
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	12
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	16-VQFN Exposed Pad
Supplier Device Package	16-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f630-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (see Table 2-1). These registers are static RAM.

The special registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the "core" are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

FIGURE 2-2: DATA MEMORY MAP OF THE PIC16F630/676

	THEF	PIC16F630/676	
	File Address	A	File ddress
Indirect addr. ⁽¹⁾	00h	Indirect addr. ⁽¹⁾	80h
TMR0	01h	OPTION_REG	81h
PCL	02h	PCL	82h
STATUS	03h	STATUS	83h
FSR	04h	FSR	84h
PORTA	05h	TRISA	85h
	06h	-	86h
PORTC	07h	TRISC	87h
	08h	-	88h
	09h		89h
PCLATH	0Ah	PCLATH	8Ah
INTCON	0Bh	INTCON	8Bh
PIR1	0Ch	PIE1	8Ch
	0Dh		8Dh
TMR1L	0Eh	PCON	8Eh
TMR1H	0Fh		8Fh
T1CON	10h	OSCCAL	90h
TICON	11h	ANSEL ⁽²⁾	91h
	12h	THOLE	92h
	13h	-	93h
	14h		94h
	15h	WPUA	95h
	16h	IOCA	96h
	17h	IOCA	97h
	18h		98h
CMCON	19h	VRCON	99h
CINCON	1Ah	EEDAT	9Ah
	1Bh	EEADR	9Bh
	1Ch	EECON1	9Ch
	1Dh	EECON2 ⁽¹⁾	9Dh
ADRESH ⁽²⁾	1Eh	ADRESL ⁽²⁾	9Eh
ADCON0 ⁽²⁾	1Fh	ADCON1 ⁽²⁾	9Fh
ADCONU	20h	ADCONT	A0h
General Purpose Registers 64 Bytes	2011	accesses 20h-5Fh	
	5Fh		DFh
	60h		E0h
	001		Lon
	7Fh	_	FFh
Bank 0		Bank 1	
Unimplemente1: Not a physical2: PIC16F676 on	register.	mory locations, rea	d as '0'.

2.2.2.2 OPTION Register

The OPTION register is a readable and writable register, which contains various control bits to configure:

- TMR0/WDT prescaler
- External RA2/INT interrupt
- TMR0
- Weak pull-ups on PORTA

REGISTER 2-2: OPTION_REG — OPTION REGISTER (ADDRESS: 81h)

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
	RAPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	
	bit 7							bit 0	
bit 7			ip Enable bit						
			are disabled are enabled l	oy individual	PORT latch	values			
bit 6		· ·	lge Select bi	•		Valueo			
Site			edge of RA						
	0 = Interru	pt on falling	g edge of RA	2/INT pin					
bit 5			Source Selec	t bit					
			2/T0CKI pin n cycle clock						
bit 4			Edge Select	· ,					
				sition on RA2	2/T0CKI pin				
	0 = Increm	nent on low	-to-high trans	sition on RA2	2/T0CKI pin				
bit 3		scaler Assig							
			ned to the V aned to the T	imer0 modul	e				
bit 2-0			Rate Select I		-				
		Bit Value	TMR0 Rate	WDT Rate					
		000	1:2	1:1					
		001	1:4	1:2					
		010	1:8	1:4					
	011 1:16 1:8 100 1:32 1:16								
	101 1:64 1:32								
	110 1:128 1:64								
	111 1:256 1:128								
	· ·]	
	Legend:								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Note: To achieve a 1:1 prescaler assignment for TMR0, assign the prescaler to the WDT by setting PSA bit to '1' (OPTION<3>). See Section 4.4 "Prescaler".

2.2.2.5 PIR1 Register

bit

bit

bit bit

bit bit

The PIR1 register contains the interrupt flag bits, as shown in Register 2-5.

- n = Value at POR

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-5: PIR1 — PERIPHERAL INTERRUPT REGISTER 1 (ADDRESS: 0Ch)

	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	U-0	R/W-0			
	EEIF	ADIF		_	CMIF	_	_	TMR1IF			
	bit 7							bit 0			
t 7	1 = The wr	ROM Write (ite operation ite operation	completed	(must be cle	eared in soft	,					
t 6	1 = The A/	ADIF: A/D Converter Interrupt Flag bit (PIC16F676 only) 1 = The A/D conversion is complete (must be cleared in software) 0 = The A/D conversion is not complete									
t 5-4	Unimplem	ented: Read	l as '0'								
t 3	CMIF : Comparator Interrupt Flag bit 1 = Comparator input has changed (must be cleared in software)										
t 2-1	Unimplem	ented: Read	l as '0'								
t 0	1 = TMR1	 1 = Comparator input has changed (must be cleared in software) 0 = Comparator input has not changed Unimplemented: Read as '0' TMR1IF: TMR1 Overflow Interrupt Flag bit 1 = TMR1 register overflowed (must be cleared in software) 0 = TMR1 register did not overflow 									
	Legend:										
	R = Reada	ble bit	W = W	/ritable bit	U = Unim	plemented	bit, read as '	0'			

'0' = Bit is cleared

'1' = Bit is set

x = Bit is unknown

2.2.2.6 PCON Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- · Power-on Reset (POR)
- Brown-out Detect (BOD)
- Watchdog Timer Reset (WDT)
- External MCLR Reset

The PCON Register bits are shown in Register 2-6.

