E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	12
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f630-i-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16F630/676

Pin Diagrams

3.0 PORTS A AND C

There are as many as twelve general purpose I/O pins available. Depending on which peripherals are enabled, some or all of the pins may not be available as general purpose I/O. In general, when a peripheral is enabled, the associated pin may not be used as a general purpose I/O pin.

Note:	Additional information on I/O ports may be								
	found in the PIC [®] Mid-Range Reference								
	Manual, (DS33023)								

3.1 PORTA and the TRISA Registers

PORTA is an 6-bit wide, bidirectional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin). The exception is RA3, which is input only and its TRIS bit will always read as '1'. Example 3-1 shows how to initialize PORTA.

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch. RA3 reads '0' when MCLREN = 1.

The TRISA register controls the direction of the PORTA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA

register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

Note:	The ANSEL (91h) and CMCON (19h)
	registers must be initialized to configure an
	analog channel as a digital input. Pins
	configured as analog inputs will read '0'.
	The ANSEL register is defined for the
	PIC16F676.

EXAMPLE 3-1: INITIALIZING PORTA

BCF	STATUS, RPO	;Bank 0
CLRF	PORTA	;Init PORTA
MOVLW	05h	;Set RA<2:0> to
MOVWF	CMCON	;digital I/O
BSF	STATUS, RPO	;Bank 1
CLRF	ANSEL	;digital I/O
MOVLW	0Ch	;Set RA<3:2> as inputs
MOVWF	TRISA	;and set RA<5:4,1:0>
		;as outputs
BCF	STATUS, RPO	;Bank 0

3.2 Additional Pin Functions

Every PORTA pin on the PIC16F630/676 has an interrupt-on-change option and every PORTA pin, except RA3, has a weak pull-up option. The next two sections describe these functions.

3.2.1 WEAK PULL-UP

Each of the PORTA pins, except RA3, has an individually configurable weak internal pull-up. Control bits WPUAx enable or disable each pull-up. Refer to Register 3-3. Each weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset by the RAPU bit (OPTION<7>).

U-0 R/W-x R/W-x R/W-x U-0 R/W-x R/W-x R/W-x RA5 RA4 RA3 RA2 RA1 RA0 bit 7 bit 0

PORTA — PORTA REGISTER (ADDRESS: 05h)

bit 7-6: Unimplemented: Read as '0'

bit 5-0: **PORTA<5:0>**: PORTA I/O pin bits

1 = Port pin is >VIH

0 = Port pin is <VIL

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	oit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 3-1:

REGISTER 3-4: IOCA — INTERRUPT-ON-CHANGE PORTA REGISTER (ADDRESS: 96h)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	IOCA5	IOCA4	IOCA3	IOCA2	IOCA1	IOCA0
bit 7							bit 0

bit 7-6 Unimplemented: Read as '0'

bit 5-0

IOCA<5:0>: Interrupt-on-Change PORTA Control bits

1 = Interrupt-on-change enabled

0 = Interrupt-on-change disabled

Note: Global Interrupt Enable (GIE) must be enabled for individual interrupts to be recognized.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

4.3 Using Timer0 with an External Clock

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI, with the internal phase clocks, is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

Note:	The ANSEL (91h) and CMCON (19h)
	registers must be initialized to configure an
	analog channel as a digital input. Pins
	configured as analog inputs will read '0'.
	The ANSEL register is defined for the
	PIC16F676.

