

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product StatusActiveCore ProcessorPICCore Size8-Bit
Core Size 8-Bit
Speed 20MHz
Connectivity -
Peripherals Brown-out Detect/Reset, POR, WDT
Number of I/O 12
Program Memory Size 1.75KB (1K x 14)
Program Memory Type FLASH
EEPROM Size128 x 8
RAM Size64 x 8
Voltage - Supply (Vcc/Vdd) 2V ~ 5.5V
Data Converters -
Oscillator Type Internal
Operating Temperature -40°C ~ 125°C (TA)
Mounting Type Surface Mount
Package / Case 14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package 14-TSSOP
Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic16f630t-e-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

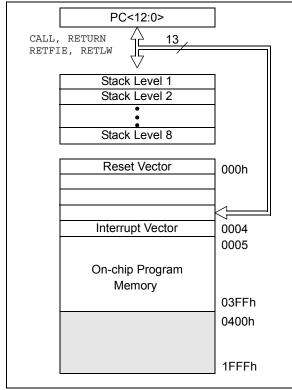
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-60932-173-4

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.


NOTES:

2.0 MEMORY ORGANIZATION

2.1 Program Memory Organization

The PIC16F630/676 devices have a 13-bit program counter capable of addressing an 8K x 14 program memory space. Only the first 1K x 14 (0000h-03FFh) for the PIC16F630/676 devices is physically implemented. Accessing a location above these boundaries will cause a wrap around within the first 1K x 14 space. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 2-1).

2.2 Data Memory Organization

The data memory (see Figure 2-2) is partitioned into two banks, which contain the General Purpose Registers and the Special Function Registers. The Special Function Registers are located in the first 32 locations of each bank. Register locations 20h-5Fh are General Purpose Registers, implemented as static RAM and are mapped across both banks. All other RAM is unimplemented and returns '0' when read. RP0 (STATUS<5>) is the bank select bit.

- RP0 = 0 Bank 0 is selected
- RP0 = 1 Bank 1 is selected
- Note: The IRP and RP1 bits STATUS<7:6> are reserved and should always be maintained as '0's.
- 2.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 64 x 8 in the PIC16F630/676 devices. Each register is accessed, either directly or indirectly, through the File Select Register FSR (see Section 2.4 "Indirect Addressing, INDF and FSR Registers").

2.2.2.1 STATUS Register

The STATUS register, shown in Register 2-1, contains:

- the arithmetic status of the ALU
- · the Reset status
- the bank select bits for data memory (SRAM)

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits, see **Section 10.0 "Instruction Set Summary"**.

- **Note 1:** Bits IRP and RP1 (STATUS<7:6>) are not used by the PIC16F630/676 and should be maintained as clear. Use of these bits is not recommended, since this may affect upward compatibility with future products.
 - 2: The <u>C</u> and <u>DC</u> bits operate as a Borrow and <u>Digit</u> Borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

REGISTER 2-1:	STATUS — STATUS REGISTER (ADDRESS: 03h OR 83h)
---------------	--

	Reserved	Reserved	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x		
	IRP	RP1	RP0	TO	PD	Z	DC	С		
	bit 7							bit 0		
bit 7	IRP: This b	oit is reserve	d and shoul	d be mainta	ined as '0'					
bit 6	RP1: This	bit is reserve	ed and shou	ld be mainta	ained as '0'					
bit 5	RP0: Register Bank Select bit (used for direct addressing) 1 = Bank 1 (80h-FFh) 0 = Bank 0 (00h-7Fh)									
bit 4	TO: Time-out bit 1 = After power-up, CLRWDT instruction, or SLEEP instruction 0 = A WDT time-out occurred									
bit 3	PD : Power-Down bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction									
bit 2		sult of an ari sult of an ari		• •		D				
bit 1	 0 = The result of an arithmetic or logic operation is not zero DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) For borrow, the polarity is reversed. 1 = A carry-out from the 4th low order bit of the result occurred 0 = No carry-out from the 4th low order bit of the result 									
bit 0	C : Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred									
	Note:	complemen	t of the sec	ond operan	d. For rotate	on is execut e (RRF, RLF) e source reg	instructions			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.2.2.6 PCON Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- · Power-on Reset (POR)
- Brown-out Detect (BOD)
- Watchdog Timer Reset (WDT)
- External MCLR Reset

The PCON Register bits are shown in Register 2-6.

REGISTER 2-6: PCON — POWER CONTROL REGISTER (ADDRESS: 8Eh)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-x
_	_	_	—	_	_	POR	BOD
bit 7							bit 0

bit 7-2 Unimplemented: Read as '0'

bit 1 **POR:** Power-on Reset Status bit

1 = No Power-on Reset occurred

0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)

bit 0 BOD: Brown-out Detect Status bit

- 1 = No Brown-out Detect occurred
- 0 = A Brown-out Detect occurred (must be set in software after a Brown-out Detect occurs)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.2.2.7 OSCCAL Register

bit 7-2

bit 1-0

The Oscillator Calibration register (OSCCAL) is used to calibrate the internal 4 MHz oscillator. It contains 6 bits to adjust the frequency up or down to achieve 4 MHz.