REGISTER 2-6: PCON — POWER CONTROL REGISTER (ADDRESS: 8Eh)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-x
_	_	_	—	_	-	POR	BOD
bit 7							bit 0

bit 7-2 Unimplemented: Read as '0'

bit 1 **POR:** Power-on Reset Status bit

1 = No Power-on Reset occurred

0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)

bit 0 BOD: Brown-out Detect Status bit

- 1 = No Brown-out Detect occurred
- 0 = A Brown-out Detect occurred (must be set in software after a Brown-out Detect occurs)

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

2.2.2.7 OSCCAL Register

bit 7-2

bit 1-0

The Oscillator Calibration register (OSCCAL) is used to calibrate the internal 4 MHz oscillator. It contains 6 bits to adjust the frequency up or down to achieve 4 MHz.

The OSCCAL register bits are shown in Register 2-7.

REGISTER 2-7: OSCCAL—INTERNALOSCILLATOR CALIBRATION REGISTER (ADDRESS: 90h)

							-
R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	_	_
bit 7							bit
100000 = 0	Maximum fro Center frequ Minimum fre	iency					
Unimplem	ented: Read	d as '0'					
Legend:							
R = Reada	ble bit	W = W	ritable bit	U = Unin	nplemented	bit, read as '	ʻ0'
- n = Value	at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is u	nknown

4.0 TIMER0 MODULE

The Timer0 module timer/counter has the following features:

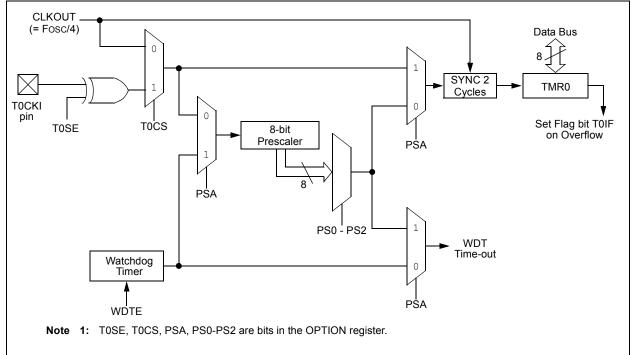
- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- · Interrupt on overflow from FFh to 00h
- Edge select for external clock

Figure 4-1 is a block diagram of the Timer0 module and the prescaler shared with the WDT.

Note:	Additional	information	on	the	Timer0		
	module is available in the PIC [®] Mid-Range						
	Reference Manual, (DS33023).						

4.1 Timer0 Operation

Timer mode is selected by clearing the T0CS bit (OPTION_REG<5>). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If TMR0 is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.


Counter mode is selected by setting the T0CS bit (OPTION_REG<5>). In this mode, the Timer0 module will increment either on every rising or falling edge of pin RA2/T0CKI. The incrementing edge is determined by the source edge (T0SE) control bit (OPTION_REG<4>). Clearing the T0SE bit selects the rising edge.

Note:	requirements.	Additional	ic external clock information on lable in the PIC [®]
	Mid-Range (DS33023).	Reference	ce Manual,

4.2 Timer0 Interrupt

A Timer0 interrupt is generated when the TMR0 register timer/counter overflows from FFh to 00h. This overflow sets the T0IF bit. The interrupt can be masked by clearing the T0IE bit (INTCON<5>). The T0IF bit (INTCON<2>) must be cleared in software by the Timer0 module Interrupt Service Routine before reenabling this interrupt. The Timer0 interrupt cannot wake the processor from Sleep since the timer is shut-off during Sleep.

5.1 Timer1 Modes of Operation

Timer1 can operate in one of three modes:

- 16-bit timer with prescaler
- 16-bit synchronous counter
- · 16-bit asynchronous counter

FIGURE 5-2:

In Timer mode, Timer1 is incremented on every instruction cycle. In Counter mode, Timer1 is incremented on the rising edge of the external clock input T1CKI. In addition, the Counter mode clock can be synchronized to the microcontroller system clock or run asynchronously.

In counter and timer modules, the counter/timer clock can be gated by the $\overline{T1G}$ input.

If an external clock oscillator is needed (and the microcontroller is using the INTOSC w/o CLKOUT), Timer1 can use the LP oscillator as a clock source.

Note:	In Counter mode, a falling edge must be					
	registered by the counter prior to the first					
	incrementing rising edge.					

