Microchip Technology - PIC16F630-E/P Datasheet

E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	12
Program Memory Size	1.75KB (1K × 14)
Program Memory Type	FLASH
EEPROM Size	128 × 8
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	14-DIP (0.300", 7.62mm)
Supplier Device Package	14-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f630-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2.2 OPTION Register

The OPTION register is a readable and writable register, which contains various control bits to configure:

- TMR0/WDT prescaler
- External RA2/INT interrupt
- TMR0
- Weak pull-ups on PORTA

REGISTER 2-2: OPTION_REG — OPTION REGISTER (ADDRESS: 81h)

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
	RAPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0			
	bit 7							bit 0			
bit 7	RAPU: PORTA Pull-up Enable bit 1 = PORTA pull-ups are disabled 0 = PORTA pull-ups are enabled by individual PORT latch values										
bit 6	INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of RA2/INT pin 0 = Interrupt on falling edge of RA2/INT pin										
bit 5	TOCS: TM 1 = Transi 0 = Interna	R0 Clock So tion on RA2 al instruction	ource Select /T0CKI pin i cycle clock	bit (CLKOUT)							
bit 4	TOSE: TM 1 = Increm 0 = Increm	R0 Source I nent on high nent on low-	Edge Select -to-low trans to-high trans	bit ition on RA2 ition on RA2	2/T0CKI pin 2/T0CKI pin						
bit 3	PSA: Pres 1 = Presca 0 = Presca	scaler Assigi aler is assigi aler is assigi	nment bit ned to the W ned to the Ti	DT mer0 module	e						
bit 2-0	PS2:PS0:	Prescaler R	ate Select b	its							
		Bit Value 1	MR0 Rate	WDT Rate							
		000 001 010 011 100 101 110 111	1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256	1 : 1 1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 128							
	[

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Note: To achieve a 1:1 prescaler assignment for TMR0, assign the prescaler to the WDT by setting PSA bit to '1' (OPTION<3>). See Section 4.4 "Prescaler".

2.2.2.4 PIE1 Register

The PIE1 register contains the interrupt enable bits, as shown in Register 2-4.

- n = Value at POR

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

REGISTER 2-4: PIE1 — PERIPHERAL INTERRUPT ENABLE REGISTER 1 (ADDRESS: 8Ch) R/W-0 R/W-0 U-0 R/W-0 U-0 R/W-0 U-0 U-0 EEIE ADIE CMIE TMR1IE bit 7 bit 0 bit 7 **EEIE:** EE Write Complete Interrupt Enable bit 1 = Enables the EE write complete interrupt 0 = Disables the EE write complete interrupt bit 6 ADIE: A/D Converter Interrupt Enable bit (PIC16F676 only) 1 = Enables the A/D converter interrupt 0 = Disables the A/D converter interrupt bit 5-4 Unimplemented: Read as '0' bit 3 CMIE: Comparator Interrupt Enable bit 1 = Enables the comparator interrupt 0 = Disables the comparator interrupt bit 2-1 Unimplemented: Read as '0' bit 0 TMR1IE: TMR1 Overflow Interrupt Enable bit 1 = Enables the TMR1 overflow interrupt 0 = Disables the TMR1 overflow interrupt Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

2.2.2.5 PIR1 Register

bit

bit

bit bit

bit bit

The PIR1 register contains the interrupt flag bits, as shown in Register 2-5.

- n = Value at POR

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-5: PIR1 — PERIPHERAL INTERRUPT REGISTER 1 (ADDRESS: 0Ch)

	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	U-0	R/W-0				
	EEIF	ADIF			CMIF			TMR1IF				
	bit 7							bit 0				
7	EEIF: EEP 1 = The wr 0 = The wr	EEIF: EEPROM Write Operation Interrupt Flag bit 1 = The write operation completed (must be cleared in software) 0 = The write operation has not completed or has not been started										
6	ADIF: A/D 1 = The A/ł 0 = The A/	ADIF: A/D Converter Interrupt Flag bit (PIC16F676 only) 1 = The A/D conversion is complete (must be cleared in software) 0 = The A/D conversion is not complete										
5-4	Unimplem	ented: Read	d as '0'									
3	CMIF : Com 1 = Compa 0 = Compa	CMIF : Comparator Interrupt Flag bit 1 = Comparator input has changed (must be cleared in software) 0 = Comparator input has not changed										
2-1	Unimplem	ented: Read	d as '0'									
0	TMR1IF : T 1 = TMR1 0 = TMR1	 MR1IF: TMR1 Overflow Interrupt Flag bit TMR1 register overflowed (must be cleared in software) TMR1 register did not overflow 										
	Legend:											
	R = Reada	ıble bit	W = W	/ritable bit	U = Unin	plemented	bit, read as '	'0'				

'0' = Bit is cleared

'1' = Bit is set

x = Bit is unknown

2.3 PCL and PCLATH

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 2-3 shows the two situations for the loading of the PC. The upper example in Figure 2-3 shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in Figure 2-3 shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 2-3: LOADING OF PC IN DIFFERENT SITUATIONS

2.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to the Application Note *"Implementing a Table Read"* (AN556).

