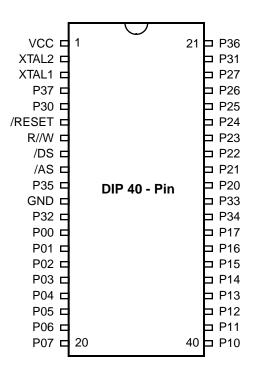


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	20MHz
Connectivity	EBI/EMI, UART/USART
Peripherals	-
Number of I/O	52
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	236 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	68-LCC (J-Lead)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z86c9620vsc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIN DESCRIPTION

Figure 4. Z86C61 40-Pin DIP Pin Assignments

Table 1. Z86C61 40-Pin DIP Pin Identification

Pin #	Symbol	Function	Direction		
1	V _{CC}	Power Supply	Input		
2	XTAL2	Crystal, Oscillator Clock	Output		
3	XTAL1	Crystal, Oscillator Clock	Input		
4	P37	Port 3, Pin 7	Output		
5	P30	Port 3, Pin 0	Input		
6	/RESET	Reset	Input		
7	R//W	Read/Write	Output		
8	/DS	Data Strobe	Output		
9	/AS	Address Strobe	Output		
10	P35	Port 3, Pin 5	Output		
11	GND	Ground	Input		
12	P32	Port 3, Pin 2	Input		
13-20	P07-P00	Port 0, Pins 0,1,2,3,4,5,6,7	In/Output		
21-28	P17-P10	Port 1, Pins 0,1,2,3,4,5,6,7	In/Output		
29	P34	Port 3, Pin 4	Output		
30	P33	Port 3, Pin 3	Input		
31-38	P27-P20	Port 2, Pins 0,1,2,3,4,5,6,7	In/Output		
39	P31	Port 3, Pin 1	Input		
40	P36	Port 3, Pin 6	Output		

PIN DESCRIPTION (Continued)

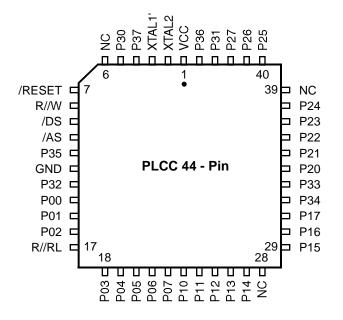


Figure 5. Z86C61 44-Pin PLCC Pin Assignments

Table 2. Z86C61 44-Pin PLCC Pin Assignments

Pin # Symbol Function Direction 1 V_{CC} **Power Supply** Input 2 XTAL2 Crystal, Oscillator Clock Output 3 XTAL1 Crystal, Oscillator Clock Input P37 Port 3, Pin 7 4 Output P30 Port 3, Pin 0 5 Input N/C Not Connected 6 Input 7 /RESET Reset Input 8 R//W Read/Write Output 9 /DS Data Strobe Output /AS 10 Address Strobe Output 11 P35 Port 3, Pin 5 Output 12 GND Ground Input P32 Port 3, Pin 2 13 Input 14-16 P02-P00 Port 0, Pins 0,1,2 In/Output R//RL **ROM/ROMIess** control 17 Input 18-22 P07-P03 Port 0, Pins 3,4,5,6,7 In/Output

Table 2. Z86C61 44-Pin PLCC Pin Assignments

Pin #	Symbol	Function	Direction
23-27	P14-P10	Port 1, Pins 0,1,2,3,4	In/Output
28	N/C	Not Connected	Input
29-31	P17-P15	Port 1, Pins 5,6,7	In/Output
32	P34	Port 3, Pin 4	Output
33	P33	Port 3, Pin 3	Input
34-38	P24-P20	Port 2, Pins 0,1,2,3,4	In/Output
39	N/C	Not Connected	Input
40-42	P25-P27	Port 2, Pins 5,6,7	In/Output
43	P31	Port 3, Pin 1	Input
44	P36	Port 3, Pin 6	Output