TIMER1 INCREMENTING EDGE

5.2 Timer1 Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit (PIR1<0>) is set. To enable the interrupt on rollover, you must set these bits:

- Timer1 interrupt Enable bit (PIE1<0>)
- PEIE bit (INTCON<6>)
- GIE bit (INTCON<7>).

The interrupt is cleared by clearing the TMR1IF in the Interrupt Service Routine.

Note: The TMR1H:TTMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.

5.3 Timer1 Prescaler

Timer1 has four prescaler options allowing 1, 2, 4, or 8 divisions of the clock input. The T1CKPS bits (T1CON<5:4>) control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.

T1CKI = 1 when TMR1 Enabled T1CKI = 0 when TMR1 Enabled Note 1: Arrows indicate counter increments. 2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of the clock.

SISTER 5-1: T1CON — TIMER1 CONTROL REGISTER (ADDRESS: 10h)										
	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	—	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N		
	bit 7							bit 0		
bit 7	Unimplem	ented: Read	as '0'							
bit 6	-	Timer1 Gate								
	If TMR10									
	This bit is i If TMR10N									
		is on if T1G	pin is low							
	0 = Timer1									
bit 5-4		:T1CKPS0: T	•	t Clock Pres	scale Select I	oits				
	-	rescale Value rescale Value								
		rescale Value								
	00 = 1:1 P	rescale Value	9							
bit 3		: LP Oscillato								
		If INTOSC without CLKOUT oscillator is active: 1 = LP oscillator is enabled for Timer1 clock								
		illator is off								
	<u>Else:</u> This hit is i	aparad								
bit 2	This bit is i	gnored Timer1 Exteri	aal Clock I	nnut Synchr	onization Co	atrol bit				
DIL Z	TMR1CS =			iiput Synchii						
	1 = Do not synchronize external clock input									
	0 = Synchronize external clock input <u>TMR1CS = 0:</u>									
		<u>gnored</u> . Time	er1 uses th	e internal clo	ock.					
bit 1	TMR1CS:	Timer1 Clock	Source S	elect bit						
		al clock from		1CKI pin (on	the rising ed	lge)				
h# 0		al clock (Fosc	-							
bit 0	1 = Enable	Timer1 On b s Timer1	IL							
	0 = Stops	Timer1								
	Legend:									
	R = Reada	able bit	VV = V	Vritable bit	U = Unim	plemented	bit, read as	'0'		
	- n = Value	e at POR	'1' = E	Bit is set	'0' = Bit is	s cleared	x = Bit is u	Inknown		

REGISTER 5-1: T1CON — TIMER1 CONTROL REGISTER (ADDRESS: 10h)