2.3.2 STACK

The PIC16F630/676 family has an 8-level x 13-bit wide hardware stack (see Figure 2-1). The stack space is not part of either program or data space and the Stack Pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

Note 1: There are no Status bits to indicate Stack Overflow or Stack Underflow conditions.

2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

3.0 PORTS A AND C

There are as many as twelve general purpose I/O pins available. Depending on which peripherals are enabled, some or all of the pins may not be available as general purpose I/O. In general, when a peripheral is enabled, the associated pin may not be used as a general purpose I/O pin.

Note:	Additional information on I/O ports may be
	found in the PIC [®] Mid-Range Reference
	Manual, (DS33023)

3.1 PORTA and the TRISA Registers

PORTA is an 6-bit wide, bidirectional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin). The exception is RA3, which is input only and its TRIS bit will always read as '1'. Example 3-1 shows how to initialize PORTA.

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch. RA3 reads '0' when MCLREN = 1.

The TRISA register controls the direction of the PORTA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA

register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

Note:	The ANSEL (91h) and CMCON (19h)								
	registers must be initialized to configure an								
	analog channel as a digital input. Pins								
	configured as analog inputs will read '0'.								
	The ANSEL register is defined for the								
	PIC16F676.								

EXAMPLE 3-1: INITIALIZING PORTA

BCF	STATUS, RPO	;Bank 0
CLRF	PORTA	;Init PORTA
MOVLW	05h	;Set RA<2:0> to
MOVWF	CMCON	;digital I/O
BSF	STATUS, RPO	;Bank 1
CLRF	ANSEL	;digital I/O
MOVLW	0Ch	;Set RA<3:2> as inputs
MOVWF	TRISA	;and set RA<5:4,1:0>
		;as outputs
BCF	STATUS, RPO	;Bank 0

3.2 Additional Pin Functions

Every PORTA pin on the PIC16F630/676 has an interrupt-on-change option and every PORTA pin, except RA3, has a weak pull-up option. The next two sections describe these functions.

3.2.1 WEAK PULL-UP

Each of the PORTA pins, except RA3, has an individually configurable weak internal pull-up. Control bits WPUAx enable or disable each pull-up. Refer to Register 3-3. Each weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset by the RAPU bit (OPTION<7>).

U-0 R/W-x R/W-x R/W-x U-0 R/W-x R/W-x R/W-x RA5 RA4 RA3 RA2 RA1 RA0 bit 7 bit 0

PORTA — PORTA REGISTER (ADDRESS: 05h)

bit 7-6: Unimplemented: Read as '0'

bit 5-0: **PORTA<5:0>**: PORTA I/O pin bits

1 = Port pin is >VIH

0 = Port pin is <VIL

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	oit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 3-1:

4.0 TIMER0 MODULE

The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- · Interrupt on overflow from FFh to 00h
- Edge select for external clock

Figure 4-1 is a block diagram of the Timer0 module and the prescaler shared with the WDT.

Note:	Additional	information	on	the	Timer0				
	module is available in the PIC [®] Mid-Range								
	Reference Manual, (DS33023).								

4.1 Timer0 Operation

Timer mode is selected by clearing the T0CS bit (OPTION_REG<5>). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If TMR0 is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting the T0CS bit (OPTION_REG<5>). In this mode, the Timer0 module will increment either on every rising or falling edge of pin RA2/T0CKI. The incrementing edge is determined by the source edge (T0SE) control bit (OPTION_REG<4>). Clearing the T0SE bit selects the rising edge.

Note:	Counter mode has specific external clock requirements. Additional information on								
	these requirements is available in the PIC®								
	Mid-Range Reference Manua								
	(DS33023).								

4.2 Timer0 Interrupt

A Timer0 interrupt is generated when the TMR0 register timer/counter overflows from FFh to 00h. This overflow sets the T0IF bit. The interrupt can be masked by clearing the T0IE bit (INTCON<5>). The T0IF bit (INTCON<2>) must be cleared in software by the Timer0 module Interrupt Service Routine before reenabling this interrupt. The Timer0 interrupt cannot wake the processor from Sleep since the timer is shut-off during Sleep.