DS97Z8X1600

Pin #	Symbol	Function	Direction
1-2	P44-P43	Port 4, Pins 3,4	In/Output
3	V _{CC}	Power Supply	Input
4	P45	Port 4, Pin 5	In/Output
5	XTAL2	Crystal, Oscillator Clock	Output
6	XTAL1	Crystal, Oscillator Clock	Input
7	P37	Port 3, Pin 7	Output
8	P30	Port 3, Pin 0	Input
9	/RESET	Reset	Input
10	R//W	Read/Write	Output
11	/P0DS	Port 0 Data Strobe	Output
12	/DS	Data Strobe	Output
13-14	P47-P46	Port 4, Pins 6,7	In/Output
15	/P1DS	Port 1, Data Strobe	Output
16	/AS	Address Strobe	Output
17	/DTIMER	DTIMER	Input
18	P35	Port 3, Pin 5	Output
19	R//RL	ROM/ROMIess control	Input
20	GND	Ground	Input
21	P32	Port 3, Pin 2	Input
22-23	P51-P50	Port 5, Pins 0,1	In/Output
24-31	P07-P00	Port 0, Pins 0,1,2,3,4,5,6,7	In/Output
32	V _{CC}	Power Supply	Input
33-36	P55-P52	Port 5, Pins 2,3,4,5	In/Output
37-38	P11-P10	Port 1, Pins 0,1	In/Output
39-40	P56-P57	Port 5, Pins 6,7	In/Output
41-46	P17-P12	Port 1, Pins2,3,4,5,6,7	In/Output
47-48	P63-P62	Port 6, Pins 3,2	In/Output
49	P34	Port 3, Pin 4	Output
50	P33	Port 3, Pin 3	Input
51	GND	Ground	Input
52	/SYNC	Synchronization	Output
53	SCLK	System Clock	Output
54-55	P21-P20	Port 2, Pins 0,1	In/Output
56-57	P60-P61	Port 6, Pins 1,0	In/Output
58-63	P27-P22	Port 2, Pins 2,3,4,5,6,7	In/Output
64-65	P41-P40	Port 4, Pins 0,1	In/Output
66	P31	Port 3, Pin 1	Input
67	P36	Port 3, Pin 6	Output
68	P42	Port 4, Pin 2	In/Output

Table 4. Z86C62/C96 68-Pin PLCC Pin Identification

DC ELECTRICAL CHARACTERISTICS (Continued)

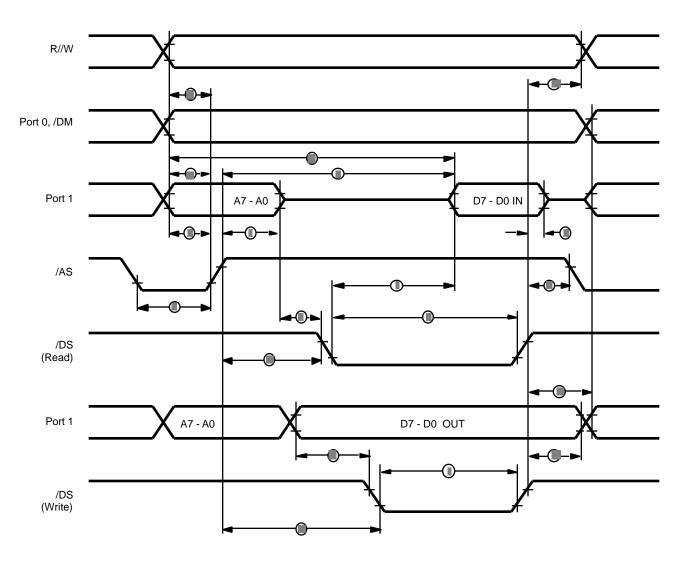


Figure 9. External I/O or Memory Read/Write

PRELIMINARY PS003501-0301

External I/O or Memory Read and Write Timing Z86C61/62/96 (20 MHz)

