
E·XFL

Welcome to E-XFL.COM

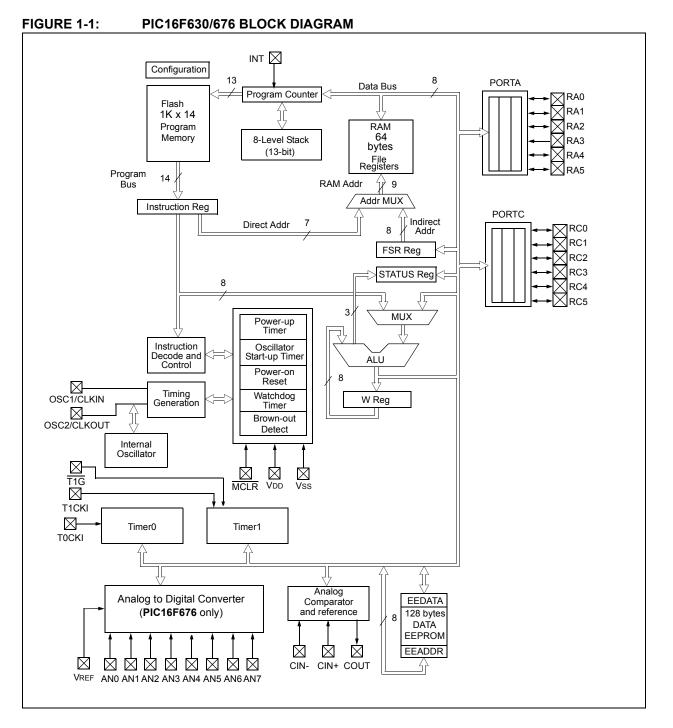
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	12
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	64 × 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-VQFN Exposed Pad
Supplier Device Package	16-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f630-i-ml


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

This document contains device specific information for the PIC16F630/676. Additional information may be found in the PIC[®] Mid-Range Reference Manual (DS33023), which may be obtained from your local Microchip Sales Representative or downloaded from the Microchip web site. The Reference Manual should be considered a complementary document to this Data Sheet and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

The PIC16F630 and PIC16F676 devices are covered by this Data Sheet. They are identical, except the PIC16F676 has a 10-bit A/D converter. They come in 14-pin PDIP, SOIC and TSSOP packages. Figure 1-1 shows a block diagram of the PIC16F630/676 devices. Table 1-1 shows the pinout description.

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (see Table 2-1). These registers are static RAM.

The special registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the "core" are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

FIGURE 2-2: DATA MEMORY MAP OF THE PIC16F630/676

	THEF	PIC16F630/676	
	File Address	A	File ddress
Indirect addr. ⁽¹⁾	00h	Indirect addr. ⁽¹⁾	80h
TMR0	01h	OPTION_REG	81h
PCL	02h	PCL	82h
STATUS	03h	STATUS	83h
FSR	04h	FSR	84h
PORTA	05h	TRISA	85h
	06h	-	86h
PORTC	07h	TRISC	87h
	08h	-	88h
	09h		89h
PCLATH	0Ah	PCLATH	8Ah
INTCON	0Bh	INTCON	8Bh
PIR1	0Ch	PIE1	8Ch
	0Dh		8Dh
TMR1L	0Eh	PCON	8Eh
TMR1H	0Fh		8Fh
T1CON	10h	OSCCAL	90h
TICON	11h	ANSEL ⁽²⁾	91h
	12h	THOLE	92h
	13h	-	93h
	14h		94h
	15h	WPUA	95h
	16h	IOCA	96h
	17h	IOCA	97h
	18h		98h
CMCON	19h	VRCON	99h
CINCON	1Ah	EEDAT	9Ah
	1Bh	EEADR	9Bh
	1Ch	EECON1	9Ch
	1Dh	EECON2 ⁽¹⁾	9Dh
ADRESH ⁽²⁾	1Eh	ADRESL ⁽²⁾	9Eh
ADCON0 ⁽²⁾	1Fh	ADCON1 ⁽²⁾	9Fh
ADCONU	20h	ADCONT	A0h
General Purpose Registers 64 Bytes	2011	accesses 20h-5Fh	
	5Fh		DFh
	60h		E0h
	001		Lon
	7Fh	_	FFh
Bank 0		Bank 1	
Unimplemente1: Not a physical2: PIC16F676 on	register.	mory locations, rea	d as '0'.