						•		,			
	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	VREN		VRR		VR3	VR2	VR1	VR0			
	bit 7							bit 0			
bit 7	VREN: CVR 1 = CVREF (0 = CVREF (REF Enable circuit powe	bit red on red down, r	no IDD drain							
bit 6	Unimpleme	ented: Read	d as '0'								
bit 5	VRR: CVRE 1 = Low ran 0 = High rar	F Range Se ige nge	election bit								
bit 4	Unimpleme	ented: Read	d as '0'								
bit 3-0	VR3:VR0: 0 When VRR When VRR	VR3:VR0: CVREF value selection bits $0 \le VR$ [3:0] ≤ 15 When VRR = 1: CVREF = (VR3:VR0 / 24) * VDD When VRR = 0: CVREF = VDD/4 + (VR3:VR0 / 32) * VDD									
	Legend:	Legend:									
	R = Readab	ole bit	W = W	/ritable bit	U = Unim	plemented	bit, read as	'0'			
	- n = Value	at POR	'1' = B	it is set	'0' = Bit is	s cleared	x = Bit is u	nknown			

REGISTER 6-2: VRCON — VOLTAGE REFERENCE CONTROL REGISTER (ADDRESS: 99h)

6.9 Comparator Interrupts

The comparator interrupt flag is set whenever there is a change in the output value of the comparator. Software will need to maintain information about the status of the output bits, as read from CMCON<6>, to determine the actual change that has occurred. The CMIF bit, PIR1<3>, is the comparator interrupt flag. This bit must be reset in software by clearing it to '0'. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

The CMIE bit (PIE1<3>) and the PEIE bit (INTCON<6>) must be set to enable the interrupt. In addition, the GIE bit must also be set. If any of these bits are cleared, the interrupt is not enabled, though the CMIF bit will still be set if an interrupt condition occurs.

The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of CMCON. This will end the mismatch condition.
- b) Clear flag bit CMIF.

A mismatch condition will continue to set flag bit CMIF. Reading CMCON will end the mismatch condition and allow flag bit CMIF to be cleared.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Value on all other Resets
0Bh/8Bh	INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	0000 0000	0000 000u
0Ch	PIR1	EEIF	ADIF	—	-	CMIF	—	—	TMR1IF	00 00	00 00
19h	CMCON	—	COUT	—	CINV	CIS	CM2	CM1	CM0	-0-0 0000	-0-0 0000
8Ch	PIE1	EEIE	ADIE	—	_	CMIE	—	—	TMR1IE	00 00	00 00
85h	TRISA	—	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
99h	VRCON	VREN		VRR		VR3	VR2	VR1	VR0	0-0- 0000	0-0- 0000

TABLE 6-2: REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the comparator module.

Note: If a change in the CMCON register (COUT) should occur when a read operation is being executed (start of the Q2 cycle), then the CMIF (PIR1<3>) interrupt flag may not get set.

8.0 DATA EEPROM MEMORY

The EEPROM data memory is readable and writable during normal operation (full VDD range). This memory is not directly mapped in the register file space. Instead, it is indirectly addressed through the Special Function Registers. There are four SFRs used to read and write this memory:

- EECON1
- EECON2 (not a physically implemented register)
- EEDATA
- EEADR

EEDATA holds the 8-bit data for read/write, and EEADR holds the address of the EEPROM location being accessed. PIC16F630/676 devices have 128 bytes of data EEPROM with an address range from 0h to 7Fh. The EEPROM data memory allows byte read and write. A byte write automatically erases the location and writes the new data (erase before write). The EEPROM data memory is rated for high erase/write cycles. The write time is controlled by an on-chip timer. The write time will vary with voltage and temperature as well as from chip to chip. Please refer to AC Specifications for exact limits.

When the data memory is code-protected, the CPU may continue to read and write the data EEPROM memory. The device programmer can no longer access this memory.

Additional information on the data EEPROM is available in the ${\rm PIC}^{\circledast}$ Mid-Range Reference Manual, (DS33023).