The OSCCAL register bits are shown in Register 2-7.

REGISTER 2-7: OSCCAL—INTERNALOSCILLATOR CALIBRATION REGISTER (ADDRESS: 90h)

							-	
R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	
CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	_	_	
bit 7							bit	
100000 = 0	Maximum fro Center frequ Minimum fre	iency						
Unimplem	ented: Read	d as '0'						
Legend:								
R = Reada	ble bit	W = W	ritable bit	U = Unimplemented bit, read as '0'				
- n = Value	at POR	'1' = B	it is set	'0' = Bit is cleared x = Bit is unknown				

4.4 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer. For simplicity, this counter will be referred to as "prescaler" throughout this Data Sheet. The prescaler assignment is controlled in software by the control bit PSA (OPTION_REG<3>). Clearing the PSA bit will assign the prescaler to Timer0. Prescale values are selectable via the PS2:PS0 bits (OPTION_REG<2:0>).

The prescaler is not readable or writable. When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1, x...etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer.

4.4.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on the fly" during program execution). To avoid an unintended device Reset, the following instruction sequence (Example 4-1) must be executed when changing the prescaler assignment from Timer0 to WDT.

EXAMPLE 4-1: CHANGING PRESCALER (TIMER0→WDT)

BCF CLRWDT	STATUS, RPO	;Bank 0 ;Clear WDT
	T N (T) (1)	,
CLRF	TMR0	;Clear TMR0 and
		; prescaler
BSF	STATUS, RPO	;Bank 1
MOVLW	b'00101111'	;Required if desired
MOVWF	OPTION REG	; PS2:PS0 is
CLRWDT	_	; 000 or 001
		;
MOVLW	b'00101xxx'	;Set postscaler to
MOVWF	OPTION REG	; desired WDT rate
BCF	STATUS, RPO	;Bank 0

To change prescaler from the WDT to the TMR0 module, use the sequence shown in Example 4-2. This precaution must be taken even if the WDT is disabled.

EXAMPLE 4-2: CHANGING PRESCALER (WDT→TIMER0)

CLRWDT		;Clear WDT and
BSF	STATUS, RPO	; postscaler ;Bank 1
MOVLW	b'xxxx0xxx'	;Select TMR0, ; prescale, and ; clock source
MOVWF BCF	OPTION_REG STATUS,RPO	; ;Bank O

TABLE 4-1:REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Value on all other Resets
01h	TMR0	Timer0 M	imer0 Module Register							XXXX XXXX	uuuu uuuu
0Bh/8Bh	INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	0000 0000	0000 000u
81h	OPTION_REG	RAPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	_	—	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111

Legend: -= Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Timer0 module.

GISTER 5-1: T1CON — TIMER1 CONTROL REGISTER (ADDRESS: 10h)										
	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	—	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N		
	bit 7							bit 0		
bit 7	Unimplem	ented: Read	as '0'							
bit 6	-	Timer1 Gate								
	If TMR10									
	This bit is i If TMR10N									
		is on if T1G	pin is low							
	0 = Timer1									
bit 5-4		:T1CKPS0: T	•	t Clock Pres	scale Select I	oits				
	-	rescale Value rescale Value								
		rescale Value								
	00 = 1:1 P	rescale Value	9							
bit 3	T1OSCEN: LP Oscillator Enable Control bit If INTOSC without CLKOUT oscillator is active:									
		illator is enat			<u>).</u>					
		illator is off								
	<u>Else:</u> This hit is i	aparad								
bit 2	This bit is i	-	aal Clock I	nnut Synchr	onization Co	atrol bit				
DIL Z	T1SYNC: Timer1 External Clock Input Synchronization Control bit <u>TMR1CS = 1:</u>									
	1 = Do not synchronize external clock input									
	0 = Synchronize external clock input <u>TMR1CS = 0:</u>									
	This bit is ignored. Timer1 uses the internal clock.									
bit 1	TMR1CS:	Timer1 Clock	Source S	elect bit						
	 1 = External clock from T1OSO/T1CKI pin (on the rising edge) 0 = Internal clock (Fosc/4) 									
h# 0		-	-							
bit 0	1 = Enable	Timer1 On b s Timer1	IL							
	0 = Stops	Timer1								
	Legend:									
	R = Reada	able bit	VV = V	Vritable bit	U = Unim	plemented	bit, read as	'0'		
	- n = Value	e at POR	'1' = E	Bit is set	'0' = Bit is	s cleared	x = Bit is u	Inknown		

