

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	12
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f630t-i-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Page
Bank 1											
80h	INDF	Addressing	this location	uses content	s of FSR to a	ddress data	memory (not	a physical re	gister)	xxxx xxxx	20,63
81h	OPTION_REG	RAPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	14,32
82h	PCL	Program Co	ounter's (PC)	Least Signifi	cant Byte					0000 0000	19
83h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	13
84h	FSR	Indirect data	a memory Ad	dress Pointe	r					xxxx xxxx	20
85h	TRISA	_	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	21
86h	_	Unimpleme	nted							-	-
87h	TRISC	_	_	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	11 1111	-
88h	-	Unimpleme	nted							_	-
89h		Unimpleme	nted							_	-
8Ah	PCLATH	_	_	_	Write buffer	for upper 5 b	oits of program	n counter		0 0000	19
8Bh	INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	0000 0000	15
8Ch	PIE1	EEIE	ADIE	l	_	CMIE	_	I	TMR1IE	0000	16
8Dh	_	Unimpleme	nted							-	-
8Eh	PCON	_	_	_	_	_	_	POR	BOD	dd	18
8Fh	_									_	
90h	OSCCAL	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	_	_	1000 00	18
91h	ANSEL ⁽³⁾	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	48
92h	_	Unimpleme	nted							-	-
93h	_	Unimpleme	nted							-	-
94h	_	Unimpleme	nted							-	-
95h	WPUA	_	_	WPUA5	WPUA4	_	WPUA2	WPUA1	WPUA0	11 -111	22
96h	IOCA		_	IOCA5	IOCA4	IOCA3	IOCA2	IOCA1	IOCA0	00 0000	23
97h	_	Unimpleme	nted		•	•				_	-
98h	_	Unimpleme	nted							-	-
99h	VRCON	VREN	_	VRR	_	VR3	VR2	VR1	VR0	0-0-0000	44
9Ah	EEDAT	EEPROM d	ata register							0000 0000	51
9Bh	EEADR	_	EEPROM a	ddress regist	er					0000 0000	51
9Ch	EECON1	_	_	_	_	WRERR	WREN	WR	RD	x000	52
9Dh	EECON2	EEPROM o	ontrol registe	r 2 (not a ph	vsical registe	r)					51
9Eh	ADRESL ⁽³⁾	Least Signif	icant 2 bits o	f the left shift	ed result or 8	bits of the ri	ght shifted re	sult		XXXX XXXX	46
9Fh	ADCON1 ⁽³⁾	_	ADCS2	ADCS1	ADCS0	—	_	_	—	-000	47,63
Legend: Note 1: 2: 3:	 Legend: -= Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented Note 1: Other (non Power-up) Resets include MCLR Reset, Brown-out Detect and Watchdog Timer Reset during normal operation. 2: IRP and RP1 bits are reserved, always maintain these bits clear. 3: PIC16F676 only. 										

TABLE 2-2: PIC16F630/676 SPECIAL FUNCTION REGISTERS SUMMARY BANK 1

3.2.3.3 RA2/AN2/T0CKI/INT/COUT

Figure 3-2 shows the diagram for this pin. The RA2 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the A/D (PIC16F676 only)
- · a digital output from the comparator
- the clock input for TMR0
- · an external edge triggered interrupt

BLOCK DIAGRAM OF RA2 FIGURE 3-2: Analog Data Bus Input Mode Q D Vdd WR СК Q Weak WPUA RAPU RD WPUA Analog COUT Input Mode Enable Vdd D Q ┢ WR СК Q COUT PORTA 1 \times I/O pin Ż Q D WR **∀** Vss СК Q TRIS. Analog Input Mode RD Ч TRISA RD PORTA Q п D Q WR CK Q IOCA EN RD IOCA D Q ΕN Interrupt-on-Change **RD PORTA** To TMR0 To INT To A/D Converter

3.2.3.4 RA3/MCLR/VPP

Figure 3-3 shows the diagram for this pin. The RA3 pin is configurable to function as one of the following:

- a general purpose input
- as Master Clear Reset

FIGURE 3-3: BLOCK DIAGRAM OF RA3

	TABLE 3-1:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTA
--	------------	--

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Value on all other Resets
05h	PORTA		—	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	uu uuuu
0Bh/8Bh	INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	0000 0000	0000 000u
19h	CMCON	_	COUT	—	CINV	CIS	CM2	CM1	CM0	-0-0 0000	-0-0 0000
81h	OPTION_REG	RAPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	—	—	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
91h	ANSEL ⁽¹⁾	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	1111 1111
95h	WPUA	_	—	WPUA5	WPUA4	—	WPUA2	WPUA1	WPUA0	11 -111	11 -111
96h	IOCA	_	_	IOCA5	IOCA4	IOCA3	IOCA2	IOCA1	IOCA0	00 0000	00 0000

Note 1: PIC16F676 only.