REGISTER 8-1: EEDAT — EEPROM DATA REGISTER (ADDRESS: 9Ah)

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| EEDAT7 | EEDAT6 | EEDAT5 | EEDAT4 | EEDAT3 | EEDAT2 | EEDAT1 | EEDAT0 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 **EEDATn**: Byte value to write to or read from data EEPROM

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 8-2: EEADR — EEPROM ADDRESS REGISTER (ADDRESS: 9Bh)

U-0	R/W-0						
—	EADR6	EADR5	EADR4	EADR3	EADR2	EADR1	EADR0
bit 7							bit 0

bit 7 Unimplemented: Should be set to '0'

bit 6-0 **EEADR**: Specifies one of 128 locations for EEPROM Read/Write Operation

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented I	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

9.3 Reset

The PIC16F630/676 differentiates between various kinds of Reset:

- a) Power-on Reset (POR)
- b) WDT Reset during normal operation
- c) WDT Reset during Sleep
- d) MCLR Reset during normal operation
- e) MCLR Reset during Sleep
- f) Brown-out Detect (BOD)

Some registers are not affected in any Reset condition; their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on:

- · Power-on Reset
- MCLR Reset
- WDT Reset
- WDT Reset during Sleep
- Brown-out Detect (BOD)

They are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different Reset situations as indicated in Table 9-4. These bits are used in software to determine the nature of the Reset. See Table 9-7 for a full description of Reset states of all registers.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 9-4.

The $\overline{\text{MCLR}}$ Reset path has a noise filter to detect and ignore small pulses. See Table 12-4 in Electrical Specifications Section for pulse-width specification.

TADLE 3-7.				
Register	Address	Power-on Reset	 MCLR Reset WDT Reset Brown-out Detect⁽¹⁾ 	 Wake-up from Sleep through interrupt Wake-up from Sleep through WDT time-out
W	—	XXXX XXXX	นนนน นนนน	սսսս սսսս
INDF	00h/80h	—	—	—
TMR0	01h	XXXX XXXX	นนนน นนนน	นนนน นนนน
PCL	02h/82h	0000 0000	0000 0000	PC + 1 ⁽³⁾
STATUS	03h/83h	0001 1xxx	000q quuu (4)	uuuq quuu ⁽⁴⁾
FSR	04h/84h	XXXX XXXX	นนนน นนนน	սսսս սսսս
PORTA	05h	xx xxxx	uu uuuu	uu uuuu
PORTC	07h	xx xxxx	uu uuuu	uu uuuu
PCLATH	0Ah/8Ah	0 0000	0 0000	u uuuu
INTCON	0Bh/8Bh	0000 0000	0000 000u	uuuu uuqq ⁽²⁾
PIR1	0Ch	00 00	00 00	qq qq ^(2,5)
T1CON	10h	-000 0000	-uuu uuuu	-uuu uuuu
CMCON	19h	-0-0 0000	-0-0 0000	-u-u uuuu
ADRESH	1Eh	XXXX XXXX	นนนน นนนน	นนนน นนนน
ADCON0	1Fh	00-0 0000	00-0 0000	นน-น นนนน
OPTION_REG	81h	1111 1111	1111 1111	սսսս սսսս
TRISA	85h	11 1111	11 1111	uu uuuu
TRISC	87h	11 1111	11 1111	uu uuuu
PIE1	8Ch	00 00	00 00	uu uu
PCON	8Eh	0x	(1,6)	uu
OSCCAL	90h	1000 00	1000 00	uuuu uu
ANSEL	91h	1111 1111	1111 1111	սսսս սսսս
WPUA	95h	11 -111	11 -111	սսսս սսսս
IOCA	96h	00 0000	00 0000	uu uuuu
VRCON	99h	0-0- 0000	0-0- 0000	u-u- uuuu
EEDATA	9Ah	0000 0000	0000 0000	սսսս սսսս
EEADR	9Bh	-000 0000	-000 0000	-นนน นนนน
EECON1	9Ch	x000	q000	uuuu
EECON2	9Dh			
ADRESL	9Eh	XXXX XXXX	นนนน นนนน	นนนน นนนน
ADCON1	9Fh	-000	-000	-uuu

TABLE 9-7: INITIALIZATION CONDITION FOR REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition.

- Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.
 2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).
 - **3:** When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).
 - 4: See Table 9-6 for Reset value for specific condition.
 - 5: If wake-up was due to data EEPROM write completing, bit 7 = 1; A/D conversion completing, bit 6 = 1; Comparator input changing, bit 3 = 1; or Timer1 rolling over, bit 0 = 1. All other interrupts generating a wake-up will cause these bits to = u.
 - **6:** If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.

MOVF	Move f
Syntax:	[<i>label</i>] MOVF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register f are moved to a destination dependant upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. d = 1 is useful to test a file register, since status flag Z is affected.

NOP	No Operation
Syntax:	[<i>label</i>] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.

MOVLW	Move Literal to W		
Syntax:	[<i>label</i>] MOVLW k		
Operands:	$0 \leq k \leq 255$		
Operation:	$k \rightarrow (W)$		
Status Affected:	None		
Description:	The eight-bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.		