			$T_A = 0^{\circ}C$	to +70°C	T _A = -40°C	to +105°C		
				20 MHz		20 MHz		
No	Sym	Parameter	Min	Max	Min	Max	Units	Notes
1	TdA(AS)	Address Valid to /AS rise Delay	15		25		ns	2,3
2	TdAS(A)	/AS rise to Address Float Delay	25		35		ns	2,3
3	TdAS(DR)	/AS rise to Read Data Req'd Valid		120		120	ns	1,2,3
4	TwAS	/AS Low Width	30		30		ns	2,3
5	TdAZ(DS)	Address Float to /DS fall	0		0		ns	
6	TwDSR	/DS (Read) Low Width		105		105	ns	1,2,3
7	TwDSW	/DS (Write) Low Width	65		65		ns	1,2,3
8	TdDSR(DR)	/DS fall to Read Data Req'd Valid	55		55		ns	1,2,3
9	ThDR(DS)	Read Data to /DS rise Hold Time	0		0		ns	2,3
10	TdDS(A)	/DS rise to Address Active Delay	40		40		ns	2,3
11	TdDS(AS)	/DS rise to /AS fall Delay	25		25		ns	2,3
12	TdR/W(AS)	R//W Valid to /AS rise Delay	20		20		ns	2,3
13	TdDS(R/W)	/DS rise to R//W Not Valid	25		25		ns	2,3
14	TdDW(DSW)	Write Data Valid to /DS fall (Write) Delay	20		20		ns	2,3
15	TdDS(DW)	/DS rise to Write Data Not Valid Delay	25		25		ns	2,3
16	TdA(DR)	Address Valid to Read Data Req'd Valid		150		150	ns	1,2,3
17	TdAS(DS)	/AS rise to /DS fall Delay	35		35		ns	2,3
18	TdDM(AS)	/DM Valid to /AS rise Delay	15		15		ns	2,3

Notes:

1. When using extended memory timing add 2 TpC.

2. Timing numbers given are for minimum TpC.

3. See clock cycle dependent characteristics table.

Additional Timing Diagram

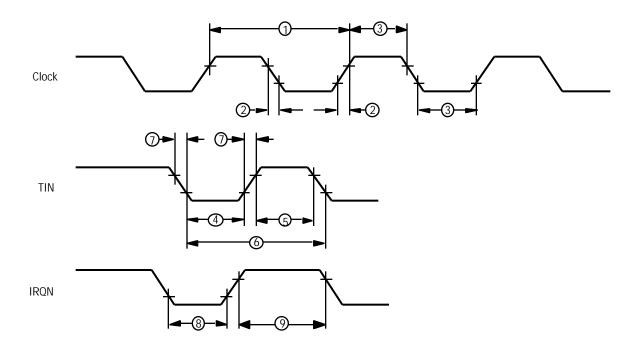
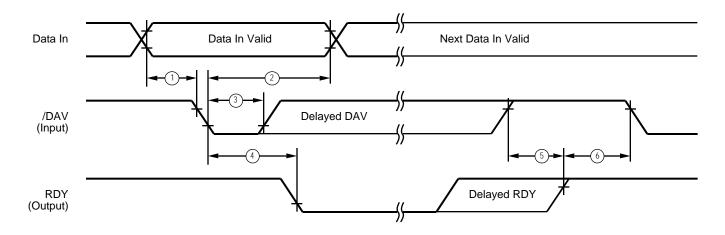
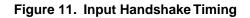