TABLE 2-1:	PIC16F630/676 SPECIAL	REGISTERS SUMMARY BANK 0

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Page
Bank 0											
00h	INDF	Addressing	this location	uses content	ts of FSR to a	address data	memory (not	a physical re	gister)	XXXX XXXX	20,63
01h	TMR0	Timer0 Mod	dule's Registe	er						XXXX XXXX	31
02h	PCL	Program Co	ounter's (PC)) Least Signifi	icant Byte					0000 0000	19
03h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	13
04h	FSR	Indirect dat	a memory Ac	dress Pointe	r					xxxx xxxx	20
05h	PORTA		I/O Control Registers							xx xxxx	21
06h	_	Unimpleme	nted							-	_
07h	PORTC	_	_	I/O Control	Registers					xx xxxx	28
08h	_	Unimpleme	Unimplemented						_	-	
09h	_	Unimplemented					-	_			
0Ah	PCLATH	_	_	l —	Write buffer	for upper 5 b	oits of progra	m counter		0 0000	19
0Bh	INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	0000 0000	15
0Ch	PIR1	EEIF	ADIF	_	_	CMIF	_	—	TMR1IF	00 00	17
0Dh	—	Unimpleme	nted	·	•		•			-	-
0Eh	TMR1L	Holding reg	ister for the l	_east Signific	ant Byte of th	ie 16-bit TMR	1			XXXX XXXX	34
0Fh	TMR1H	Holding reg	ister for the I	Most Significa	ant Byte of th	e 16-bit TMR	1			XXXX XXXX	34
10h	T1CON	_	T1GE	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	-000 0000	36
11h	—	Unimpleme	nted							_	-
12h	—	Unimpleme	nted							-	-
13h	—	Unimpleme	nted							-	-
14h	—	Unimpleme	nted							-	-
15h	—	Unimpleme	nted							_	-
16h	_	Unimpleme	nted							_	-
17h	_	Unimpleme								_	-
18h		Unimpleme					•			-	-
19h	CMCON	—	COUT	—	CINV	CIS	CM2	CM1	CM0	-0-0 0000	39
1Ah	—	Unimpleme								-	-
1Bh	—	Unimpleme								-	-
1Ch	-	Unimpleme								-	-
1Dh		Unimpleme								-	-
1Eh	ADRESH ⁽³⁾	-	1	f the left shifte	ed A/D result	or 2 bits of rig	ght shifted re	1		XXXX XXXX	46
1Fh	ADCON0 ⁽³⁾	ADFM	VCFG	—	CHS2	CHS1	CHS0	GO/DONE	ADON	00-0 0000	47,63

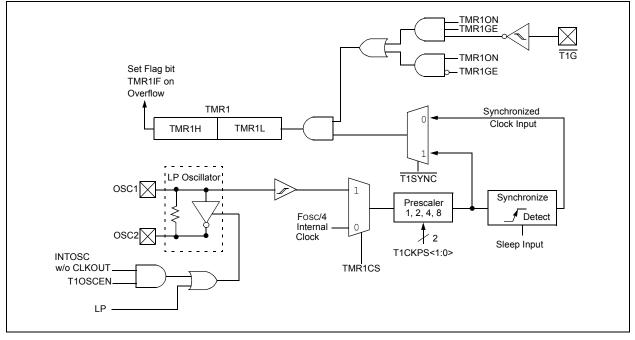
 – = Unimplemented locations read <u>as '0'</u>, <u>u</u> = unchanged, <u>x</u> = unknown, <u>q</u> = value depends on condition shaded = unimplemented
 Other (non Power-up) Resets include MCLR Reset, Brown-out Detect and Watchdog Timer Reset during normal operation.
 IRP and RP1 bits are reserved, always maintain these bits clear.
 PIC16F676 only. Legend: Note 1:

2: 3:

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Page
Bank 1			•		•	•	•		•		
80h	INDF	Addressing	this location	uses content	ts of FSR to a	address data	memory (not	a physical re	egister)	xxxx xxxx	20,63
81h	OPTION_REG	RAPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	14,32
82h	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte			1		0000 0000	19
83h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	13
84h	FSR		a memory Ad	-				50	, v	xxxx xxxx	20
85h	TRISA	_	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	21
86h	_	Unimpleme	nted				•	•		_	_
87h	TRISC		_	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	11 1111	_
88h	_	Unimpleme	nted	•		•	•	•		-	_
89h	_	Unimpleme	nted							-	-
8Ah	PCLATH	_	_	_	Write buffer	for upper 5 l	oits of progra	m counter		0 0000	19
8Bh	INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	0000 0000	15
8Ch	PIE1	EEIE	ADIE		—	CMIE	—		TMR1IE	0000	16
8Dh	—	Unimpleme	nted							-	_
8Eh	PCON	_	_		_	_	_	POR	BOD	dd	18
8Fh	_		•		•	•	•	•		-	
90h	OSCCAL	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0		_	1000 00	18
91h	ANSEL ⁽³⁾	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	48
92h	—	Unimpleme	nted	•			•	•		-	-
93h	_	Unimpleme	nted							_	l –
94h	_	Unimpleme	nted							-	_
95h	WPUA	_	_	WPUA5	WPUA4	_	WPUA2	WPUA1	WPUA0	11 -111	22
96h	IOCA	_	_	IOCA5	IOCA4	IOCA3	IOCA2	IOCA1	IOCA0	00 0000	23
97h	_	Unimpleme	nted				•	•		_	-
98h	_	Unimpleme	nted							_	l –
99h	VRCON	VREN	_	VRR	_	VR3	VR2	VR1	VR0	0-0- 0000	44
9Ah	EEDAT	EEPROM d	lata register							0000 0000	51
9Bh	EEADR	_	EEPROM a	ddress regis	ter					0000 0000	51
9Ch	EECON1	_	_	_	_	WRERR	WREN	WR	RD	x000	52
9Dh	EECON2	EEPROM c	ontrol registe	r 2 (not a ph	ysical registe	r)					51
9Eh	ADRESL ⁽³⁾	Least Signi	ficant 2 bits o	f the left shift	ted result or 8	B bits of the ri	ght shifted re	sult		xxxx xxxx	46
9Fh	ADCON1 ⁽³⁾	_	ADCS2	ADCS1	ADCS0	—	_		—	-000	47,63
Legend: Note 1 2 3	: Other (non Po	ower-up) Res bits are rese	sets include N	ICLR Reset,	Brown-out D	= unknown, o etect and Wa	g = value dep atchdog Time	ends on con r Reset durir	dition, shade ng normal op	ed = unimplemer eration.	ited

TABLE 2-2: PIC16F630/676 SPECIAL FUNCTION REGISTERS SUMMARY BANK 1

5.0 TIMER1 MODULE WITH GATE CONTROL


The PIC16F630/676 devices have a 16-bit timer. Figure 5-1 shows the basic block diagram of the Timer1 module. Timer1 has the following features:

- 16-bit timer/counter (TMR1H:TMR1L)
- · Readable and writable
- Internal or external clock selection
- Synchronous or asynchronous operation
- Interrupt on overflow from FFFFh to 0000h
- Wake-up upon overflow (Asynchronous mode)
- Optional external enable input $(\overline{T1G})$
- · Optional LP oscillator

FIGURE 5-1: TIMER1 BLOCK DIAGRAM

The Timer1 Control register (T1CON), shown in Register 5-1, is used to enable/disable Timer1 and select the various features of the Timer1 module.

Note: Additional information on timer modules is available in the PIC[®] Mid-Range Reference Manual, (DS33023).

5.4 Timer1 Operation in Asynchronous Counter Mode

If control bit $\overline{T1SYNC}$ (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (Section 5.4.1).

Note: The ANSEL (91h) and CMCON (19h) registers must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read '0'. The ANSEL register is defined for the PIC16F676.

5.4.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L, while the timer is running from an external asynchronous clock, will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. Examples 12-2 and 12-3 in the PIC[®] Mid-Range MCU Family Reference Manual (DS33023) show how to read and write Timer1 when it is running in Asynchronous mode.

5.5 Timer1 Oscillator

A crystal oscillator circuit is built-in between pins OSC1 (input) and OSC2 (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 32 kHz. It will continue to run during Sleep. It is primarily intended for a 32 kHz crystal. Table 9-2 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is shared with the system LP oscillator. Thus, Timer1 can use this mode only when the system clock is derived from the internal oscillator. As with the system LP oscillator, the user must provide a software time delay to ensure proper oscillator start-up.

TRISA5 and TRISA4 bits are set when the Timer1 oscillator is enabled. RA5 and RA4 read as '0' and TRISA5 and TRISA4 bits read as '1'.

Note: The oscillator requires a start-up and stabilization time before use. Thus, T1OSCEN should be set and a suitable delay observed prior to enabling Timer1.

5.6 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To setup the timer to wake the device:

- Timer1 must be on (T1CON<0>)
- TMR1IE bit (PIE1<0>) must be set
- PEIE bit (INTCON<6>) must be set

The device will wake-up on an overflow. If the GIE bit (INTCON<7>) is set, the device will wake-up and jump to the Interrupt Service Routine on an overflow.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR,			e on other sets
0Bh/8Bh	INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	0000	0000	0000	000u
0Ch	PIR1	EEIF	ADIF		_	CMIF	—	-	TMR1IF	00	00	00	00
0Eh	TMR1L	Holding	g Register f	or the Least	Significant	Byte of the	16-bit TM	R1 Registe	r	XXXX	XXXX	uuuu	uuuu
0Fh	TMR1H	Holding	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register							XXXX	XXXX	uuuu	uuuu
10h	T1CON	_	TMR1GE	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	-000	0000	-uuu	uuuu
8Ch	PIE1	EEIE	ADIE	_	_	CMIE	_	_	TMR1IE	00	00	00	00

 TABLE 5-1:
 REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

NOTES:

6.0 **COMPARATOR MODULE**

The PIC16F630/676 devices have one analog comparator. The inputs to the comparator are multiplexed with the RA0 and RA1 pins. There is an on-chip Comparator Voltage Reference that can also be applied to an input of the comparator. In addition, RA2 can be configured as the comparator output. The Comparator Control Register (CMCON), shown in Register 6-1, contains the bits to control the comparator.

