}, V_{CCQL} = 1.6 \text{ V} \pm 0.1 \text{ V}; T_J = -40^{\circ}\text{C} \text{ to } +100^{\circ}\text{C}, C_L = 50 \text{ pF}$						

 Table 2-15.
 OnCE Module Timing

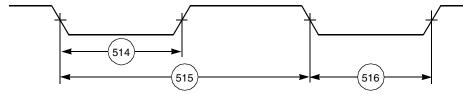


Figure 2-32. OnCE—Debug Request

3.1 Package Description

Top and bottom views of the MAP-BGA packages are shown in Figure 3-1 and Figure 3-2 with their pin-outs.

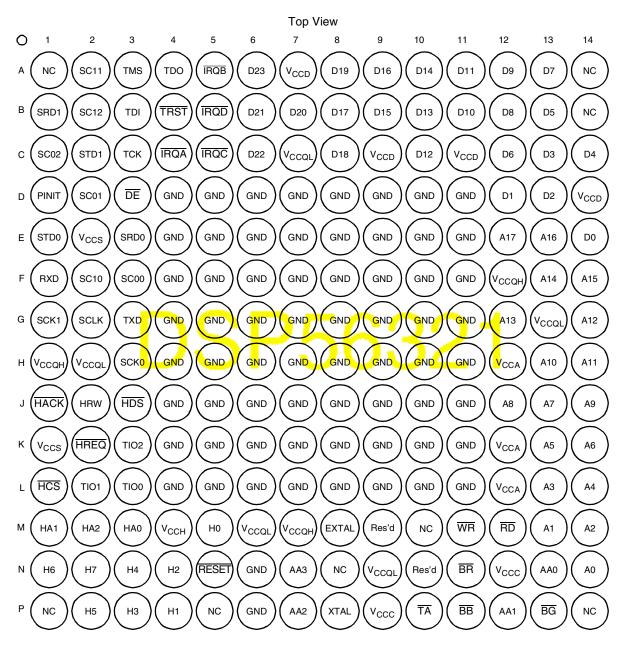


Figure 3-1. DSP56321 MAP-BGA Package, Top View

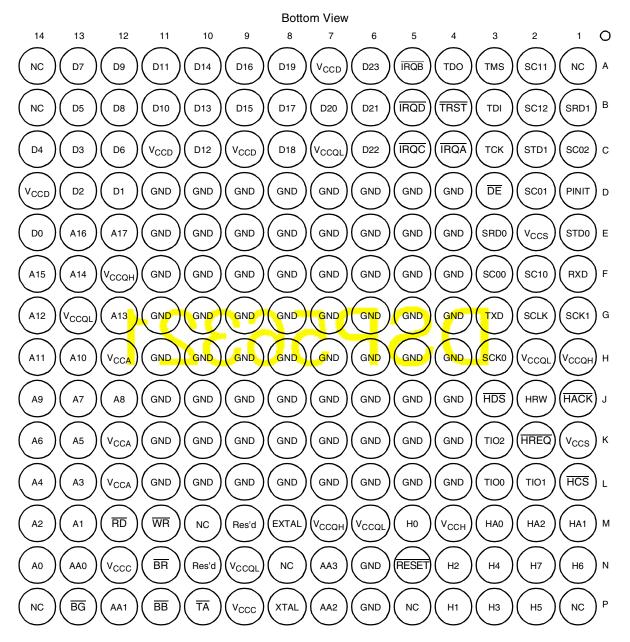


Figure 3-2. DSP56321 MAP-BGA Package, Bottom View

Table 3-1.	Signal List by Ball Number
------------	----------------------------

Ball No.	Signal Name	Ball No.	Signal Name	Ball No.	Signal Name
A1	Not Connected (NC)	B12	D8	D9	GND
A2	SC11 or PD1	B13	D5	D10	GND
A3	TMS	B14	NC	D11	GND
A4	TDO	C1	SC02 or PC2	D12	D1
A5	MODB/IRQB	C2	STD1 or PD5	D13	D2
A6	D23	C3	тск	D14	V _{CCD}
A7	V _{CCD}	C4	MODA/IRQA	E1	STD0 or PC5
A8	D19	C5	MODC/IRQC	E2	V _{CCS}
A9	D16	C6	D22	E3	SRD0 or PC4
A10	D14	C7	V _{CCQL}	E4	GND
A11	D11	C8	D18	E5	GND
A12	D9	C9	V _{CCD}	E6	GND
A13	D7	C10	D12	E7	GND
A14	NC	C11	V _{CCD}	E8	GND
B1	SRD1 or PD4	C12	D6	E9	GND
B2	SC12 or PD2	C13	D3	E10	GND
B3	TDI	C14	D4	E11	GND
B4	TRST	D1	PINIT/NMI	E12	A17
B5	MODD/IRQD	D2	SC01 or PC1	E13	A16
B6	D21	D3	DE	E14	D0
B7	D20	D4	GND	F1	RXD or PE0
B8	D17	D5	GND	F2	SC10 or PD0
B9	D15	D6	GND	F3	SC00 or PC0
B10	D13	D7	GND	F4	GND
B11	D10	D8	GND	F5	GND