Figure 10. Additional Timing

Handshake Timing Diagrams

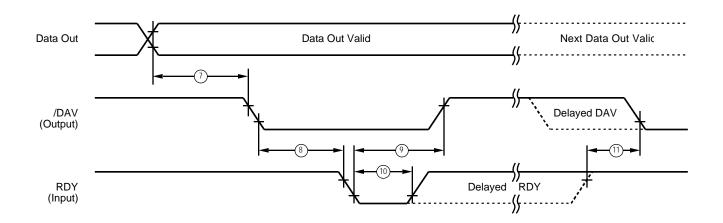


Figure 12. Output Handshake Timing

Handshake Timing Table Z86C61/62/96

				C to +70°C	T _A = −40°C to +105°C		
			20/1	6 MHz	20/16	MHZ	Data
No	Symbol	Parameter	Min	Max	Min	Max	Direction
1	TsDI(DAV)	Data In Setup Time	0		0		IN
2	ThDI(DAV)	Data In Hold Time	145		145		IN
3	TwDAV	Data Available Width	110		110		IN
4	TdDAVI(RDY)	DAV fall to RDY fall Delay	115		115		IN
5	TdDAVId(RDY)	DAV rise to RDY rise Delay	115		115		IN
6	TdRDY0(DAV)	RDY rise to DAV fall Delay	0		0		IN
7	TdDO(DAV)	Data Out to DAV fall Delay	ТрС		ТрС		OUT
8	TdDAV0(RDY)	DAV fall to RDY fall Delay	0		0		OUT
9	TdRDY0(DAV)	RDY fall to DAV rise Delay	115		115		OUT
10	TwRDY	RDY Width	110		110		OUT
11	TdRDY0d(DAV)	RDY rise to DAV fall Delay	115		115		OUT

PIN FUNCTIONS (Continued)

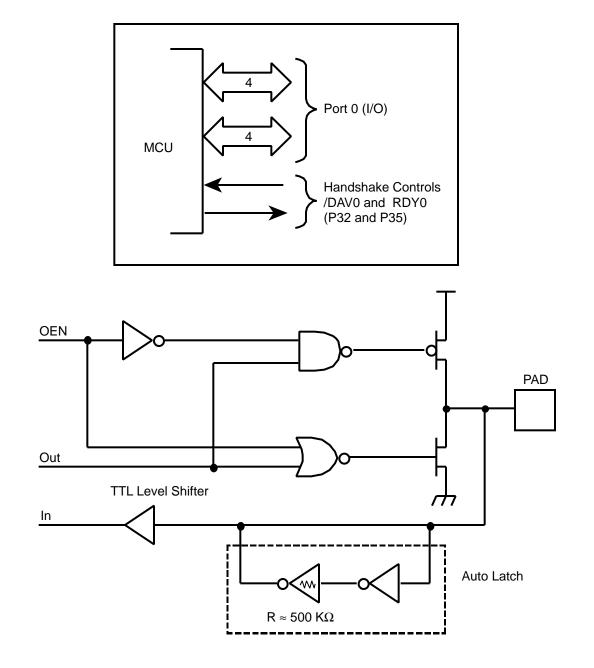


Figure 13. Port 0 Configuration

Port 1 (P17-P10). Port 1 is an 8-bit, byte programmable, bidirectional, TTL compatible port. It has multiplexed Address (A7-A0) and Data (D7-D0) ports. For Z86C61/62/96, these eight I/O lines can be programmed as Input or Output lines or can be configured under software control as an address/data port for interfacing external memory. When used as an I/O port, Port 1 may be placed under handshake control. In this configuration, Port 3 line P33 and P34 are used as the handshake controls RDY1 and /DAV1.

Memory locations greater than 16,384 are referenced through Port 1. To interface external memory, Port 1 must be programmed for the multiplexed Address/Data mode. If more than 256 external locations are required, Port 0 must output the additional lines.

Port 1 can be placed in high-impedance state along with Port 0, /AS, /DS, and R//W, allowing the microcontroller to share common resources in multiprocessor and DMA applications. Data transfers can be controlled by assigning P33 as a Bus Acknowledge input, and P34 as a Bus request output (Figure 14).