REGISTER 6-1: CMCON — COMPARATOR CONTROL REGISTER (ADDRESS: 19h)

	U-0	R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	—	COUT	_	CINV	CIS	CM2	CM1	CM0			
	bit 7							bit 0			
bit 7	Unimplem	ented: Rea	d as '0'								
bit 6	COUT: Con	COUT : Comparator Output bit									
	When CIN\										
	1 = VIN+ > ' 0 = VIN+ < '										
		<u>When CINV = 1:</u> 1 = VIN+ < VIN-									
	0 = VIN+ > VIN-										
bit 5	Unimplem	ented: Rea	d as '0'								
bit 4			put Inversio	n bit							
	1 = Output		ı								
1:10	0 = Output										
bit 3	CIS: Compa When CM2										
	1 = VIN- COI										
	0 = VIN- coi	nnects to C	IN-								
bit 2-0	CM2:CM0:										
	Figure 6-2	shows the C	Comparator	modes and (CM2:CM0 b	it settings					
	Legend:										
		hla hit	$\lambda A = \lambda A$	/ritable bit		anlamantad	hit road on	<u>o'</u>			

Legenu.			
R = Readable bi	t W = Writable bit	U = Unimplemente	d bit, read as '0'
- n = Value at P	OR '1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

6.1 Comparator Operation

A single comparator is shown in Figure 6-1, along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input VIN-, the output of the comparator is a digital low level. When the analog input at VIN+ is greater than the analog input VIN-, the output of the comparator is a digital high level. The shaded areas of the output of the comparator in Figure 6-1 represent the uncertainty due to input offsets and response time.

Note:	To use	CIN+ and	CIN-	pins	as ana	alog
	inputs,	the appro	opriate	bits	must	be
	program	med in the	CMCO	N (19	h) regis	ster.

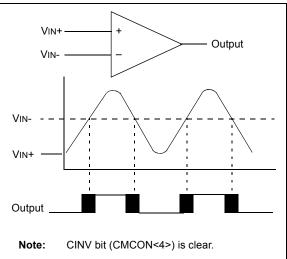

The polarity of the comparator output can be inverted by setting the CINV bit (CMCON<4>). Clearing CINV results in a non-inverted output. A complete table showing the output state versus input conditions and the polarity bit is shown in Table 6-1.

TABLE 6-1: OUTPUT STATE VS. INPUT CONDITIONS

Input Conditions	CINV	COUT
VIN- > VIN+	0	0
VIN- < VIN+	0	1
VIN- > VIN+	1	1
VIN- < VIN+	1	0

SINGLE COMPARATOR

8.0 DATA EEPROM MEMORY

The EEPROM data memory is readable and writable during normal operation (full VDD range). This memory is not directly mapped in the register file space. Instead, it is indirectly addressed through the Special Function Registers. There are four SFRs used to read and write this memory:

- EECON1
- EECON2 (not a physically implemented register)
- EEDATA
- EEADR

EEDATA holds the 8-bit data for read/write, and EEADR holds the address of the EEPROM location being accessed. PIC16F630/676 devices have 128 bytes of data EEPROM with an address range from 0h to 7Fh. The EEPROM data memory allows byte read and write. A byte write automatically erases the location and writes the new data (erase before write). The EEPROM data memory is rated for high erase/write cycles. The write time is controlled by an on-chip timer. The write time will vary with voltage and temperature as well as from chip to chip. Please refer to AC Specifications for exact limits.

When the data memory is code-protected, the CPU may continue to read and write the data EEPROM memory. The device programmer can no longer access this memory.

Additional information on the data EEPROM is available in the ${\rm PIC}^{\circledast}$ Mid-Range Reference Manual, (DS33023).