REGISTER 4-1: OPTION_REG — OPTION REGISTER (ADDRESS: 81h)

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
	RAPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0			
	bit 7				•	·		bit 0			
	<u> </u>										
bit 7	RAPU: PORTA Pull-up Enable bit 1 = PORTA pull-ups are disabled										
	0 = PORT/	A pull-ups a	re enabled b	oy individual	PORT latch	values					
bit 6	INTEDG:	nterrupt Ed	ge Select bi	t							
	1 = Interru	pt on rising	edge of RA	2/INT pin							
hit 5		PL OF Talling	Ource Selec	z/INT pill t hit							
bit 0	1 = Transif	tion on RA2	/T0CKI pin								
	0 = Interna	al instructior	ו cycle clock	(CLKOUT)							
bit 4	TOSE: TM	R0 Source	Edge Select	bit							
	0 = Increm	ient on low-	to-high trans	sition on RA2	2/T0CKI pin						
bit 3	PSA: Pres	caler Assig	nment bit								
	1 = Presca	aler is assig	ned to the W	/DT							
hit 2_0	0 = Presca	Iler is assig Drescaler F	Neu lu line in Pata Salact I	IMERU MOQUI	3						
DIL 2-0	F 02.F 0V.										
	-										
		000 001	1:2 1:4	1:1 1:2							
		010	1:8	1:4							
		011	1:16	1:8							
	101 1:64 1:32										
	110 1:128 1:64										
		111	1:256	1:128							
	Legend:										

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	oit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

5.0 TIMER1 MODULE WITH GATE CONTROL

The PIC16F630/676 devices have a 16-bit timer. Figure 5-1 shows the basic block diagram of the Timer1 module. Timer1 has the following features:

- 16-bit timer/counter (TMR1H:TMR1L)
- · Readable and writable
- Internal or external clock selection
- Synchronous or asynchronous operation
- Interrupt on overflow from FFFFh to 0000h
- Wake-up upon overflow (Asynchronous mode)
- Optional external enable input $(\overline{T1G})$
- · Optional LP oscillator

FIGURE 5-1: TIMER1 BLOCK DIAGRAM

The Timer1 Control register (T1CON), shown in Register 5-1, is used to enable/disable Timer1 and select the various features of the Timer1 module.

Note: Additional information on timer modules is available in the PIC[®] Mid-Range Reference Manual, (DS33023).

6.3 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 6-3. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this

range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur. A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

FIGURE 6-3: ANALOG INPUT MODE

6.4 Comparator Output

The comparator output, COUT, is read through the CMCON register. This bit is read-only. The comparator output may also be directly output to the RA2 pin in three of the eight possible modes, as shown in Figure 6-2. When in one of these modes, the output on RA2 is asynchronous to the internal clock. Figure 6-4 shows the comparator output block diagram.

The TRISA<2> bit functions as an output enable/ disable for the RA2 pin while the comparator is in an Output mode.

- Note 1: When reading the PORTA register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert an analog input according to the TTL input specification.
 - 2: Analog levels on any pin that is defined as a digital input, may cause the input buffer to consume more current than is specified.

FIGURE 6-4: MODIFIED COMPARATOR OUTPUT BLOCK DIAGRAM

PIC16F630/676

REGISTER 7-3:	ANSEL—ANALOG SELECT REGISTER (ADRESS: 91h) (PIC16F676 ONLY)
---------------	---

| R/W-1 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ANS7 | ANS6 | ANS5 | ANS4 | ANS3 | ANS2 | ANS1 | ANS0 |
| bit 7 | | | | | | | bit 0 |

bit 7-0: **ANS<7:0>**: Analog Select between analog or digital function on pins AN<7:0>, respectively. 1 = Analog input. Pin is assigned as analog input.⁽¹⁾

0 = Digital I/O. Pin is assigned to port or special function.

Note 1: Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups, and interrupt-on-change if available. The corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

7.2 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 7-3. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 7-3. The maximum recommended impedance for analog sources is 10 k\Omega. As the impedance

EQUATION 7-1: ACQUISITION TIME

is decreased, the acquisition time may be decreased. After the analog input channel is selected (changed), this acquisition must be done before the conversion can be started.

To calculate the minimum acquisition time, Equation 7-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

To calculate the minimum acquisition time, TACQ, see the PIC[®] Mid-Range Reference Manual (DS33023).