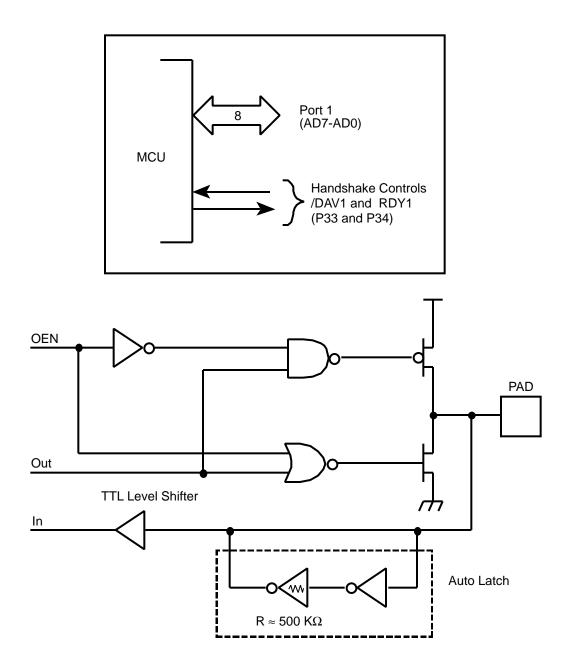


Figure 14. Port 1 Configuration

Port 2 (P27-P20). Port 2 is an 8-bit, bit programmable, bidirectional, CMOS-compatible port. Each of these eight I/O lines can be independently programmed as an input or output or globally as an open-drain output. Port 2 is always available for I/O operation. When used as an I/O port, Port 2 may be placed under handshake control. In this configuration, Port 3 lines P31 and P36 are used as the handshake control lines /DAV2 and RDY2. The handshake signal assignment for Port 3 lines P31 and P36 is dictated by the direction (input or output) assigned to P27 (Figure 15).

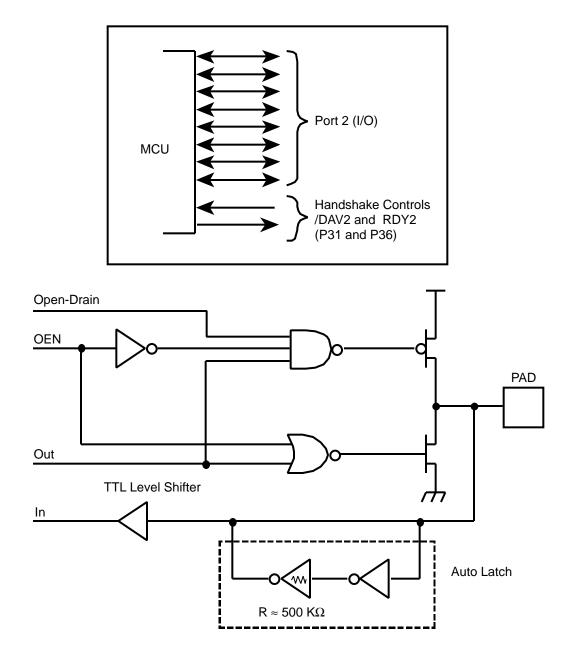


Figure 15. Port 2 Configuration

Port 3 (P37-P30). Port 3 is an 8-bit, CMOS-compatible four-fixed input and four-fixed output port. These eight I/O lines have four-fixed (P33-P30) input and four-fixed (P37-

P34) output ports. Port 3, when used as serial I/O, are programmed as serial in and serial out, respectively (Figure 16).

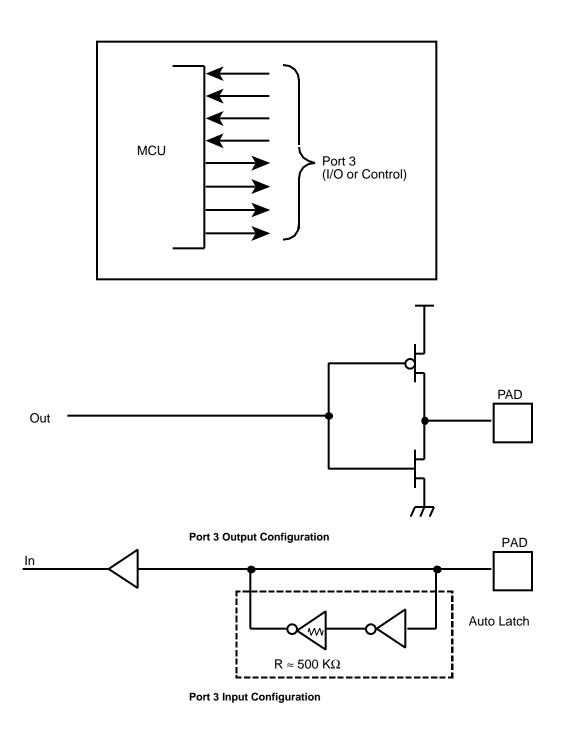


Figure 16. Port 3 Configuration

PIN FUNCTIONS (Continued)