REGISTER 8-1: EEDAT — EEPROM DATA REGISTER (ADDRESS: 9Ah)

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| EEDAT7 | EEDAT6 | EEDAT5 | EEDAT4 | EEDAT3 | EEDAT2 | EEDAT1 | EEDAT0 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 **EEDATn**: Byte value to write to or read from data EEPROM

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 8-2: EEADR — EEPROM ADDRESS REGISTER (ADDRESS: 9Bh)

U-0	R/W-0						
	EADR6	EADR5	EADR4	EADR3	EADR2	EADR1	EADR0
bit 7							bit 0

bit 7 Unimplemented: Should be set to '0'

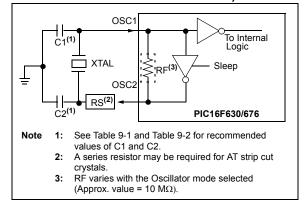
bit 6-0 **EEADR**: Specifies one of 128 locations for EEPROM Read/Write Operation

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

9.2 Oscillator Configurations

9.2.1 OSCILLATOR TYPES

The PIC16F630/676 can be operated in eight different Oscillator Option modes. The user can program three Configuration bits (FOSC2 through FOSC0) to select one of these eight modes:


- LP Low-Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC External Resistor/Capacitor (2 modes)
- · INTOSC Internal Oscillator (2 modes)
- EC External Clock In

Note:	Additional information on oscillator config- urations is available in the PIC [®] Mid-Range
	Reference Manual, (DS33023).

9.2.2 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

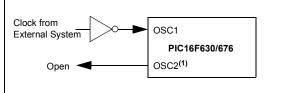

In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation (see Figure 9-1). The PIC16F630/676 oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may yield a frequency outside of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1 pin (see Figure 9-2).

FIGURE 9-1: CRYSTAL OPERATION (OR CERAMIC RESONATOR) (HS, XT OR LP OSC CONFIGURATION)

EXTERNAL CLOCK INPUT OPERATION (HS, XT, EC, OR LP OSC CONFIGURATION)

Note 1: Functions as RA4 in EC Osc mode.

TABLE 9-1:CAPACITOR SELECTION FOR
CERAMIC RESONATORS

Ranges Characterized:								
Mode	Freq	OSC1(C1)	OSC2(C2)					
ХТ	455 kHz 2.0 MHz 4.0 MHz	68-100 pF 15-68 pF 15-68 pF	68-100 pF 15-68 pF 15-68 pF					
HS	8.0 MHz 16.0 MHz	10-68 pF 10-22 pF	10-68 pF 10-22 pF					
Note 1: Higher capacitance increases the stability of the oscillator but also increases the start-up time. These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.								

TABLE 9-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR

Mode	Freq	OSC1(C1)	OSC2(C2)					
LP	32 kHz	68-100 pF	68-100 pF					
ХТ	100 kHz 2 MHz 4 MHz	68-150 pF 15-30 pF 15-30 pF	150-200 pF 15-30 pF 15-30 pF					
HS	8 MHz 10 MHz 20 MHz	15-30 pF 15-30 pF 15-30 pF	15-30 pF 15-30 pF 15-30 pF					
Note 1: Higher capacitance increases the stability								

of the oscillator but also increases the start-up time. These values are for design guidance only. Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

TABLE 10-2: PIC16F630/676 INSTRUCTION SET

Mnemonic,		Description	Cycles		14-Bit	Opcode	Status	Natas	
Ореі	rands	Description		MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE	REGISTER OPE	RATIC	NS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	XXXX	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
		BIT-ORIENTED FILE		RATION	NS				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
		LITERAL AND CO	NTROL OPERAT	IONS					
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0 k k k	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
	-	Go into Standby mode	1	00	0000	0110	0011	TO,PD	
SLEEP		-						0 0 0 7	
SLEEP SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTA, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.

3: If Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

Note: Additional information on the mid-range instruction set is available in the PIC[®] Mid-Range MCU Family Reference Manual (DS33023).