	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	ADFM	VCFG	_	CHS2	CHS1	CHS0	GO/DONE	ADON
	bit 7							bit 0
bit 7	ADFM: A/E 1 = Right ju 0 = Left jus		med Select	bit				
bit 6		VCFG: Voltage Reference bit 1 = VREF pin						
bit 5	Unimplem	ented: Rea	d as zero					
bit 4-2	000 = Cha 001 = Cha 010 = Cha 011 = Cha 100 = Cha 101 = Cha 110 = Cha	60: Analog (annel 00 (AN annel 01 (AN annel 02 (AN annel 03 (AN annel 04 (AN annel 05 (AN annel 06 (AN annel 07 (AN	NO) N1) N2) N3) N4) N5) N6)	ect bits				
bit 1	GO/DONE 1 = A/D co This bit	A/D Conve	rsion Status cle in progre cally cleared	ss. Setting f d by hardwa			nversion cycle rsion has com	
bit 0	1 = A/D co	D Conversio nverter mod nverter is sh	ule is opera	-	o operating o	current		
	Logond							
	Legend:	blo bit	۱۵/ – ۱۸	<i>I</i> ritabla bit		nnlomontor	hit road as '()'
	R = Reada			/ritable bit		•	l bit, read as '(
	-			/ritable bit it is set		nplemented is cleared	l bit, read as '(x = Bit is ur	
REGISTER 7-2:	R = Reada - n = Value	at POR	'1' = B	it is set	'0' = Bit	is cleared		
REGISTER 7-2:	R = Reada - n = Value ADCON1 ·	at POR — A/D CO	'1' = B	it is set EGISTER 1	'0' = Bit	is cleared	x = Bit is ur	iknown
REGISTER 7-2:	R = Reada - n = Value	at POR — A/D CO R/W-0	'1' = B NTROL RE R/W-0	it is set EGISTER 1 R/W-0	'0' = Bit	is cleared		
REGISTER 7-2:	R = Reada - n = Value ADCON1 - U-0 —	at POR — A/D CO	'1' = B	it is set EGISTER 1	'0' = Bit	is cleared	x = Bit is ur	U-0
REGISTER 7-2:	R = Reada - n = Value ADCON1 ·	at POR — A/D CO R/W-0	'1' = B NTROL RE R/W-0	it is set EGISTER 1 R/W-0	'0' = Bit	is cleared	x = Bit is ur	iknown
	R = Reada - n = Value ADCON1 - U-0 bit 7	at POR — A/D CO R/W-0 ADCS2	'1' = B NTROL RE R/W-0 ADCS1	it is set EGISTER 1 R/W-0	'0' = Bit	is cleared	x = Bit is ur	U-0
bit 7:	R = Reada - n = Value ADCON1 - U-0 bit 7 Unimplem	at POR – A/D CO R/W-0 ADCS2 ented: Rea	'1' = B NTROL RI R/W-0 ADCS1 d as '0'	it is set EGISTER 1 R/W-0 ADCS0	'0' = Bit i I (ADRESS U-0 —	is cleared	x = Bit is ur	U-0
	R = Reada - n = Value ADCON1 - U-0 bit 7 Unimplem ADCS<2:0	at POR — A/D CO R/W-0 ADCS2 ented: Read	'1' = B NTROL RI R/W-0 ADCS1 d as '0'	it is set EGISTER 1 R/W-0 ADCS0	'0' = Bit i I (ADRESS U-0 —	is cleared	x = Bit is ur	U-0
bit 7:	R = Reada - n = Value ADCON1 - U-0 bit 7 Unimplem	at POR — A/D CO R/W-0 ADCS2 ented: Read >: A/D Conv c/2 c/8	'1' = B NTROL RI R/W-0 ADCS1 d as '0'	it is set EGISTER 1 R/W-0 ADCS0	'0' = Bit i I (ADRESS U-0 —	is cleared	x = Bit is ur	U-0
bit 7:	R = Reada - n = Value ADCON1 - U-0 bit 7 Unimplem ADCS<2:0 000 = Fos 001 = Fos 010 = Fos x11 = FRC 100 = Fos	at POR — A/D CO R/W-0 ADCS2 ented: Read >: A/D Conv c/2 c/8 c/32 (clock derive c/4 c/16	'1' = B NTROL RI R/W-0 ADCS1 d as '0' version Cloc	it is set EGISTER 1 R/W-0 ADCS0	'0' = Bit i I (ADRESS U-0 —	6: 9Fh) U-0	x = Bit is ur U-0	U-0
bit 7: bit 6-4:	R = Reada - n = Value ADCON1 - U-0 bit 7 Unimplem ADCS<2:0 000 = Fos 001 = Fos 010 = Fos 100 = Fos 101 = Fos	at POR — A/D CO R/W-0 ADCS2 ented: Read >: A/D Conv c/2 c/8 c/32 (clock deriv c/4 c/16 c/64	'1' = B NTROL RI R/W-0 ADCS1 d as '0' version Cloc ed from a d	it is set EGISTER 1 R/W-0 ADCS0	'0' = Bit i I (ADRESS U-0 —	6: 9Fh) U-0	x = Bit is ur U-0	U-0
bit 7:	R = Reada - n = Value ADCON1 - U-0 bit 7 Unimplem ADCS<2:0 000 = Fos 001 = Fos 010 = Fos 100 = Fos 101 = Fos	at POR — A/D CO R/W-0 ADCS2 ented: Read >: A/D Conv c/2 c/8 c/32 (clock derive c/4 c/16	'1' = B NTROL RI R/W-0 ADCS1 d as '0' version Cloc ed from a d	it is set EGISTER 1 R/W-0 ADCS0	'0' = Bit i I (ADRESS U-0 —	6: 9Fh) U-0	x = Bit is ur U-0	U-0
bit 7: bit 6-4:	R = Reada - n = Value ADCON1 - U-0 bit 7 Unimplem ADCS<2:0 000 = Fos 010 = Fos 010 = Fos 110 = Fos 101 = Fos 110 = Fos	at POR — A/D CO R/W-0 ADCS2 ented: Read >: A/D Conv c/2 c/8 c/32 (clock deriv c/4 c/16 c/64	'1' = B NTROL RI R/W-0 ADCS1 d as '0' version Cloc ed from a d	it is set EGISTER 1 R/W-0 ADCS0	'0' = Bit i I (ADRESS U-0 —	6: 9Fh) U-0	x = Bit is ur U-0	U-0
bit 7: bit 6-4:	R = Reada - n = Value ADCON1 - U-0 bit 7 Unimplem ADCS<2:0 000 = Fos 001 = Fos 010 = Fos 100 = Fos 101 = Fos 101 = Fos 101 = Fos	at POR — A/D CO R/W-0 ADCS2 ented: Read >: A/D Conv C/2 C/8 C/32 (clock deriv C/4 C/16 C/64 ented: Read	'1' = B NTROL RI R/W-0 ADCS1 d as '0' version Cloc ed from a d	it is set EGISTER 1 R/W-0 ADCS0	'0' = Bit i I (ADRESS U-0 —	s: 9Fh) U-0	x = Bit is ur U-0 	U-0
bit 7: bit 6-4:	R = Reada - n = Value ADCON1 - U-0 bit 7 Unimplem ADCS<2:0 000 = Fos 010 = Fos 010 = Fos 110 = Fos 101 = Fos 110 = Fos	at POR — A/D CO R/W-0 ADCS2 ented: Read >: A/D Conv C/2 C/8 C/32 (clock deriv C/4 C/16 C/64 ented: Read	'1' = B NTROL RI R/W-0 ADCS1 d as '0' version Cloc ed from a d	it is set EGISTER 1 R/W-0 ADCS0 k Select bits edicated inte	'0' = Bit i I (ADRESS U-0 —	s: 9Fh) U-0 	x = Bit is ur U-0	U-0 — bit 0