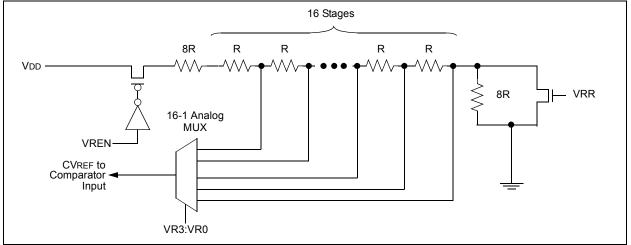
REGISTER 5-1: T1CON — TIMER1 CONTROL REGISTER (ADDRESS: 10h)

6.5 Comparator Reference

The comparator module also allows the selection of an internally generated voltage reference for one of the comparator inputs. The internal reference signal is used for four of the eight Comparator modes. The VRCON register, Register 6-2, controls the voltage reference module shown in Figure 6-5.

6.5.1 CONFIGURING THE VOLTAGE REFERENCE

The voltage reference can output 32 distinct voltage levels, 16 in a high range and 16 in a low range.


The following equations determine the output voltages:

$VRR = 1$ (low range): $CVREF = (VR3:VR0 / 24) \times VDD$	
VRR = 0 (high range): $CVREF = (VDD / 4) + (VR3:VR0 x)$	
VDD / 32)	

6.5.2 VOLTAGE REFERENCE ACCURACY/ERROR

The full range of VSS to VDD cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 6-5) keep CVREF from approaching VSS or VDD. The Voltage Reference is VDD derived and therefore, the CVREF output changes with fluctuations in VDD. The tested absolute accuracy of the Comparator Voltage Reference can be found in **Section 12.0 "Electrical Specifications"**.

6.6 Comparator Response Time

Response time is the minimum time, after selecting a new reference voltage or input source, before the comparator output is ensured to have a valid level. If the internal reference is changed, the maximum delay of the internal voltage reference must be considered when using the comparator outputs. Otherwise, the maximum delay of the comparators should be used (Table 12-7).

6.7 Operation During Sleep

Both the comparator and voltage reference, if enabled before entering Sleep mode, remain active during Sleep. This results in higher Sleep currents than shown in the power-down specifications. The additional current consumed by the comparator and the voltage reference is shown separately in the specifications. To minimize power consumption while in Sleep mode, turn off the comparator, CM2:CM0 = 111, and voltage reference, VRCON<7> = 0.

While the comparator is enabled during Sleep, an interrupt will wake-up the device. If the device wakes up from Sleep, the contents of the CMCON and VRCON registers are not affected.

6.8 Effects of a Reset

A device Reset forces the CMCON and VRCON registers to their Reset states. This forces the comparator module to be in the Comparator Reset mode, CM2:CM0 = 000 and the voltage reference to its off state. Thus, all potential inputs are analog inputs with the comparator and voltage reference disabled to consume the smallest current possible.

REGISTER 7-3:	ANSEL — ANALOG SELECT REGISTER (ADRESS: 91h) (PIC16F676 ONLY)
---------------	---

	R/W-1							
	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0
b	it 7							bit 0

bit 7-0: **ANS<7:0>**: Analog Select between analog or digital function on pins AN<7:0>, respectively. 1 = Analog input. Pin is assigned as analog input.⁽¹⁾

0 = Digital I/O. Pin is assigned to port or special function.

Note 1: Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups, and interrupt-on-change if available. The corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

8.1 EEADR

The EEADR register can address up to a maximum of 128 bytes of data EEPROM. Only seven of the eight bits in the register (EEADR<6:0>) are required. The MSb (bit 7) is ignored.

The upper bit should always be '0' to remain upward compatible with devices that have more data EEPROM memory.

8.2 EECON1 AND EECON2 REGISTERS

EECON1 is the control register with four low order bits physically implemented. The upper four bits are nonimplemented and read as '0's.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set, in software. They are cleared in hardware at completion

- n = Value at POR

of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a MCLR Reset, or a WDT Time-out Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit. clear it. and rewrite the location. The data and address will be cleared, therefore, the EEDATA and EEADR registers will need to be re-initialized.

The Interrupt flag bit EEIF in the PIR1 register is set when the write is complete. This bit must be cleared in software.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the data EEPROM write sequence.