TACQ	= Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient
TC	= TAMP + TC + TCOFF = $2\mu s + TC + [(Temperature -25^{\circ}C)(0.05\mu s/^{\circ}C)]$ = CHOLD (RIC + Rss + Rs) In(1/2047) = $-120pF (1k\Omega + 7k\Omega + 10k\Omega) In(0.0004885)$ = $16.47\mu s$ = $2\mu s + 16.47\mu s + 1(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)$
TACQ	$= 2\mu s + 16.4/\mu s + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$ = 19.72\mu s

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- **2:** The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is 10 kΩ. This is required to meet the pin leakage specification.

8.1 EEADR

The EEADR register can address up to a maximum of 128 bytes of data EEPROM. Only seven of the eight bits in the register (EEADR<6:0>) are required. The MSb (bit 7) is ignored.

The upper bit should always be '0' to remain upward compatible with devices that have more data EEPROM memory.

8.2 EECON1 AND EECON2 REGISTERS

EECON1 is the control register with four low order bits physically implemented. The upper four bits are nonimplemented and read as '0's.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set, in software. They are cleared in hardware at completion

of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a MCLR Reset, or a WDT Time-out Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit. clear it. and rewrite the location. The data and address will be cleared, therefore, the EEDATA and EEADR registers will need to be re-initialized.

The Interrupt flag bit EEIF in the PIR1 register is set when the write is complete. This bit must be cleared in software.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the data EEPROM write sequence.

REGISTE

U-0	U-0	U-0	U-0	R/W-x	R/W-0	R/S-0	R/S-0	
_	—	—	—	WRERR	WREN	WR	RD	
bit 7							bit	
Unimplem	ented: Read	d as '0'						
WRERR: E	EPROM Er	ror Flag bit						
1 =A write normal 0 =The wri	operation is operation or te operation	Prematurely BOD detection completed	/ terminatec t)	l (any MCLR	Reset, any	WDT Rese	t during	
WREN: EE	WREN: EEPROM Write Enable bit							
1 = Allows	write cycles							
0 = Inhibits	write to the	data EEPR	OM					
WR: Write	Control bit							
1 = Initiates can onl 0 = Write c	s a write cyc y be set, no ycle to the d	le (The bit is t cleared, in ata EEPRO	s cleared by software.) M is comple	hardware or	nce write is o	complete. T	he WR bit	
RD: Read	Control bit							
1 = Initiates can onl	s an EEPRC y be set, no	M read (Re t cleared, in	ad takes or software.)	e cycle. RD	is cleared in	n hardware.	The RD b	
0 = Does n	ot initiate ar	EEPROM	read					
Legend:								
S = Bit can	only be set							
R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as	'0'	
- n = Value	at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is u	Inknown	

9.2 Oscillator Configurations

9.2.1 OSCILLATOR TYPES

The PIC16F630/676 can be operated in eight different Oscillator Option modes. The user can program three Configuration bits (FOSC2 through FOSC0) to select one of these eight modes:

- LP Low-Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC External Resistor/Capacitor (2 modes)
- · INTOSC Internal Oscillator (2 modes)
- EC External Clock In

Note:	Additional information on oscillator config-
	urations is available in the PIC® Mid-Range
	Reference Manual, (DS33023).

9.2.2 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation (see Figure 9-1). The PIC16F630/676 oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may yield a frequency outside of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1 pin (see Figure 9-2).

FIGURE 9-1: CRYSTAL OPERATION (OR CERAMIC RESONATOR) (HS, XT OR LP OSC CONFIGURATION)

EXTERNAL CLOCK INPUT OPERATION (HS, XT, EC, OR LP OSC CONFIGURATION)

Note 1: Functions as RA4 in EC Osc mode.