REGISTER 7-1: ADCON0 — A/D CONTROL REGISTER (ADDRESS: 1Fh)

7.3 A/D Operation During Sleep

The A/D converter module can operate during Sleep. This requires the A/D clock source to be set to the internal oscillator. When the RC clock source is selected, the A/D waits one instruction before starting the conversion. This allows the SLEEP instruction to be executed, thus eliminating much of the switching noise from the conversion. When the conversion is complete, the GO/DONE bit is cleared, and the result is loaded into the ADRESH:ADRESL registers. If the A/D interrupt is enabled, the device awakens from Sleep. If the A/D interrupt is not enabled, the A/D module is turned off, although the ADON bit remains set. When the A/D clock source is something other than RC, a SLEEP instruction causes the present conversion to be aborted, and the A/D module is turned off. The ADON bit remains set.

7.4 Effects of Reset

A device Reset forces all registers to their Reset state. Thus, the A/D module is turned off and any pending conversion is aborted. The ADRESH:ADRESL registers are unchanged.

IADLL				DIVEOR							
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Value on all other Resets
05h	PORTA	—	—	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	xx xxxx	uu uuuu
07h	PORTC	—	_	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	xx xxxx	uu uuuu
0Bh, 8Bh	INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	0000 0000	0000 000u
0Ch	PIR1	EEIF	ADIF	—	_	CMIF	—	_	TMR1IF	00 00	00 00
1Eh	ADRESH	Most Signi	ficant 8 bits	of the Left	Shifted A/D	result or 2 l	bits of the R	light Shifted	Result	XXXX XXXX	uuuu uuuu
1Fh	ADCON0	ADFM	VCFG	—	CHS2	CHS1	CHS0	GO	ADON	00-0 0000	00-0 0000
85h	TRISA	—	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
87h	TRISC	—	_	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	11 1111	11 1111
8Ch	PIE1	EEIE	ADIE	—	_	CMIE	—	_	TMR1IE	00 00	00 00
91h	ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	1111 1111
9Eh	ADRESL	Least Sign	ificant 2 bits	s of the Left	Shifted A/D	Result or 8	3 bits of the	Right Shifte	ed Result	XXXX XXXX	uuuu uuuu
9Fh	ADCON1		ADCS2	ADCS1	ADCS0	_	—	_	—	-000	-000

TABLE 7-2: SUMMARY OF A/D REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D converter module.

9.0 SPECIAL FEATURES OF THE CPU

Certain special circuits that deal with the needs of real time applications are what sets a microcontroller apart from other processors. The PIC16F630/676 family has a host of such features intended to:

- maximize system reliability
- minimize cost through elimination of external components
- provide power-saving operating modes and offer code protection

These features are:

- Oscillator selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Detect (BOD)
- Interrupts
- Watchdog Timer (WDT)
- Sleep
- Code protection
- · ID Locations
- In-Circuit Serial Programming[™]

The PIC16F630/676 has a Watchdog Timer that is controlled by Configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in Reset while the power supply stabilizes. There is also circuitry to reset the device if a brown-out occurs, which can provide at least a 72 ms Reset. With these three functions on-chip, most applications need no external Reset circuitry.

The Sleep mode is designed to offer a very low current Power-down mode. The user can wake-up from Sleep through:

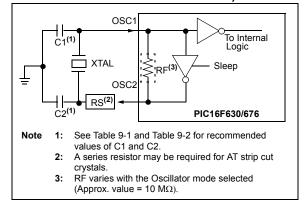
- · External Reset
- · Watchdog Timer wake-up
- An interrupt

Several oscillator options are also made available to allow the part to fit the application. The INTOSC option saves system cost while the LP crystal option saves power. A set of Configuration bits are used to select various options (see Register 9-1).