REGISTE

R 8-3:	EECON1 -	- EEPRO		OL REGIS	TER (ADD	RESS: 9Ch	ר)					
	U-0	U-0	U-0	U-0	R/W-x	R/W-0	R/S-0	R/S-0				
	—	—	_	_	WRERR	WREN	WR	RD				
	bit 7				·			bit 0				
oit 7-4	Unimpleme	ented: Rea	d as '0'									
oit 3	WRERR: E	EPROM EI	ror Flag bit									
		operation o	r BOD detec		d (any MCLR	Reset, any	WDT Reset	t during				
bit 2			e Enable bit	:								
	1 = Allows write cycles											
	0 = Inhibits	write to the	data EEPR	OM								
oit 1	WR: Write (Control bit										
	can only	be set, no	tle (The bit is t cleared, in lata EEPRO	software.)	/ hardware or	nce write is o	complete. Ti	he WR bit				
bit 0	RD: Read C											
	1 = Initiates an EEPROM read (Read takes one cycle. RD is cleared in hardware. The RD bit can only be set, not cleared, in software.)											
	0 = Does not initiate an EEPROM read											
	Legend:											
	S = Bit can	only be se	t									
	R = Readat	ole bit	W = W	/ritable bit	U = Unin	nplemented	bit, read as	'0'				
			141 0		101 011		D.1.1					

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

8.7 DATA EEPROM OPERATION DURING CODE-PROTECT

Data memory can be code-protected by programming the CPD bit to '0'.

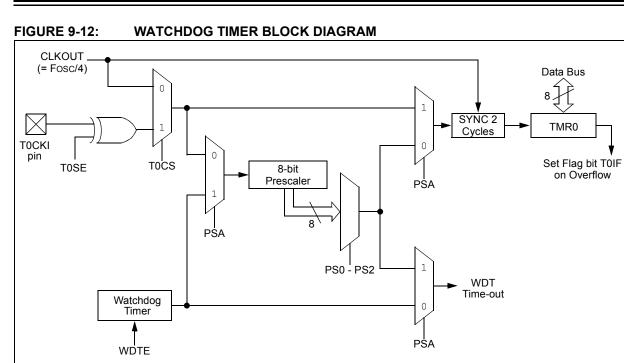
When the data memory is code-protected, the CPU is able to read and write data to the data EEPROM. It is recommended to code-protect the program memory when code protecting data memory. This prevents anyone from programming zeroes over the existing code (which will execute as NOPS) to reach an added routine, programmed in unused program memory, which outputs the contents of data memory. Programming unused locations to '0' will also help prevent data memory code protection from becoming breached.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu POR,	e on	Value oth Res	ner
0Ch	PIR1	EEIF	ADIF	_		CMIF	_	—	TMR1IF	00	00	00	00
9Ah	EEDATA	EEPROM	EPROM Data Register							0000	0000	0000	0000
9Bh	EEADR	_	EEPRON	1 Address	Register					-000	0000	-000	0000
9Ch	EECON1	_	—	—	—	WRERR	WREN	WR	RD		x000		q000
9Dh	EECON2 ⁽¹⁾	EEPROM	EPROM Control Register 2										

TABLE 8-1: REGISTERS/BITS ASSOCIATED WITH DATA EEPROM

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends upon condition. Shaded cells are not used by the data EEPROM module.

Note 1: EECON2 is not a physical register.


9.1 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1') to select various device configurations, as shown in Register 9-1. These bits are mapped in program memory location 2007h.

Note: Address 2007h is beyond the user program memory space. It belongs to the special configuration memory space (2000h-3FFFh), which can be accessed only during programming. See PIC16F630/676 Programming Specification for more information.

REGISTER 9-1: CONFIG — CONFIGURATION WORD (ADDRESS: 2007h)

R/P-1 R/I	P-1 U-0) U-0	U-0 R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	
BG1 B	G0 —	_	- CPD	CP	BODEN	MCLRE	PWRTE	WDTE	F0SC2	F0SC1	F0SC0	
bit 13											bit 0	
bit 13-12			p Calibration bits	for BOE	and PO	R voltage	(1)					
		west bandg										
	-	11 = Highest bandgap voltage										
bit 11-9		emented: F										
bit 8			rotection bit ⁽²⁾									
			ode protection is									
			ode protection is	enabled	1							
bit 7		le Protectio										
			ry code protection ry code protection									
h :+ C			t Detect Enable I		bieu							
bit 6		: Brown-ou) enabled	Detect Enable i	DIL								
	-) disabled										
bit 5			R pin function se	lect bit(5)							
5.00			function is MCLI									
			function is digita		CLR interr	ally tied t	o Vdd					
bit 4	PWRTE	: Power-up	Timer Enable bi	t								
		RT disabled										
		RT enabled										
bit 3			Timer Enable bit									
		Γ enabled Γ disabled										
bit 2-0			scillator Selection	, bite								
DIL 2-0			: CLKOUT functi		A4/05C2		nin PC	on PA5				
			: I/O function on									
			llator: CLKOUT fu							5/OSC1/	CLKIN	
	100 = IN	ITOSC osc	illator: I/O functio	on on RA	4/OSC2/	CLKOUT	pin, I/O fu	unction o	on RA5/C			
			tion on RA4/OSC									
			: High speed cry							1/CLKI	N	
			Crystal/resonat									
	000 – Li	r uscillator.	Low power crys		44/0302/	CLKOUT		0301/	CLNIN			
	Note 1	The Band	gap Calibration b	ite are fa	ctony prog	rammed a	and must b	he read a	and save	d prior to	erasina	
	1010 1.		e as specified in the									
		in an expo	ort of the Configu	ation Wo	ord. Microo	hip Devel	opment T	ools mai	ntain all o	calibratio	n bits to	
		factory se				-						
			e data EEPROM									
	3:	3: The entire program memory will be erased, including OSCCAL value, when the code protection is							ection is			
	4.	turned off.										
		 4: Enabling Brown-out Detect does not automatically enable Power-up Timer. 5: When MCLR is asserted in INTOSC or RC mode, the internal clock oscillator is disabled. 							ed.			
	Legend					.,						
			sing ICSP™									
		adable bit	0	v = Writa	ble bit	U = I	Unimplen	nented b	it, read a	as '0'		
		ue at POR	1	= bit is s	set		, bit is clear			t is unkr	nown	