TABLE 9-1:CAPACITOR SELECTION FOR
CERAMIC RESONATORS

Ranges Characterized:									
Mode	Freq	OSC1(C1)	OSC2(C2)						
ХТ	455 kHz 2.0 MHz 4.0 MHz	68-100 pF 15-68 pF 15-68 pF	68-100 pF 15-68 pF 15-68 pF						
HS	8.0 MHz 16.0 MHz	10-68 pF 10-22 pF	10-68 pF 10-22 pF						
Note 1:	Higher capa of the oscilla start-up time guidance on its own char consult the appropriate components	citance increase ator but also increase ator but also increase ly. Since each r acteristics, the u resonator manufivalues of extern s.	es the stability reases the are for design esonator has user should facturer for hal						

TABLE 9-2:CAPACITOR SELECTION FOR
CRYSTAL OSCILLATOR

Mode	Freq	OSC1(C1)	OSC2(C2)					
LP	32 kHz	68-100 pF	68-100 pF					
ХТ	100 kHz 2 MHz 4 MHz	68-150 pF 15-30 pF 15-30 pF	150-200 pF 15-30 pF 15-30 pF					
HS	8 MHz 10 MHz 20 MHz	15-30 pF 15-30 pF 15-30 pF	15-30 pF 15-30 pF 15-30 pF					
Note 1: Higher capacitance increases the stability								

of the oscillator but also increases the start-up time. These values are for design guidance only. Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

TADLE 3-7.				
Register	Address	Power-on Reset	 MCLR Reset WDT Reset Brown-out Detect⁽¹⁾ 	 Wake-up from Sleep through interrupt Wake-up from Sleep through WDT time-out
W	—	XXXX XXXX	นนนน นนนน	սսսս սսսս
INDF	00h/80h	—	—	—
TMR0	01h	XXXX XXXX	นนนน นนนน	นนนน นนนน
PCL	02h/82h	0000 0000	0000 0000	PC + 1 ⁽³⁾
STATUS	03h/83h	0001 1xxx	000q quuu (4)	uuuq quuu ⁽⁴⁾
FSR	04h/84h	XXXX XXXX	นนนน นนนน	սսսս սսսս
PORTA	05h	xx xxxx	uu uuuu	uu uuuu
PORTC	07h	xx xxxx	uu uuuu	uu uuuu
PCLATH	0Ah/8Ah	0 0000	0 0000	u uuuu
INTCON	0Bh/8Bh	0000 0000	0000 000u	uuuu uuqq ⁽²⁾
PIR1	0Ch	00 00	00 00	qq qq ^(2,5)
T1CON	10h	-000 0000	-uuu uuuu	-uuu uuuu
CMCON	19h	-0-0 0000	-0-0 0000	-u-u uuuu
ADRESH	1Eh	XXXX XXXX	นนนน นนนน	นนนน นนนน
ADCON0	1Fh	00-0 0000	00-0 0000	นน-น นนนน
OPTION_REG	81h	1111 1111	1111 1111	սսսս սսսս
TRISA	85h	11 1111	11 1111	uu uuuu
TRISC	87h	11 1111	11 1111	uu uuuu
PIE1	8Ch	00 00	00 00	uu uu
PCON	8Eh	0x	(1,6)	uu
OSCCAL	90h	1000 00	1000 00	uuuu uu
ANSEL	91h	1111 1111	1111 1111	սսսս սսսս
WPUA	95h	11 -111	11 -111	սսսս սսսս
IOCA	96h	00 0000	00 0000	uu uuuu
VRCON	99h	0-0- 0000	0-0- 0000	u-u- uuuu
EEDATA	9Ah	0000 0000	0000 0000	սսսս սսսս
EEADR	9Bh	-000 0000	-000 0000	-นนน นนนน
EECON1	9Ch	x000	q000	uuuu
EECON2	9Dh			
ADRESL	9Eh	XXXX XXXX	นนนน นนนน	นนนน นนนน
ADCON1	9Fh	-000	-000	-uuu

TABLE 9-7: INITIALIZATION CONDITION FOR REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition.

- Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.
 2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).
 - **3:** When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).
 - 4: See Table 9-6 for Reset value for specific condition.
 - 5: If wake-up was due to data EEPROM write completing, bit 7 = 1; A/D conversion completing, bit 6 = 1; Comparator input changing, bit 3 = 1; or Timer1 rolling over, bit 0 = 1. All other interrupts generating a wake-up will cause these bits to = u.
 - **6:** If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.

9.8 Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note: The entire data EEPROM and Flash program memory will be erased when the code protection is turned off. The INTOSC calibration data is also erased. See PIC16F630/676 Programming Specification for more information.

9.9 ID Locations

Four memory locations (2000h-2003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution but are readable and writable during Program/Verify. Only the Least Significant 7 bits of the ID locations are used.

9.10 In-Circuit Serial Programming

The PIC16F630/676 microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for:

- power
- ground
- programming voltage

This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a Program/Verify mode by holding the RA0 and RA1 pins low, while raising the MCLR (VPP) pin from VIL to VIHH (see Programming Specification). RA0 becomes the programming data and RA1 becomes the programming clock. Both RA0 and RA1 are Schmitt Trigger inputs in this mode.

After Reset, to place the device into Programming/Verify mode, the program counter (PC) is at location 00h. A 6-bit command is then supplied to the device. Depending on the command, 14 bits of program data are then supplied to or from the device, depending on whether the command was a load or a read. For complete details of serial programming, please refer to the PIC16F630/676 Programming Specification.

A typical In-Circuit Serial Programming connection is shown in Figure 9-14.

FIGURE 9-14:

TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

9.11 In-Circuit Debugger

Since in-circuit debugging requires the loss of clock, data and MCLR pins, MPLAB[®] ICD 2 development with an 14-pin device is not practical. A special 20-pin PIC16F676-ICD device is used with MPLAB ICD 2 to provide separate clock, data and MCLR pins and frees all normally available pins to the user.

This special ICD device is mounted on the top of the header and its signals are routed to the MPLAB ICD 2 connector. On the bottom of the header is an 14-pin socket that plugs into the user's target via the 14-pin stand-off connector.

When the ICD pin on the PIC16F676-ICD device is held low, the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB ICD 2. When the microcontroller has this feature enabled, some of the resources are not available for general use. Table 9-10 shows which features are consumed by the background debugger:

TABLE 9-10: DEBUGGER RESOURCES

I/O pins	ICDCLK, ICDDATA
Stack	1 level
Program Memory	Address 0h must be NOP 300h-3FEh

For more information, see 14-Pin MPLAB ICD 2 Header Information Sheet (DS51292) available on Microchip's web site (www.microchip.com).

11.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows® programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

11.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

11.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

12.3	DC Characteristics: PIC16F630/676-I	(Industrial)
------	-------------------------------------	--------------

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le Ta \le +85^{\circ}C$ for industrial							s otherwise stated) ·85°C for industrial
Param	Device Characteristics	Min	Turnt	Mov	Unito		Conditions
No.	Device Characteristics	WIIN		Max Units	Vdd	Note	
D020	Power-down Base Current	—	0.99	700	nA	2.0	WDT, BOD, Comparators, VREF,
	(IPD)		1.2	770	nA	3.0	and T1OSC disabled
		_	2.9	995	nA	5.0	
D021		_	0.3	1.5	μA	2.0	WDT Current ⁽¹⁾
			1.8	3.5	μA	3.0	
		_	8.4	17	μA	5.0	
D022		_	58	70	μA	3.0	BOD Current ⁽¹⁾
		_	109	130	μA	5.0	
D023			3.3	6.5	μA	2.0	Comparator Current ⁽¹⁾
		_	6.1	8.5	μA	3.0	
			11.5	16	μA	5.0	
D024			58	70	μA	2.0	CVREF Current ⁽¹⁾
			85	100	μA	3.0	
			138	160	μA	5.0	
D025			4.0	6.5	μA	2.0	T1 Osc Current ⁽¹⁾
			4.6	7.0	μA	3.0	
		_	6.0	10.5	μA	5.0	
D026			1.2	755	nA	3.0	A/D Current ⁽¹⁾
		—	0.0022	1.0	μA	5.0	