Port 3 can be configured under software control to provide the following control functions: handshake for Ports 0 and 2 (/DAV and RDY); four external interrupt request signals (IRQ3-IRQ0); timer input and output signals (T_{IN} and T_{OUT}), and Data Memory Select (/DM).

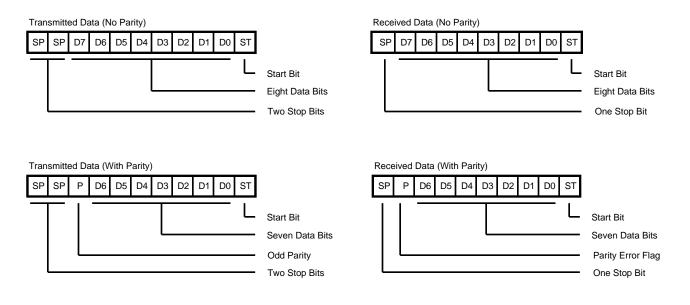
Pin	I/O	CTC1	Int.	P0 HS	P1 HS	P2 HS	UART	Ext
P30	IN		IRQ3				Serial In	
P31	IN	T _{IN}	IRQ2			D/R		
P32	IN		IRQ0	D/R				
P33	IN		IRQ1		D/R			
P34	OUT				R/D			DM
P35	OUT			R/D				
P36	OUT	T _{OUT}				R/D		
P37	OUT						Serial Out	
T0			IRQ4					
T1			IRQ5					

Table 6. Port 3 Pin Assignments

Notes:

HS = Handshake Signals

D = Data Available


R = Ready

Uart Operation

Port 3 lines P30 and P37, can be programmed as serial I/O lines for full-duplex serial asynchronous receiver/transmitter operation. The bit rate is controlled by the Counter/Timer0.

The Z86C61/62/96 automatically adds a start bit and two stop bits to transmitted data (Figure 17). Odd parity is also available as an option. Eight data bits are always transmitted, regardless of parity selection. If parity is enabled, the eighth bit is the odd parity bit. An interrupt request (IRQ4) is generated on all transmitted characters. Received data must have a start bit, eight data bits and at least one stop bit. If parity is on, bit 7 of the received data is replaced by a parity error flag. Received characters generate the IRQ3 interrupt request.

Note: UART function is only available in standard timing mode (i.e., P01M D5 = 0).

PIN FUNCTIONS (Continued)

Port 4 (P47-P40). Port 4 is an 8-bit, bit programmable, bidirectional, CMOS-compatible port. Each of these eight I/O lines can be independently programmed as an input or output or globally as an open-drain output. Port 4 is always available for I/O operation (Figure 18). Port address (F)02.

Port 5 (P57-P50). Same as Port 4. Port address (F)04.

Open-Drain

OEN

Out

In

MCU

TTL Level Shifter

Port 6 (P63-P60). Same as Port 4. (Note: this is a 4-bit port, bits D3-D0.) Port address (F)07.

Auto Latch. The Auto Latch puts valid CMOS levels on all CMOS inputs that are not externally driven. This reduces excessive supply current flow in the input buffer when it is not being driven by any source.