Note 1: T0SE, T0CS, PSA, PS0-PS2 are bits in the OPTION register.

TABLE 9-9: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Value on all other Resets
81h	OPTION_REG	RAPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
2007h	Config. bits	CP	BODEN	MCLRE	PWRTE	WDTE	F0SC2	F0SC1	F0SC0	uuuu uuuu	uuuu uuuu

Legend: u = Unchanged, shaded cells are not used by the Watchdog Timer.

9.7 Power-Down Mode (Sleep)

The Power-down mode is entered by executing a SLEEP instruction.

If the Watchdog Timer is enabled:

- · WDT will be cleared but keeps running
- PD bit in the STATUS register is cleared
- TO bit is set
- · Oscillator driver is turned off
- I/O ports maintain the status they had before SLEEP was executed (driving high, low, or high-impedance).

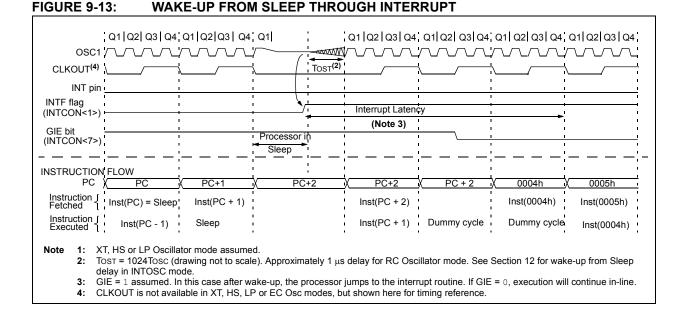
For lowest current consumption in this mode, all I/O pins should be either at VDD, or VSS, with no external circuitry drawing current from the I/O pin and the comparators and CVREF should be disabled. I/O pins that are high-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pull-ups on PORTA should be considered.

The $\overline{\text{MCLR}}$ pin must be at a logic high level (VIHMC).

Note:	It should be noted that a Reset generated
	by a WDT time-out does not drive MCLR
	pin low.

9.7.1 WAKE-UP FROM SLEEP

The device can wake-up from Sleep through one of the following events:


- 1. External Reset input on MCLR pin
- 2. Watchdog Timer Wake-up (if WDT was enabled)
- 3. Interrupt from RA2/INT pin, PORTA change, or a peripheral interrupt.

The first event will cause a device Reset. The two latter events are considered a continuation of program execution. The \overline{TO} and \overline{PD} bits in the STATUS register can be used to determine the cause of device Reset. The \overline{PD} bit, which is set on power-up, is cleared when Sleep is invoked. \overline{TO} bit is cleared if WDT Wake-up occurred.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction after the SLEEP instruction of the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have an NOP after the SLEEP instruction.

If the global interrupts are disabled (GIE is			
cleared), but any interrupt source has both			
its interrupt enable bit and the correspond-			
ing interrupt flag bits set, the device will			
immediately wake-up from Sleep. The			
SLEEP instruction is completely executed.			

The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up.

10.0 INSTRUCTION SET SUMMARY

The PIC16F630/676 instruction set is highly orthogonal and is comprised of three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

Each PIC16 instruction is a 14-bit word divided into an **opcode**, which specifies the instruction type, and one or more **operands**, which further specify the operation of the instruction. The formats for each of the categories is presented in Figure 10-1, while the various opcode fields are summarized in Table 10-1.

Table 10-2 lists the instructions recognized by the MPASMTM assembler. A complete description of each instruction is also available in the PIC[®] Mid-Range Reference Manual (DS33023).

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

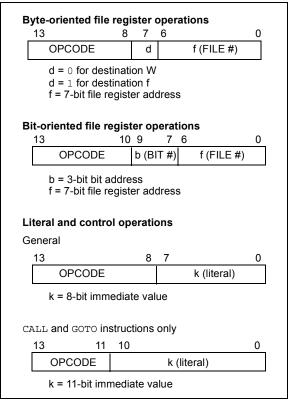
For **bit-oriented** instructions, 'b' represents a bit field designator, which selects the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, **'k**' represents an 8-bit or 11-bit constant, or literal value

One instruction cycle consists of four oscillator periods; for an oscillator frequency of 4 MHz, this gives a normal instruction execution time of 1 μ s. All instructions are executed within a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of an instruction. When this occurs, the execution takes two instruction cycles, with the second cycle executed as a NOP.