11.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

11.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

11.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

11.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

11.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

11.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

11.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

11.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

11.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

12.1 DC Characteristics: PIC16F630/676-I (Industrial), PIC16F630/676-E (Extended)

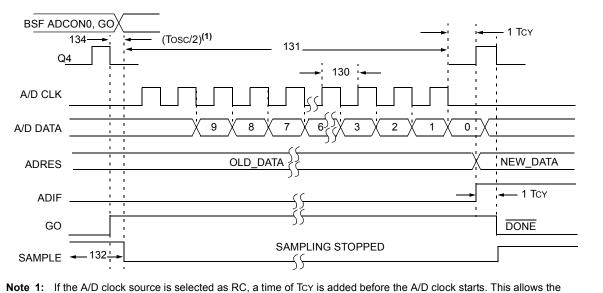
DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$					
Param No. Sym Characteristic			Min	Тур†	Max	Units	Conditions	
D001 D001A D001B D001C D001D	Vdd	Supply Voltage	2.0 2.2 2.5 3.0 4.5		5.5 5.5 5.5 5.5 5.5 5.5	V V V V	Fosc < = 4 MHz: PIC16F630/676 with A/D off PIC16F676 with A/D on, 0°C to +125°C PIC16F676 with A/D on, -40°C to +125°C 4 MHz < Fosc < = 10 MHz	
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5*	—	-	V	Device in Sleep mode	
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	—	Vss	_	V	See section on Power-on Reset for details	
D004	Svdd	Vod Rise Rate to ensure internal Power-on Reset signal	0.05*	—	_	V/ms	See section on Power-on Reset for details	
D005	VBOD		_	2.1		V		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
A01	NR	Resolution		_	10 bits	bit	
A02	Eabs	Total Absolute Error*	_	—	±1	LSb	VREF = 5.0V
A03	EIL	Integral Error	_	_	±1	LSb	VREF = 5.0V
A04	Edl	Differential Error	_	_	±1	LSb	No missing codes to 10 bits VREF = 5.0V
A05	Efs	Full Scale Range	2.2*	—	5.5*	V	
A06	EOFF	Offset Error	_	—	±1	LSb	VREF = 5.0V
A07	Egn	Gain Error	_	—	±1	LSb	VREF = 5.0V
A10	—	Monotonicity	_	guaranteed ⁽³⁾	_	—	$VSS \leq VAIN \leq VREF+$
A20 A20A	VREF	Reference Voltage	2.0 2.5	_	 Vdd + 0.3	V	Absolute minimum to ensure 10-bit accuracy
A21	Vref	Reference V High (VDD or VREF)	Vss	—	Vdd	V	
A25	Vain	Analog Input Voltage	Vss		VREF	V	
A30	ZAIN	Recommended Impedance of Analog Voltage Source	_	_	10	kΩ	
A50	IREF	VREF Input Current ⁽²⁾	10	—	1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN.
				—	10	μA	During A/D conversion cycle.


† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from External VREF or VDD pin, whichever is selected as reference input.

3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

SLEEP instruction to be executed.

Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
130	Tad	A/D Clock Period	1.6	—	_	μS	Tosc based, VREF \geq 3.0V
			3.0*	_	—	μS	Tosc based, VREF full range
130	Tad	A/D Internal RC Oscillator Period	3.0*	6.0	9.0*	μs	ADCS<1:0> = 11 (RC mode) At VDD = 2.5V
			2.0*	4.0	6.0*	μS	At VDD = 5.0V
131	TCNV	Conversion Time (not including Acquisition Time) ⁽¹⁾	_	11	—	Tad	Set GO bit to new data in A/D result register
132	TACQ	Acquisition Time	(Note 2)	11.5	—	μS	
			5*	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 4.1 mV @ 4.096V) from the last sampled volt- age (as stored on CHOLD).
134	TGO	Q4 to A/D Clock Start	_	Tosc/2	—	_	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Table 7-1 for minimum conditions.

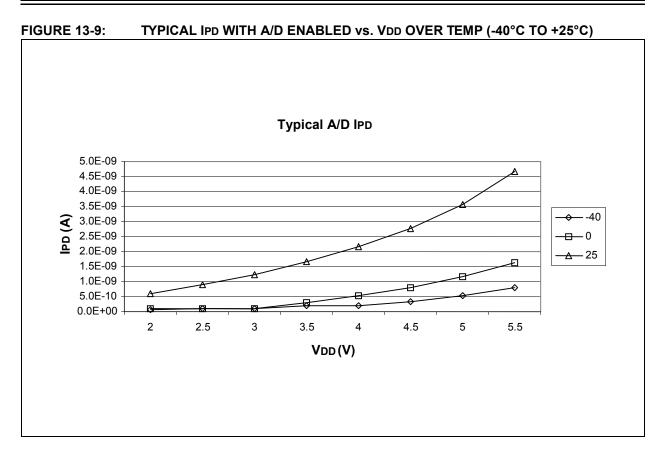
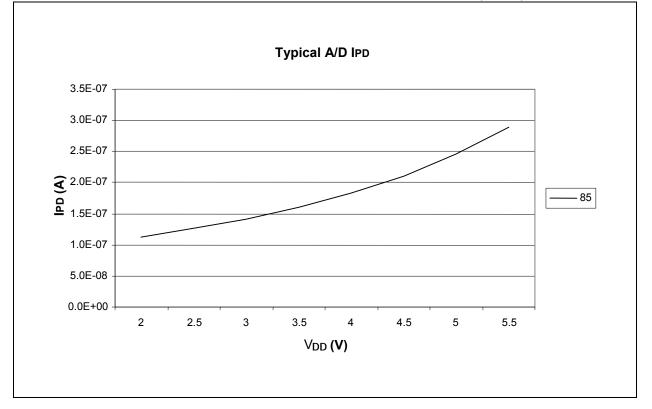
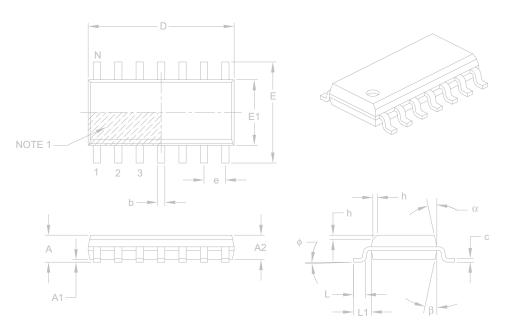