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

NOTES:

7.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE (PIC16F676 ONLY)

The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. The PIC16F676 has eight analog inputs, multiplexed into one sample and hold

FIGURE 7-1: A/D BLOCK DIAGRAM

circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a binary result via successive approximation and stores the result in a 10-bit register. The voltage reference used in the conversion is software selectable to either VDD or a voltage applied by the VREF pin. Figure 7-1 shows the block diagram of the A/D on the PIC16F676.

7.1 A/D Configuration and Operation

There are three registers available to control the functionality of the A/D module:

- 1. ADCON0 (Register 7-1)
- 2. ADCON1 (Register 7-2)
- 3. ANSEL (Register 7-3)

7.1.1 ANALOG PORT PINS

The ANS7:ANS0 bits (ANSEL<7:0>) and the TRISA bits control the operation of the A/D port pins. Set the corresponding TRISA bits to set the pin output driver to its high-impedance state. Likewise, set the corresponding ANS bit to disable the digital input buffer.

Note: Analog voltages on any pin that is defined as a digital input may cause the input buffer to conduct excess current.

7.1.2 CHANNEL SELECTION

There are eight analog channels on the PIC16F676, AN0 through AN7. The CHS2:CHS0 bits (ADCON0<4:2>) control which channel is connected to the sample and hold circuit.

7.1.3 VOLTAGE REFERENCE

There are two options for the voltage reference to the A/D converter: either VDD is used, or an analog voltage applied to VREF is used. The VCFG bit (ADCON0<6>) controls the voltage reference selection. If VCFG is set, then the voltage on the VREF pin is the reference; otherwise, VDD is the reference.

7.1.4 CONVERSION CLOCK

The A/D conversion cycle requires 11 TAD. The source of the conversion clock is software selectable via the ADCS bits (ADCON1<6:4>). There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- · FRC (dedicated internal oscillator)

For correct conversion, the A/D conversion clock (1/TaD) must be selected to ensure a minimum TaD of 1.6 $\mu s.$ Table 7-1 shows a few TaD calculations for selected frequencies.

9.2.3 EXTERNAL CLOCK IN

For applications where a clock is already available elsewhere, users may directly drive the PIC16F630/ 676 provided that this external clock source meets the AC/DC timing requirements listed in **Section 12.0 "Electrical Specifications"**. Figure 9-2 shows how an external clock circuit should be configured.

9.2.4 RC OSCILLATOR

For applications where precise timing is not a requirement, the RC oscillator option is available. The operation and functionality of the RC oscillator is dependent upon a number of variables. The RC oscillator frequency is a function of:

- · Supply voltage
- Resistor (REXT) and capacitor (CEXT) values
- Operating temperature

The oscillator frequency will vary from unit to unit due to normal process parameter variation. The difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to account for the tolerance of the external R and C components. Figure 9-3 shows how the R/C combination is connected.

Two options are available for this Oscillator mode which allow RA4 to be used as a general purpose I/O or to output Fosc/4.

FIGURE 9-3: RC OSCILLATOR MODE

9.2.5 INTERNAL 4 MHz OSCILLATOR

When calibrated, the internal oscillator provides a fixed 4 MHz (nominal) system clock. See Electrical Specifications, **Section 12.0** "Electrical Specifications", for information on variation over voltage and temperature.

Two options are available for this Oscillator mode which allow RA4 to be used as a general purpose I/O or to output Fosc/4.

9.2.5.1 Calibrating the Internal Oscillator

A calibration instruction is programmed into the last location of program memory. This instruction is a RETLW XX, where the literal is the calibration value. The literal is placed in the OSCCAL register to set the calibration of the internal oscillator. Example 9-1 demonstrates how to calibrate the internal oscillator. For best operation, decouple (with capacitance) VDD and Vss as close to the device as possible.

Note: Erasing the device will also erase the preprogrammed internal calibration value for the internal oscillator. The calibration value must be saved prior to erasing part as specified in the PIC16F630/676 Programming specification. Microchip Development Tools maintain all calibration bits to factory settings.

EXAMPLE 9-1: CALIBRATING THE INTERNAL OSCILLATOR

BSF CALL MOVWF BCF	STATUS, 3FFh OSCCAL STATUS,	RPO	;Bank 1 ;Get the cal value ;Calibrate :Bank 0
BCF	STATUS,	RP0	;Bank 0

9.2.6 CLKOUT

The PIC16F630/676 devices can be configured to provide a clock out signal in the INTOSC and RC Oscillator modes. When configured, the oscillator frequency divided by four (Fosc/4) is output on the RA4/OSC2/CLKOUT pin. Fosc/4 can be used for test purposes or to synchronize other logic.