Note:	To maintain upward compatibility with				
	future products, do not use the OPTION				
	and TRIS instructions.				

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.


10.1 READ-MODIFY-WRITE OPERATIONS

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register. For example, a CLRF PORTA instruction will read PORTA, clear all the data bits, then write the result back to PORTA. This example would have the unintended result of clearing the condition that set the RAIF flag.

TABLE 10-1:OPCODE FIELD
DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
PC	Program Counter
то	Time-out bit
PD	Power-down bit

FIGURE 10-1: GENERAL FORMAT FOR INSTRUCTIONS

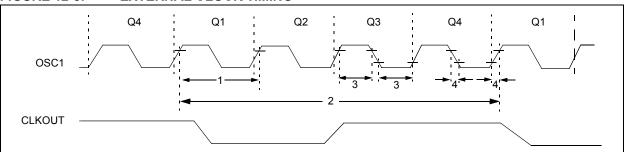
10.2 Instruction Descriptions

ADDLW	Add Literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \leq k \leq 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.

ADDWF	Add W and f
Syntax:	[<i>label</i>] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

BCF	Bit Clear f
Syntax:	[<i>label</i>] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.


ANDLW	AND Literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.

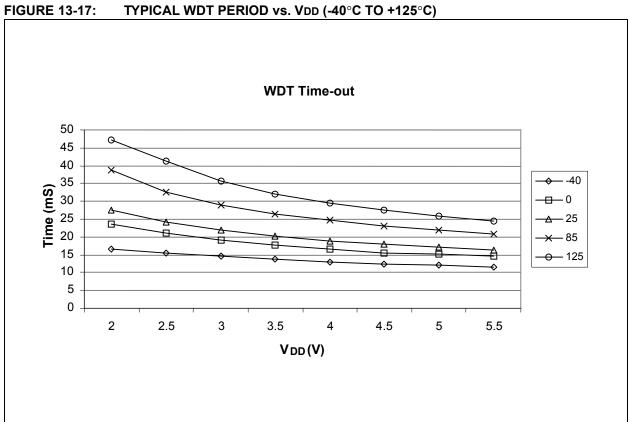
BTFSS	Bit Test f, Skip if Set
Syntax:	[<i>label</i>] BTFSS f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruc- tion is discarded and a NOP is executed instead, making this a 2-cycle instruction.

ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

BTFSC	Bit Test, Skip if Clear
Syntax:	[/abe/] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

12.9 AC CHARACTERISTICS: PIC16F630/676 (INDUSTRIAL, EXTENDED)

FIGURE 12-5: EXTERNAL CLOCK TIMING

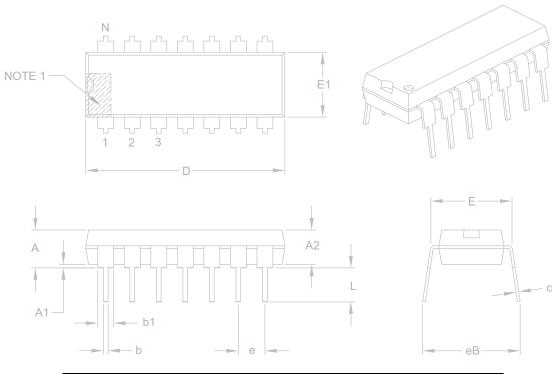

TABLE 12-1: EXTERNAL CLOCK TIMING REQUIREMENTS

Param No.	Sym	Characteristic	Min	Typ†	Max	Units	Conditions
	Fosc	External CLKIN Frequency ⁽¹⁾	DC	_	37	kHz	LP Osc mode
			DC	—	4	MHz	XT mode
			DC	—	20	MHz	HS mode
			DC	_	20	MHz	EC mode
		Oscillator Frequency ⁽¹⁾	5		37	kHz	LP Osc mode
			—	4	—	MHz	INTOSC mode
			DC	—	4	MHz	RC Osc mode
			0.1	—	4	MHz	XT Osc mode
			1		20	MHz	HS Osc mode
1	Tosc	External CLKIN Period ⁽¹⁾	27	—	∞	μS	LP Osc mode
			50	—	∞	ns	HS Osc mode
			50	—	∞	ns	EC Osc mode
			250	—	∞	ns	XT Osc mode
		Oscillator Period ⁽¹⁾	27		200	μS	LP Osc mode
			—	250	—	ns	INTOSC mode
			250	—	—	ns	RC Osc mode
			250	—	10,000	ns	XT Osc mode
			50		1,000	ns	HS Osc mode
2	Тсү	Instruction Cycle Time ⁽¹⁾	200	TCY	DC	ns	Tcy = 4/Fosc
3	TosL,	External CLKIN (OSC1) High	2*		—	μS	LP oscillator, Tosc L/H duty cycle
	TosH	External CLKIN Low	20*	—	—	ns	HS oscillator, Tosc L/H duty cycle
			100 *	—	—	ns	XT oscillator, Tosc L/H duty cycle
4	TosR,	External CLKIN Rise	—	_	50*	ns	LP oscillator
	TosF	External CLKIN Fall	—	—	25*	ns	XT oscillator
			—	—	15*	ns	HS oscillator

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.