FIGURE 13-10: TYPICAL IPD WITH A/D ENABLED vs. VDD OVER TEMP (+85°C)

14-Lead Plastic Small Outline (SL) – Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX		
Number of Pins	N		14			
Pitch	е		1.27 BSC			
Overall Height	A	-	-	1.75		
Molded Package Thickness	A2	1.25	-	-		
Standoff §	A1	0.10	-	0.25		
Overall Width	E		6.00 BSC			
Molded Package Width	E1	3.90 BSC				
Overall Length	D	8.65 BSC				
Chamfer (optional)	h	0.25	-	0.50		
Foot Length	L	0.40	-	1.27		
Footprint	L1		1.04 REF			
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.17	-	0.25		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-065B

INDEX

	4 -
A/D	
Acquisition Requirements	
Block Diagram	
Calculating Acquisition Time	
Configuration and Operation	
Effects of a Reset	
Internal Sampling Switch (Rss) Impedance	
Operation During Sleep	
PIC16F675 Converter Characteristics	
Source Impedance	
Summary of Registers	
Absolute Maximum Ratings	. 85
AC Characteristics	
Industrial and Extended	
Analog Input Connection Considerations	. 42
Analog-to-Digital Converter. See A/D	
Assembler	
MPASM Assembler	. 82
В	
-	
Block Diagram	24
TMR0/WDT Prescaler	. 51
Block Diagrams	
Analog Input Mode	
Analog Input Model	
Comparator Output	
Comparator Voltage Reference	
On-Chip Reset Circuit	
RA0 and RA1 Pins	
RA2	
RA3	. 25
RA4	. 26
RA5	. 26
RC Oscillator Mode	
RC0/RC1/RC2/RC3 Pins	. 28
RC4 AND RC5 Pins	. 28
Timer1	. 34
Watchdog Timer	. 69
Brown-out	
Associated Registers	. 62
Brown-out Detect (BOD)	
Brown-out Detect Timing and Characteristics	
C	
-	
C Compilers	
MPLAB C18	
Calibrated Internal RC Frequencies	
CLKOUT	. 58
Code Examples	
Changing Prescaler	
Data EEPROM Read	
Data EEPROM Write	. 53
Initializing PORTA	
Initializing PORTC	
Saving STATUS and W Registers in RAM	. 68
Write Verify	. 53
Code Protection	.71
Comparator	. 39
Associated Registers	
Configuration	
Effects of a Reset	
I/O Operating Modes	
	. 41
Interrupts	. 41 . 44
	. 41 . 44 . 40