PAD

Auto Latch

Port 4 (I/O)

 $R \approx 500 \text{ K}\Omega$

Figure 18. Port 4 Configuration

FUNCTIONAL DESCRIPTION (Continued)

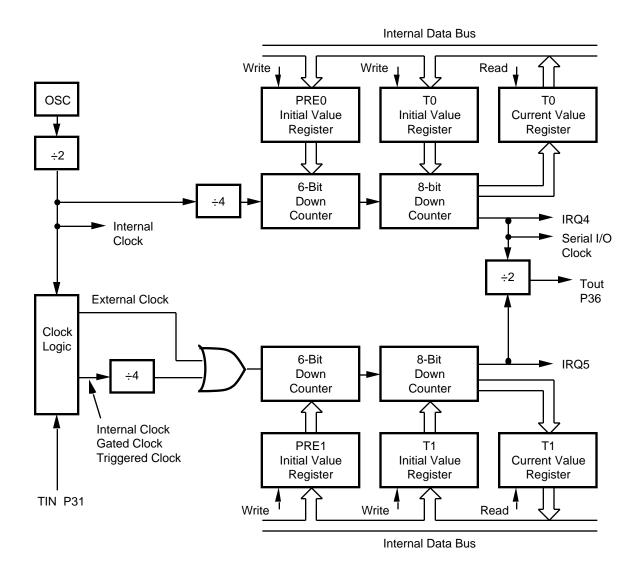


Figure 25. Counter/Timer Block Diagram

Zilog

Interrupts. The Z86C61/62/96 has six different interrupts from eight different sources. The interrupts are maskable and prioritized. The eight sources are divided as follows: four sources are claimed by Port 3 lines P33-P30, one in Serial Out, one is Serial In, and two in the counter/timers (Figure 26). The Interrupt Mask Register globally or individually enables or disables the six interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register. All Z86C61/62/96 interrupts are vectored through locations in the program memory. When an interrupt machine cycle is activated, an interrupt request is granted. Thus, this disables all of the subsequent interrupts, saves the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request.

To accommodate polled interrupt systems, interrupt inputs are masked and the Interrupt Request register is polled to determine which of the interrupt requests need service. Software initialed interrupts are supported by setting the appropriate bit in the Interrupt Request Register (IRQ).

Internal interrupt requests are sampled on the falling edge of the last cycle of every instruction. The interrupt request must be valid 5TpC before the falling edge of the last clock cycle of the currently executing instruction.

For the ROMless mode, when the device samples a valid interrupt request, the next 48 (external) clock cycles are used to prioritize the interrupt, and push the two PC bytes and the FLAG register onto the stack. The following nine cycles are used to fetch the interrupt vector from external memory. The first byte of the interrupt service routine is fetched beginning on the 58th TpC cycle following the internal sample point, which corresponds to the 63rd TpC cycle following the external interrupt sample point.

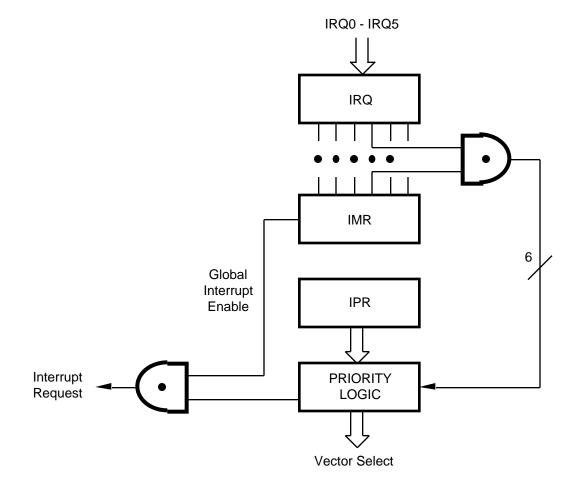
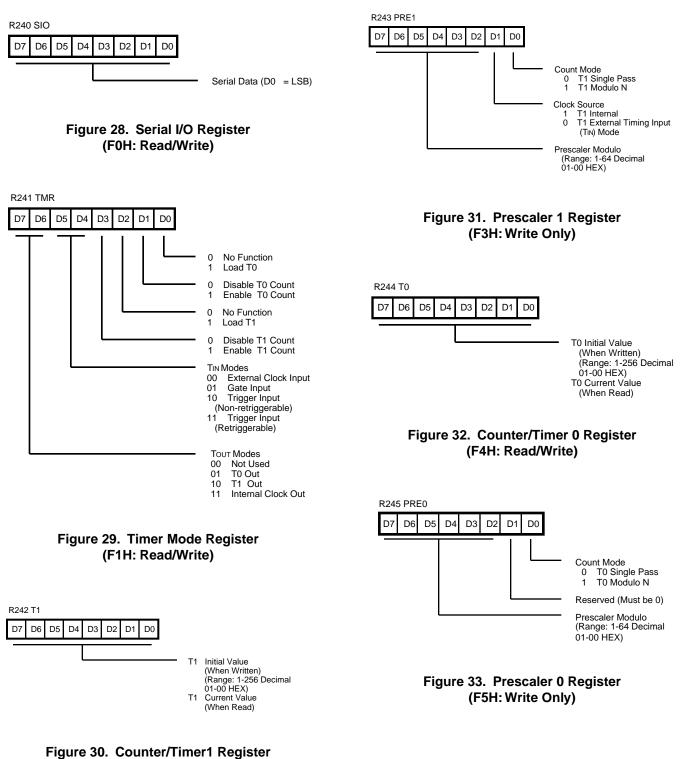