14.2 Package Details

The following sections give the technical details of the packages.

14-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
Dimensio	n Limits	MIN	NOM	MAX
Number of Pins	Ν		14	
Pitch	е		.100 BSC	
Top to Seating Plane	Α	-	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	Е	.290	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.735	.750	.775
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.045	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	-	.430

Notes:

- 1. Pin 1 visual index feature may vary, but must be located with the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-005B

INDEX

	45
A/D	
Acquisition Requirements	
Block Diagram	
Calculating Acquisition Time	
Configuration and Operation	
Effects of a Reset	
Internal Sampling Switch (Rss) Impedance	
Operation During Sleep	
PIC16F675 Converter Characteristics	
Source Impedance	
Summary of Registers	
Absolute Maximum Ratings	. 85
AC Characteristics	
Industrial and Extended	
Analog Input Connection Considerations	.42
Analog-to-Digital Converter. See A/D	
Assembler	
MPASM Assembler	. 82
В	
-	
Block Diagram	24
TMR0/WDT Prescaler	. 51
Block Diagrams	
Analog Input Mode	
Analog Input Model	
Comparator Output	
Comparator Voltage Reference	
On-Chip Reset Circuit	
RA0 and RA1 Pins	
RA2	
RA3	.25
RA4	.26
RA5	.26
RC Oscillator Mode	
RC0/RC1/RC2/RC3 Pins	. 28
RC4 AND RC5 Pins	. 28
Timer1	. 34
Watchdog Timer	. 69
Brown-out	
Associated Registers	62
Brown-out Detect (BOD)	
Brown-out Detect Timing and Characteristics	
C	
-	
C Compilers	
MPLAB C18	
Calibrated Internal RC Frequencies	
CLKOUT	. 58
Code Examples	
Changing Prescaler	
Data EEPROM Read	
Data EEPROM Write	. 53
Initializing PORTA	
Initializing PORTC	
Saving STATUS and W Registers in RAM	. 68
Write Verify	. 53
Code Protection	.71
Comparator	
Associated Registers	
Configuration	
Effects of a Reset	
I/O Operating Modes	
Interrupts	
Operation	
Operation During Sleep	