Signal Name	Ball No.	Signal Name	Ball No.	Signal Name	Ball No.
MODA	C4	PB4	N3	Reserved	M9
MODB	A5	PB5	P2	Reserved	N10
MODC	C5	PB6	N1	RESET	N5
MODD	B5	PB7	N2	RXD	F1
NC	A1	PB8	М3	SC00	F3
NC	A14	PB9	M1	SC01	D2
NC	B14	PC0	F3	SC02	C1
NC	M10	PC1	D2	SC10	F2
NC	N8	PC2	C1	SC11	A2
NC	P1	PC3	H3	SC12	B2
NC	P5	PC4	E3	SCK0	H3
NC	P14	PC5	E1	SCK1	G1
NMI	D1	PD0	F2	SCLK	G2
PB0	M5	PD1	A2	SRD0	E3
PB1	P4	PD2	B2	SRD1	B1
PB10	M2	PD3	G1	STD0	E1
PB11	J2	PD4	B1	STD1	C2
PB12	J3	PD5	C2	TA	P10
PB13	L1	PE0	F1	ТСК	C3
PB14	K2	PE1	G3	TDI	B3
PB15	J1	PE2	G2	TDO	A4
PB2	N4	PINIT	D1	TIO0	L3
PB3	P3	RD	M12	TIO1	L2

 Table 3-2.
 Signal List by Signal Name (Continued)

Pr Consumption Benchmark

M Z EOU 2 ; Zero M_N EQU 3 ; Negative M_U EQU 4 ; Unnormalized M_E EQU 5 ; Extension M_L EQU 6 ; Limit M_S EQU 7 ; Scaling Bit M IO EOU 8 ; Interupt Mask Bit 0 M I1 EOU 9 ; Interupt Mask Bit 1 M_S0 EQU 10 ; Scaling Mode Bit 0 ; Scaling Mode Bit 1 M_S1 EQU 11 M SC EOU 13 ; Sixteen_Bit Compatibility M DM EOU 14 ; Double Precision Multiply M LF EOU 15 ; DO-Loop Flag M FV EOU 16 ; DO-Forever Flag M_SA EQU 17 ; Sixteen-Bit Arithmetic M_CE EQU 19 ; Instruction Cache Enable M_SM EQU 20 ; Arithmetic Saturation M_RM EQU 21 ; Rounding Mode M_CP0 EQU 22 ; bit 0 of priority bits in SR M_CP1 EQU 23 ; bit 1 of priority bits in SR control and status bits in OMR M_CDP EQU \$300; mask for CORE-DMA priority bits in OMR M_MA equ0 ; Operating Mode A M_MB equ1 ; Operating Mode B M_MC equ2 ; Operating Mode C M_MD equ3 ; Operating Mode D M_EBD EQU 4 ; External Bus Disable bit in OMR M_SD EQU 6 ; Stop Delay M_MS EQU 7 ; Memory Switch bit in OMR M_CDP0 EQU 8 ; bit 0 of priority bits in OMR M_CDP1 EQU 9 ; bit 1 of priority bits in OMR M_BEN EQU 10 ; Burst Enable M_TAS EQU 11 ; TA Synchronize Select M_BRT EQU 12 ; Bus Release Timing M_ATE EQU 15 ; Address Tracing Enable bit in OMR. M_XYS EQU 16 ; Stack Extension space select bit in OMR. ; Extensed stack UNderflow flag in OMR. M_EUN EQU 17 M_EOV EQU 18 ; Extended stack OVerflow flag in OMR. M_WRP EQU 19 ; Extended WRaP flag in OMR. M_SEN EQU 20 ; Stack Extension Enable bit in OMR.

;; HOST Interrupts	
I_HRDF EQU I_VEC+\$60 I_HTDE EQU I_VEC+\$62 I_HC EQU I_VEC+\$64	; Host Receive Data Full ; Host Transmit Data Empty ; Default Host Command
; EFCOP Filter Interrupts	
I_FDIIE EQU I_VEC+\$68 I_FDOIE EQU I_VEC+\$6A	; EFilter input buffer empty ; EFilter output buffer full
; INTERRUPT ENDING ADDRESS	
, I_INTEND EQU I_VEC+\$FF	; last address of interrupt vector space