RETFIE	Return from Interrupt		
Syntax:	[label] RETFIE		
Operands:	None		
Operation:	$TOS \rightarrow PC$, 1 $\rightarrow GIE$		
Status Affected:	None		

MOVWF	Move W to f
Syntax:	[<i>label</i>] MOVWF f
Operands:	$0 \leq f \leq 127$
Operation:	$(W) \to (f)$
Status Affected:	None
Description:	Move data from W register to register 'f'.

RETLW	Return with Literal in W		
Syntax:	[<i>label</i>] RETLW k		
Operands:	$0 \leq k \leq 255$		
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$		
Status Affected:	None		
Description:	The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.		

12.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings†

Ambient temperature under bias	40 to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3 to +6.5V
Voltage on MCLR with respect to Vss	0.3 to +13.5V
Voltage on all other pins with respect to Vss	0.3V to (VDD + 0.3V)
Total power dissipation ⁽¹⁾	
Maximum current out of Vss pin	
Maximum current into Vod pin	
Input clamp current, Iικ (VI < 0 or VI > VDD)	± 20 mA
Output clamp current, Ioк (Vo < 0 or Vo >VDD)	± 20 mA
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA and PORTC (combined)	
Maximum current sourced PORTA and PORTC (combined)	

Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - Σ IOH} + Σ {(VDD-VOH) x IOH} + Σ (VOI x IOL).

† NOTICE: Stresses above those listed under 'Absolute Maximum Ratings' may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Note: Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the $\overline{\text{MCLR}}$ pin, rather than pulling this pin directly to Vss.

12.8 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created with one of the following formats:

- 1. TppS2ppS
- 2. TppS

· · ·						
Т						
F	Frequency	Т	Time			
Lower	case letters (pp) and their meanings:					
qq						
сс	CCP1	OSC	OSC1			
ck	CLKOUT	rd	RD			
CS	CS	rw	RD or WR			
di	SDI	SC	SCK			
do	SDO	SS	SS			
dt	Data in	tO	TOCKI			
io	I/O port	t1	T1CKI			
mc	MCLR	wr	WR			
Uppercase letters and their meanings:						
S						
F	Fall	Р	Period			
н	High	R	Rise			
I	Invalid (High-impedance)	V	Valid			
L	Low	Z	High-impedance			

FIGURE 12-4: LOAD CONDITIONS

FIGURE 12-8: BROWN-OUT DETECT TIMING AND CHARACTERISTICS

TABLE 12-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
AND BROWN-OUT DETECT REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
30	ТмсL	MCLR Pulse Width (low)	2 11	 18	 24	μs ms	VDD = 5V, -40°C to +85°C Extended temperature
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	10 10	17 17	25 30	ms ms	VDD = 5V, -40°C to +85°C Extended temperature
32	Tost	Oscillation Start-up Timer Period	—	1024Tosc	_		Tosc = OSC1 period
33*	TPWRT	Power-up Timer Period	28* TBD	72 TBD	132* TBD	ms ms	V _{DD} = 5V, -40°C to +85°C Extended Temperature
34	Tioz	I/O High-impedance from MCLR Low or Watchdog Timer Reset	—		2.0	μS	
	Bvdd	Brown-out Detect Voltage	2.025	—	2.175	V	
		Brown-out Hysteresis	TBD	—	_		
35	Твор	Brown-out Detect Pulse Width	100*		_	μS	V DD \leq BVDD (D005)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 13-14: TYPICAL IPD WITH WDT ENABLED vs. VDD OVER TEMP (-40°C TO +125°C)

FIGURE 13-15: MAXIMUM AND MINIMUM INTOSC FREQ vs. TEMPERATURE WITH 0.1μ F AND 0.01μ F DECOUPLING (VDD = 3.5V)

FIGURE 13-16: MAXIMUM AND MINIMUM INTOSC FREQ vs. VDD WITH 0.1μ F AND 0.01μ F DECOUPLING (+25°C)

14.0 PACKAGING INFORMATION

14.1 Package Marking Information

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	In the eve be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch E			0.65 BSC	
Contact Pad Spacing	C1		5.90	
Contact Pad Width (X14)	X1			0.45
Contact Pad Length (X14)	Y1			1.45
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2087A

RESET, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer
Time-out Sequence on Power-up (MCLR not Tied to
VDD)/
Case 1 64
Case 2
Time-out Sequence on Power-up (MCLR Tied
to VDD)64
Timer0 and Timer1 External Clock 101
Timer1 Incrementing Edge
Timing Parameter Symbology95
TRISIO Registers
V
Voltage Reference Accuracy/Error43
W
Watchdog Timer
Summary of Registers
Watchdog Timer (WDT) 68
WWW Address
WWW, On-Line Support5