Output
Reference
Response Time
Comparator Specifications 102
Comparator Voltage Reference Specifications
Configuration Bits
Configuring the Voltage Reference
Crystal Operation
Customer Change Notification Service
Customer Notification Service 129
Customer Support 129
D
D
Data EEPROM Memory
Associated Registers/Bits 54
Code Protection
EEADR Register 51
EECON1 Register 51
EECON2 Register 51
EEDATA Register 51
Data Memory Organization9
DC Characteristics
Extended and Industrial
Industrial
Debugger71
Development Support 81
Device Differences 123
Device Migrations 124
Device Overview
E
EEPROM Data Memory
Reading
Spurious Write
Write Verify 53
Write Verify
Writing
Writing 53 Electrical Specifications 85 Errata 5 F 5 Firmware Instructions 73 G 73 General Purpose Register File 9 I 10 Locations 71 In-Circuit Serial Programming 71
Writing
Writing 53 Electrical Specifications 85 Errata 5 F 5 Firmware Instructions 73 G 73 General Purpose Register File 9 I 10 Locations 71 In-Circuit Serial Programming 71
Writing 53 Electrical Specifications 85 Errata 5 F 73 G 6 General Purpose Register File 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73
Writing 53 Electrical Specifications 85 Errata 5 F 5 Firmware Instructions 73 G 73 General Purpose Register File 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 Instruction Set 73
Writing 53 Electrical Specifications 85 Errata 5 F 5 Firmware Instructions 73 G 73 General Purpose Register File 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 Instruction Set 73 ADDLW 75
Writing 53 Electrical Specifications 85 Errata 5 F 5 Firmware Instructions 73 G 73 General Purpose Register File 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 Instruction Set 73
Writing 53 Electrical Specifications 85 Errata 5 F 5 Firmware Instructions 73 G 73 General Purpose Register File 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 Instruction Set 73 ADDLW 75
Writing 53 Electrical Specifications 85 Errata 5 F 5 Firmware Instructions 73 G 73 General Purpose Register File 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 ADDLW 75 ADDWF 75
Writing53Electrical Specifications85Errata5FFirmware Instructions73GGeneral Purpose Register File9IID Locations71In-Circuit Serial Programming71Indirect Addressing, INDF and FSR Registers20Instruction Format73Instruction Set73ADDLW75ADDWF75ANDLW75ANDWF75
Writing53Electrical Specifications85Errata5FFirmware Instructions73GGeneral Purpose Register File9IID Locations71In-Circuit Serial Programming71Indirect Addressing, INDF and FSR Registers20Instruction Format73Instruction Set73ADDLW75ADDWF75ANDLW75BCF75
Writing 53 Electrical Specifications 85 Errata 5 F 5 Firmware Instructions 73 G 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 Instruction Set 73 ADDLW 75 ADDWF 75 ANDLW 75 BCF 75 BSF 75
Writing 53 Electrical Specifications 85 Errata 5 F 5 Firmware Instructions 73 G 73 G 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 Instruction Set 73 ADDLW 75 ADDWF 75 ANDLW 75 BCF 75 BSF 75 BSF 75 BTFSC 75
Writing 53 Electrical Specifications 85 Errata 5 F 5 Firmware Instructions 73 G 73 G 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 Instruction Set 73 ADDLW 75 ADDWF 75 ANDLW 75 BCF 75 BSF 75 BTFSC 75 BTFSS 75
Writing 53 Electrical Specifications 85 Errata 5 F 5 Firmware Instructions 73 G 73 G 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 Instruction Set 73 ADDLW 75 ADDWF 75 ANDLW 75 BSF 75 BSF 75 BTFSC 75 BTFSS 75 BTFSS 75
Writing 53 Electrical Specifications 85 Errata 5 F 5 Firmware Instructions 73 G 73 G 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 Instruction Set 73 ADDLW 75 ADDWF 75 ANDLW 75 BCF 75 BSF 75 BTFSC 75 BTFSS 75
Writing 53 Electrical Specifications 85 Errata 5 F 5 Firmware Instructions 73 G 73 G 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 Instruction Set 73 ADDLW 75 ADDWF 75 ANDLW 75 BSF 75 BSF 75 BTFSC 75 BTFSS 75 BTFSS 75
Writing 53 Electrical Specifications 85 Errata 5 F 5 Firmware Instructions 73 G 73 G 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 Instruction Set 73 ADDLW 75 ADDWF 75 ANDLW 75 BSF 75 BSF 75 BTFSC 75 BTFSS 75 BTFSS 75 CALL 76 CLRF 76
Writing 53 Electrical Specifications 85 Errata 5 F 5 Firmware Instructions 73 G 73 G 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 Instruction Set 73 ADDLW 75 ADDWF 75 ANDLW 75 BSF 75 BSF 75 BTFSC 75 BTFSS 75 BTFSS 75 CLRF 76 CLRW 76
Writing 53 Electrical Specifications 85 Errata 5 F 5 Firmware Instructions 73 G 73 General Purpose Register File 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 ADDLW 75 ADDLW 75 ADDLW 75 BCF 75 BSF 75 BTFSC 75 BTFSS 75 BTFSS 75 CLRW 76 CLRWDT 76 COMF 76
Writing 53 Electrical Specifications 85 Errata 5 F 73 G 73 General Purpose Register File 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 ADDLW 75 ADDLW 75 ADDLW 75 BSF 75 BSF 75 BTFSC 75 BTFSS 75 BTFSS 75 CLRW 76 CLRWDT 76 DCLRWDT 76 DCLRWDT 76 DCLR 76 DCLR 76 DCLR 76 DCLR 76 DCLR 76 DCLRWDT 76 DCLR 76 DCLR 76 DCLR 76 DCF 76 <
Writing 53 Electrical Specifications 85 Errata 5 F 73 G 73 G 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 ADDLW 75 ADDLW 75 ADDLW 75 ADDLW 75 BSF 75 BSF 75 BTFSC 75 BTFSS 75 BTFSS 75 BTFSS 75 BTFSS 76 CLRW 76 CLRWDT 76 DECF 76
Writing 53 Electrical Specifications 85 Errata 5 F 73 G 73 G 73 G 73 G 73 ID Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 ADDLW 75 ADDLW 75 ADDLW 75 BCF 75 BSF 75 BTFSC 75 BTFSS 75 BTFSS 75 BTFSS 75 BTFSS 75 BTFSS 75 BTFSS 75 CLRW 76 CLRWDT 76 CLRWDT 76 DECF 76
Writing 53 Electrical Specifications 85 Errata 5 F 73 G 73 G 9 I 10 Locations 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 20 Instruction Format 73 ADDLW 75 ADDLW 75 ADDLW 75 ADDLW 75 BSF 75 BSF 75 BTFSC 75 BTFSS 75 BTFSS 75 BTFSS 75 BTFSS 76 CLRW 76 CLRWDT 76 DECF 76