Figure 26. Interrupt Block Diagram

Z8 CONTROL REGISTER DIAGRAMS

(F2H: Read/Write)

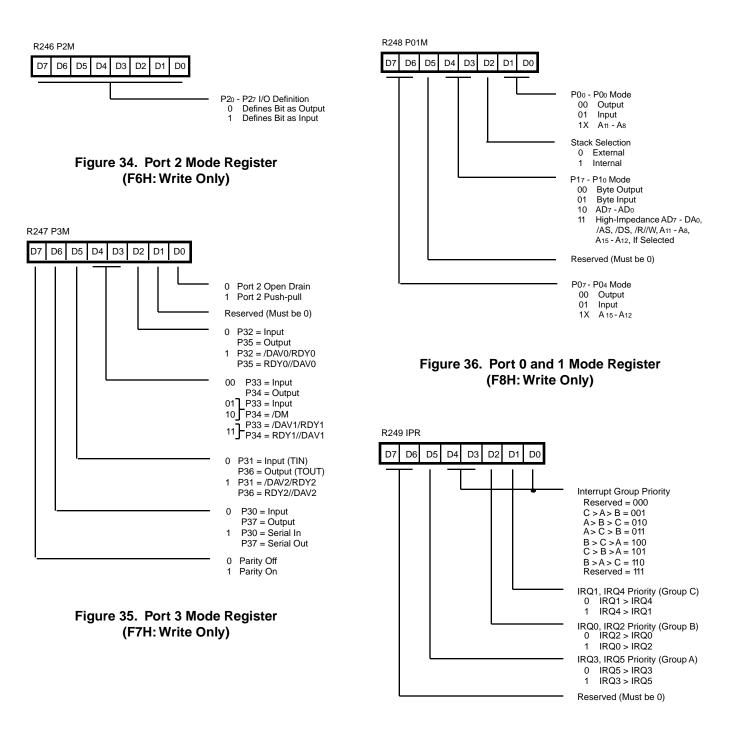


Figure 37. Interrupt Priority Register (F9H: Write Only)

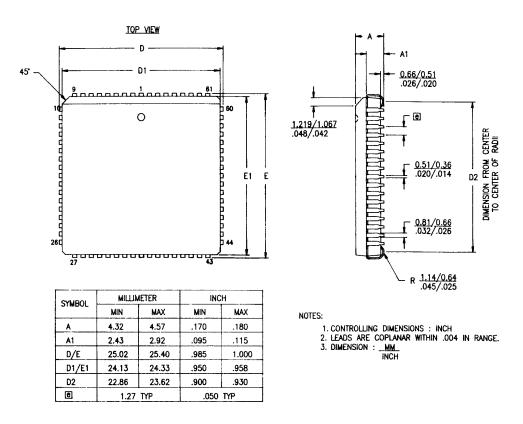


Figure 55. 68-Pin PLCC Package Diagram