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

12.8 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created with one of the following formats:

- 1. TppS2ppS
- 2. TppS

· · ·			
Т			
F	Frequency	Т	Time
Lower	case letters (pp) and their meanings:		
рр			
сс	CCP1	OSC	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Uppero	case letters and their meanings:		
S			
F	Fall	Р	Period
н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance

FIGURE 12-4: LOAD CONDITIONS

FIGURE 12-11	PIC16F676	A/D CONVERSION	TIMING (SI FEP	MODE)

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
130	TAD	A/D Clock Period	1.6	—	_	μS	$VREF \ge 3.0V$
			3.0*	—	—	μS	VREF full range
130	TAD	A/D Internal RC					ADCS<1:0> = 11 (RC mode)
		Oscillator Period	3.0*	6.0	9.0*	μs	At VDD = 2.5V
			2.0*	4.0	6.0*	μS	At VDD = 5.0V
131	ΤΟΝΥ	Conversion Time (not including Acquisition Time) ⁽¹⁾		11		Tad	
132	TACQ	Acquisition Time	(Note 2)	11.5		μS	
			5*	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 4.1 mV @ 4.096V) from the last sampled voltage (as stored on CHOLD).
134	TGO	Q4 to A/D Clock Start	_	Tosc/2 + Tcy		_	If the A/D clock source is selected as RC, a time of TcY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Table 7-1 for minimum conditions.

PIC16F630/676

NOTES:

14.2 Package Details

The following sections give the technical details of the packages.

14-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
Dimensio	on Limits	MIN	NOM	MAX
Number of Pins	Ν		14	
Pitch	е		.100 BSC	
Top to Seating Plane	Α	-	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.735	.750	.775
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.045	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	_	_	.430

Notes:

- 1. Pin 1 visual index feature may vary, but must be located with the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-005B

14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
Dimensior	n Limits	MIN	NOM	MAX	
Number of Pins	Ν		14		
Pitch	е		0.65 BSC		
Overall Height	Α	—	—	1.20	
Molded Package Thickness	A2	0.80	1.00	1.05	
Standoff	A1	0.05	—	0.15	
Overall Width	E		6.40 BSC		
Molded Package Width	E1	4.30	4.40	4.50	
Molded Package Length	D	4.90	5.00	5.10	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1		1.00 REF		
Foot Angle	φ	0°	—	8°	
Lead Thickness	С	0.09	_	0.20	
Lead Width	b	0.19	_	0.30	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-087B

APPENDIX C: DEVICE MIGRATIONS

This section is intended to describe the functional and electrical specification differences when migrating between functionally similar devices (such as from a PIC16C74A to a PIC16C74B).

Not Applicable

APPENDIX D: MIGRATING FROM OTHER PIC[®] DEVICES

This discusses some of the issues in migrating from other PIC devices to the PIC16F6XX family of devices.

D.1 PIC12C67X to PIC12F6XX

Feature	PIC12C67X	PIC16F6XX
Max Operating Speed	10 MHz	20 MHz
Max Program Memory	2048 bytes	1024 bytes
A/D Resolution	8-bit	10-bit
Data EEPROM	16 bytes	64 bytes
Oscillator Modes	5	8
Brown-out Detect	Ν	Y
Internal Pull-ups	RA0/1/3	RA0/1/2/4/5
Interrupt-on-change	RA0/1/3	RA0/1/2/3/4/5
Comparator	N	Y

TABLE 1: FEATURE COMPARISON

Note:	This device has been designed to perform
	to the parameters of its data sheet. It has
	been tested to an electrical specification
	designed to determine its conformance
	with these parameters. Due to process
	differences in the manufacture of this
	device, this device may have different
	performance characteristics than its earlier
	version. These differences may cause this
	device to perform differently in your
	application than the earlier version of this
	device.