9.2 Oscillator Configurations

9.2.1 OSCILLATOR TYPES

The PIC16F630/676 can be operated in eight different Oscillator Option modes. The user can program three Configuration bits (FOSC2 through FOSC0) to select one of these eight modes:


- LP Low-Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC External Resistor/Capacitor (2 modes)
- · INTOSC Internal Oscillator (2 modes)
- EC External Clock In

Note:	Additional information on oscillator config- urations is available in the PIC [®] Mid-Range
	Reference Manual, (DS33023).

9.2.2 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

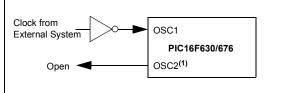

In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation (see Figure 9-1). The PIC16F630/676 oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may yield a frequency outside of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1 pin (see Figure 9-2).

FIGURE 9-1: CRYSTAL OPERATION (OR CERAMIC RESONATOR) (HS, XT OR LP OSC CONFIGURATION)

EXTERNAL CLOCK INPUT OPERATION (HS, XT, EC, OR LP OSC CONFIGURATION)

Note 1: Functions as RA4 in EC Osc mode.

TABLE 9-1:CAPACITOR SELECTION FOR
CERAMIC RESONATORS

Ranges Characterized:				
Mode	Freq	OSC1(C1)	OSC2(C2)	
ХТ	455 kHz 2.0 MHz 4.0 MHz	68-100 pF 15-68 pF 15-68 pF	68-100 pF 15-68 pF 15-68 pF	
HS	8.0 MHz 16.0 MHz	10-68 pF 10-22 pF	10-68 pF 10-22 pF	
Note 1: Higher capacitance increases the stability of the oscillator but also increases the start-up time. These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.				

TABLE 9-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR

Mode	Freq	OSC1(C1)	OSC2(C2)
LP	32 kHz	68-100 pF	68-100 pF
ХТ	100 kHz 2 MHz 4 MHz	68-150 pF 15-30 pF 15-30 pF	150-200 pF 15-30 pF 15-30 pF
HS	8 MHz 10 MHz 20 MHz	15-30 pF 15-30 pF 15-30 pF	15-30 pF 15-30 pF 15-30 pF
Note 1: Higher capacitance increases the stability			

of the oscillator but also increases the start-up time. These values are for design guidance only. Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

9.8 Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note: The entire data EEPROM and Flash program memory will be erased when the code protection is turned off. The INTOSC calibration data is also erased. See PIC16F630/676 Programming Specification for more information.

9.9 ID Locations

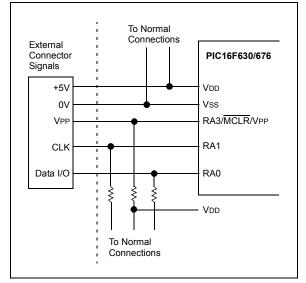
Four memory locations (2000h-2003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution but are readable and writable during Program/Verify. Only the Least Significant 7 bits of the ID locations are used.

9.10 In-Circuit Serial Programming

The PIC16F630/676 microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for:

- power
- ground
- programming voltage

This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.


The device is placed into a Program/Verify mode by holding the RA0 and RA1 pins low, while raising the MCLR (VPP) pin from VIL to VIHH (see Programming Specification). RA0 becomes the programming data and RA1 becomes the programming clock. Both RA0 and RA1 are Schmitt Trigger inputs in this mode.

After Reset, to place the device into Programming/Verify mode, the program counter (PC) is at location 00h. A 6-bit command is then supplied to the device. Depending on the command, 14 bits of program data are then supplied to or from the device, depending on whether the command was a load or a read. For complete details of serial programming, please refer to the PIC16F630/676 Programming Specification.

A typical In-Circuit Serial Programming connection is shown in Figure 9-14.

FIGURE 9-14:

TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

9.11 In-Circuit Debugger

Since in-circuit debugging requires the loss of clock, data and MCLR pins, MPLAB[®] ICD 2 development with an 14-pin device is not practical. A special 20-pin PIC16F676-ICD device is used with MPLAB ICD 2 to provide separate clock, data and MCLR pins and frees all normally available pins to the user.

This special ICD device is mounted on the top of the header and its signals are routed to the MPLAB ICD 2 connector. On the bottom of the header is an 14-pin socket that plugs into the user's target via the 14-pin stand-off connector.

When the ICD pin on the PIC16F676-ICD device is held low, the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB ICD 2. When the microcontroller has this feature enabled, some of the resources are not available for general use. Table 9-10 shows which features are consumed by the background debugger:

TABLE 9-10: DEBUGGER RESOURCES

I/O pins	ICDCLK, ICDDATA
Stack	1 level
Program Memory	Address 0h must be NOP 300h-3FEh

For more information, see 14-Pin MPLAB ICD 2 Header Information Sheet (DS51292) available on Microchip's web site (www.microchip.com).

MOVF	Move f
Syntax:	[<i>label</i>] MOVF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register f are moved to a destination dependant upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. d = 1 is useful to test a file register, since status flag Z is affected.

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.