Output
Reference
Response Time
Comparator Specifications 102
Comparator Voltage Reference Specifications
Configuration Bits
Configuring the Voltage Reference
Crystal Operation
Customer Change Notification Service
Customer Notification Service 129
Customer Support 129
D
D
Data EEPROM Memory
Associated Registers/Bits 54
Code Protection54
EEADR Register 51
EECON1 Register
EECON2 Register
EEDATA Register 51
Data Memory Organization
DC Characteristics
Extended and Industrial
Industrial
Debugger71
Development Support
Device Differences
Device Migrations
Device Overview
E
EEPROM Data Memory
Reading
Spurious Write 53
Write Verify 53
Writing
Writing 53 Electrical Specifications 85 Errata 5 F 5 Firmware Instructions 73 G 73 General Purpose Register File 9 I 10 Locations 71 In-Circuit Serial Programming 71
Writing
Writing 53 Electrical Specifications 85 Errata 5 F 5 Firmware Instructions 73 G 73 General Purpose Register File 9 I 10 Locations 71 In-Circuit Serial Programming 71
Writing 53 Electrical Specifications 85 Errata 5 F 73 G 6 General Purpose Register File 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73
Writing 53 Electrical Specifications 85 Errata 5 F 5 Firmware Instructions 73 G 73 General Purpose Register File 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 Instruction Set 73
Writing 53 Electrical Specifications 85 Errata 5 F 5 Firmware Instructions 73 G 73 General Purpose Register File 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 Instruction Set 73 ADDLW 75
Writing 53 Electrical Specifications 85 Errata 5 F 5 Firmware Instructions 73 G 73 General Purpose Register File 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 Instruction Set 73
Writing 53 Electrical Specifications 85 Errata 5 F 5 Firmware Instructions 73 G 73 General Purpose Register File 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 Instruction Set 73 ADDLW 75
Writing 53 Electrical Specifications 85 Errata 5 F 5 Firmware Instructions 73 G 73 General Purpose Register File 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 Instruction Set 73 ADDLW 75 ADDWF 75
Writing53Electrical Specifications85Errata5FFirmware Instructions73GGeneral Purpose Register File9IID Locations71In-Circuit Serial Programming71Indirect Addressing, INDF and FSR Registers20Instruction Format73Instruction Set73ADDLW75ADDWF75ANDLW75ANDWF75
Writing53Electrical Specifications85Errata5FFirmware Instructions73GGeneral Purpose Register File9IID Locations71In-Circuit Serial Programming71Indirect Addressing, INDF and FSR Registers20Instruction Format73Instruction Set73ADDLW75ADDWF75ANDLW75BCF75
Writing 53 Electrical Specifications 85 Errata 5 F 5 Firmware Instructions 73 G 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 Instruction Set 73 ADDLW 75 ADDWF 75 ANDLW 75 BCF 75 BSF 75
Writing 53 Electrical Specifications 85 Errata 5 F 5 Firmware Instructions 73 G 73 G 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 Instruction Set 73 ADDLW 75 ADDWF 75 ANDLW 75 BCF 75 BSF 75 BSF 75 BTFSC 75
Writing 53 Electrical Specifications 85 Errata 5 F 5 Firmware Instructions 73 G 73 G 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 Instruction Set 73 ADDLW 75 ADDWF 75 ANDLW 75 BCF 75 BSF 75 BTFSC 75 BTFSS 75
Writing 53 Electrical Specifications 85 Errata 5 F 5 Firmware Instructions 73 G 73 G 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 Instruction Set 73 ADDLW 75 ADDWF 75 ANDLW 75 BSF 75 BSF 75 BTFSC 75 BTFSS 75 BTFSS 75
Writing 53 Electrical Specifications 85 Errata 5 F 5 Firmware Instructions 73 G 73 G 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 Instruction Set 73 ADDLW 75 ADDWF 75 ANDLW 75 BCF 75 BSF 75 BTFSC 75 BTFSS 75
Writing 53 Electrical Specifications 85 Errata 5 F 5 Firmware Instructions 73 G 73 G 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 Instruction Set 73 ADDLW 75 ADDWF 75 ANDLW 75 BSF 75 BSF 75 BTFSC 75 BTFSS 75 BTFSS 75
Writing 53 Electrical Specifications 85 Errata 5 F 5 Firmware Instructions 73 G 73 G 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 Instruction Set 73 ADDLW 75 ADDWF 75 ANDLW 75 BSF 75 BSF 75 BTFSC 75 BTFSS 75 BTFSS 75 CALL 76 CLRF 76
Writing 53 Electrical Specifications 85 Errata 5 F 5 Firmware Instructions 73 G 73 G 73 General Purpose Register File 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 ADDLW 75 ADDLW 75 ADDLW 75 BSF 75 BSF 75 BTFSC 75 BTFSS 75 BTFSS 75 CLRW 76 CLRWL 76 CLRWDT 76
Writing 53 Electrical Specifications 85 Errata 5 F 5 Firmware Instructions 73 G 73 General Purpose Register File 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 ADDLW 75 ADDLW 75 ADDLW 75 BCF 75 BSF 75 BTFSC 75 BTFSS 75 BTFSS 75 CLRW 76 CLRWDT 76 COMF 76
Writing 53 Electrical Specifications 85 Errata 5 F 73 G 73 General Purpose Register File 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 ADDLW 75 ADDLW 75 ADDLW 75 BSF 75 BSF 75 BTFSC 75 BTFSS 75 BTFSS 75 CLRW 76 CLRWDT 76 DCLRWDT 76 DCLRWDT 76 DCLR 76 DCLR 76 DCLR 76 DCLR 76 DCLR 76 DCLRWDT 76 DCLR 76 DCLR 76 DCLR 76 DCF 76 <
Writing 53 Electrical Specifications 85 Errata 5 F 73 G 73 G 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 ADDLW 75 ADDLW 75 ADDLW 75 ADDLW 75 BSF 75 BSF 75 BTFSC 75 BTFSS 75 BTFSS 75 BTFSS 75 BTFSS 76 CLRW 76 CLRWDT 76 DECF 76
Writing 53 Electrical Specifications 85 Errata 5 F 73 G 73 G 73 G 73 G 73 ID Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 ADDLW 75 ADDLW 75 ADDLW 75 BCF 75 BSF 75 BTFSC 75 BTFSS 75 BTFSS 75 BTFSS 75 BTFSS 75 BTFSS 75 BTFSS 75 CLRW 76 CLRWDT 76 CLRWDT 76 DECF 76
Writing 53 Electrical Specifications 85 Errata 5 F 73 G 73 G 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 ADDLW 75 ADDLW 75 ADDLW 75 ADDLW 75 BSF 75 BSF 75 BTFSC 75 BTFSS 75 BTFSS 75 BTFSS 75 BTFSS 76 CLRW 76 CLRWDT 76 DECF 76