MOVLW	Move Literal to W
Syntax:	[<i>label</i>] MOVLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k \rightarrow (W)$
Status Affected:	None
Description:	The eight-bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.

RETFIE	Return from Interrupt
Syntax:	[label] RETFIE
Operands:	None
Operation:	TOS \rightarrow PC, 1 \rightarrow GIE
Status Affected:	None

MOVWF	Move W to f
Syntax:	[<i>label</i>] MOVWF f
Operands:	$0 \leq f \leq 127$
Operation:	$(W) \rightarrow (f)$
Status Affected:	None
Description:	Move data from W register to register 'f'.

RETLW	Return with Literal in W
Syntax:	[<i>label</i>] RETLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$
Status Affected:	None
Description:	The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.

11.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows® programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

11.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

11.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

12.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings†

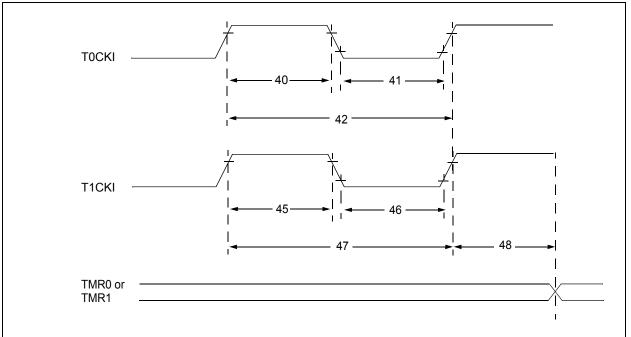
Ambient temperature under bias	40 to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3 to +6.5V
Voltage on MCLR with respect to Vss	0.3 to +13.5V
Voltage on all other pins with respect to Vss	0.3V to (VDD + 0.3V)
Total power dissipation ⁽¹⁾	
Maximum current out of Vss pin	
Maximum current into VDD pin	
Input clamp current, Iк (Vi < 0 or Vi > VDD)	± 20 mA
Output clamp current, loк (Vo < 0 or Vo >VDD)	± 20 mA
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	
Maximum current sunk by PORTA and PORTC (combined)	
Maximum current sourced PORTA and PORTC (combined)	

Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - Σ IOH} + Σ {(VDD-VOH) x IOH} + Σ (VOI x IOL).

† NOTICE: Stresses above those listed under 'Absolute Maximum Ratings' may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Note: Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the $\overline{\text{MCLR}}$ pin, rather than pulling this pin directly to Vss.

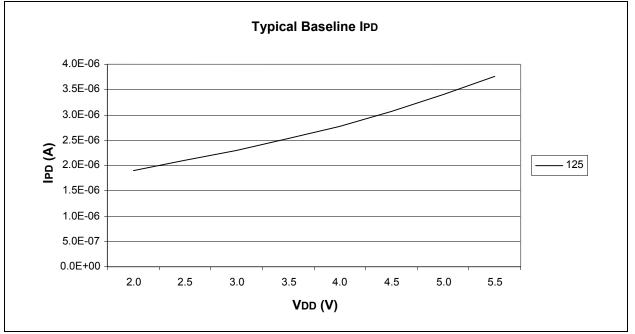
Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended									
Param	Device Characteristics	Min	Typ†	Max	Units	Conditions			
No.	Device Characteristics		турт			VDD	Note		
D010E	Supply Current (IDD)	-	9	16	μA	2.0	Fosc = 32 kHz		
		—	18	28	μA	3.0	LP Oscillator Mode		
		_	35	54	μA	5.0			
D011E		-	110	150	μA	2.0	Fosc = 1 MHz		
		_	190	280	μA	3.0	XT Oscillator Mode		
		_	330	450	μA	5.0			
D012E		-	220	280	μA	2.0	Fosc = 4 MHz		
		—	370	650	μA	3.0	XT Oscillator Mode		
		_	0.6	1.4	mA	5.0			
D013E		-	70	110	μA	2.0	Fosc = 1 MHz		
		—	140	250	μA	3.0	EC Oscillator Mode		
		—	260	390	μA	5.0			
D014E		—	180	250	μA	2.0	Fosc = 4 MHz		
		—	320	470	μA	3.0	EC Oscillator Mode		
		—	580	850	μA	5.0			
D015E		—	340	450	μA	2.0	Fosc = 4 MHz		
		—	500	780	μA	3.0	INTOSC Mode		
		—	0.8	1.1	mA	5.0			
D016E			180	250	μA	2.0	Fosc = 4 MHz		
		_	320	450	μA	3.0	EXTRC Mode		
		_	580	800	μA	5.0			
D017E		_	2.1	2.95	mA	4.5	Fosc = 20 MHz		
		_	2.4	3.0	mA	5.0	HS Oscillator Mode		

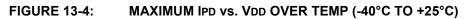

12.4 DC Characteristics: PIC16F630/676-E (Extended)

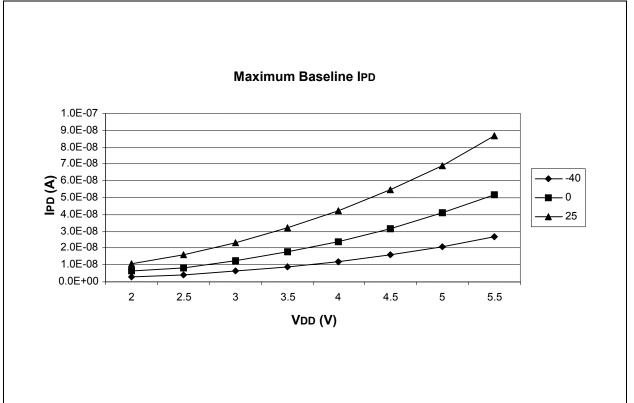
† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

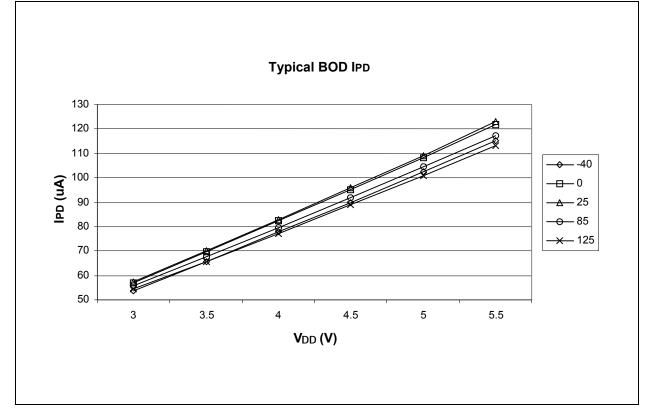
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

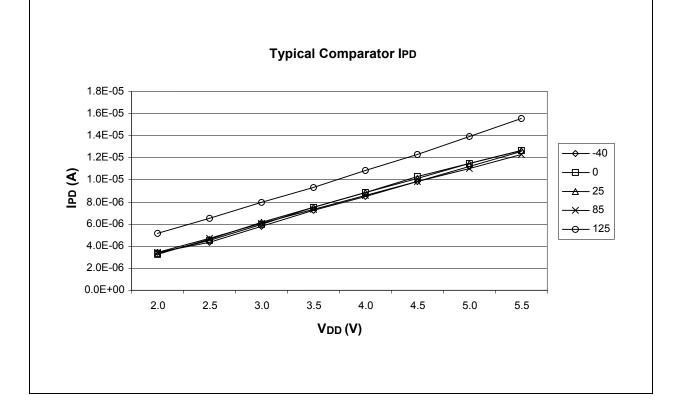



Param No.	Sym		Characteristic		Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse	Width	No Prescaler	0.5 Tcy + 20	-	_	ns	
					10	—		ns	
41*	TtOL	T0CKI Low Pulse Width		No Prescaler	0.5 TCY + 20	—	_	ns	
				With Prescaler	10	—	—	ns	
42*	TtOP	T0CKI Period			Greater of: 20 or <u>Tcy + 40</u> N	_	-	ns	N = prescale value (2, 4,, 256)
45*	Tt1H	T1CKI High Time	Synchronous, No Prescaler		0.5 TCY + 20	—	_	ns	
			Synchronous, with Prescaler		15	-		ns	
			Asynchronous		30	—		ns	
46*	Tt1L	T1CKI Low Time	Synchronous, No Prescaler Synchronous, with Prescaler Asynchronous		0.5 Tcy + 20	—	_	ns	
					15	-		ns	
					30	—	_	ns	
47*	Tt1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	—	_	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		60	—	—	ns	
	Ft1	Timer1 oscillator ir (oscillator enabled		DC	—	200*	kHz		
48	TCKEZtmr1	Delay from externa	al clock edge to tir	2 Tosc*	—	7 Tosc*	_		


* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.





APPENDIX A: DATA SHEET REVISION HISTORY

Revision A

This is a new data sheet.

Revision B

Added characterization graphs.

Updated specifications.

Added notes to indicate Microchip programmers maintain all calibration bits to factory settings and the PIC16F676 ANSEL register must be initialized to configure pins as digital I/O.

Revision C

Revision D

Updated Package Drawings; Replaced PICmicro with PIC.

Revision E (03/2007)

Replaced Package Drawings (Rev. AM); Replaced Development Support Section.

Revision F (05/2010)

Replaced Package Drawings (Rev. BD); Replaced Development Support Section.

APPENDIX B: DEVICE DIFFERENCES

The differences between the PIC16F630/676 devices listed in this data sheet are shown in Table B-1.

TABLE B-1: DEVICE DIFFERENCES

Feature	PIC16F630	PIC16F676
A/D	No	Yes