9.3 Reset

The PIC16F630/676 differentiates between various kinds of Reset:

- a) Power-on Reset (POR)
- b) WDT Reset during normal operation
- c) WDT Reset during Sleep
- d) MCLR Reset during normal operation
- e) MCLR Reset during Sleep
- f) Brown-out Detect (BOD)

Some registers are not affected in any Reset condition; their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on:

- · Power-on Reset
- MCLR Reset
- WDT Reset
- WDT Reset during Sleep
- Brown-out Detect (BOD)

They are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different Reset situations as indicated in Table 9-4. These bits are used in software to determine the nature of the Reset. See Table 9-7 for a full description of Reset states of all registers.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 9-4.

The $\overline{\text{MCLR}}$ Reset path has a noise filter to detect and ignore small pulses. See Table 12-4 in Electrical Specifications Section for pulse-width specification.

9.3.5 BROWN-OUT DETECT (BOD)

The PIC16F630/676 members have on-chip Brown-out Detect circuitry. A Configuration bit, BODEN, can disable (if clear/programmed) or enable (if set) the Brown-out Detect circuitry. If VDD falls below VBOD for greater than parameter (TBOD) in Table 12-4 (see **Section 12.0 "Electrical Specifications"**), the Brown-out situation will reset the device. This will occur regardless of VDD slew-rate. A Reset is not guaranteed to occur if VDD falls below VBOD for less than parameter (TBOD). On any Reset (Power-on, Brown-out Detect, Watchdog, etc.), the chip will remain in Reset until VDD rises above BVDD (see Figure 9-6). The Power-up Timer will now be invoked, if enabled, and will keep the chip in Reset an additional 72 ms.

Note: A Brown-out Detect does not enable the Power-up Timer if the PWRTE bit in the Configuration Word is set.

If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Detect and the Power-up Timer will be re-initialized. Once VDD rises above BVDD, the Power-up Timer will execute a 72 ms Reset.

9.3.6 TIME-OUT SEQUENCE

On power-up, the time-out sequence is as follows: first, PWRT time-out is invoked after POR has expired. Then, OST is activated. The total time-out will vary based on oscillator configuration and <u>PWRTE</u> bit status. For example, in EC mode with <u>PWRTE</u> bit erased (PWRT disabled), there will be no time-out at all. Figure 9-7, Figure 9-8 and Figure 9-9 depict time-out sequences.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then bringing $\overline{\text{MCLR}}$ high will begin execution immediately (see Figure 9-8). This is useful for testing purposes or to synchronize more than one PIC16F630/676 device operating in parallel.

Table 9-6 shows the Reset conditions for some special registers, while Table 9-7 shows the Reset conditions for all the registers.

9.3.7 POWER CONTROL (PCON) STATUS REGISTER

The power CONTROL/STATUS register, PCON (address 8Eh) has two bits.

Bit 0 is \overline{BOD} (Brown-out). \overline{BOD} is unknown on Poweron Reset. It must then be set by the user and checked on subsequent Resets to see if $\overline{BOD} = 0$, indicating that a brown-out has occurred. The \overline{BOD} Status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (by setting \overline{BODEN} bit = 0 in the Configuration Word).

Bit 1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent Reset, if POR is '0', it will indicate that a Power-on Reset must have occurred (i.e., VDD may have gone too low).

Occillator Configuration	Powe	er-up	Brown-o	Wake-up	
Oscillator Configuration	PWRTE = 0	PWRTE = 1	PWRTE = 0	PWRTE = 1	from Sleep
XT, HS, LP	Tpwrt + 1024•Tosc	1024•Tosc	Tpwrt + 1024•Tosc	1024•Tosc	1024•Tosc
RC, EC, INTOSC	TPWRT	—	TPWRT	—	—

TABLE 9-3: TIME-OUT IN VARIOUS SITUATIONS

TABLE 9-4: STATUS/PCON BITS AND THEIR SIGNIFICANCE

POR	BOD	то	PD	
0	u	1	1	Power-on Reset
1	0	1	1	Brown-out Detect
u	u	0	u	WDT Reset
u	u	0	0	WDT Wake-up
u	u	u	u	MCLR Reset during normal operation
u	u	1	0	MCLR Reset during Sleep

Legend: u = unchanged, x = unknown

TABLE 9-5:	SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Value on all other Resets ⁽¹⁾
03h	STATUS	IRP	RP1	RPO	TO	PD	Z	DC	С	0001 1xxx	000q quuu
8Eh	PCON	_	_	_	_	_	_	POR	BOD	0x	uq

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition.
 Note 1: Other (non Power-up) Resets include MCLR Reset, Brown-out Detect and Watchdog Timer Reset during normal operation.

TABLE 9-6: INITIALIZATION CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during Sleep	000h	0001 Ouuu	uu
WDT Reset	000h	0000 uuuu	uu
WDT Wake-up	PC + 1	uuu0 Ouuu	uu
Brown-out Detect	000h	0001 luuu	10
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	uuul Ouuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and global enable bit GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

NOTES:

10.0 INSTRUCTION SET SUMMARY

The PIC16F630/676 instruction set is highly orthogonal and is comprised of three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

Each PIC16 instruction is a 14-bit word divided into an **opcode**, which specifies the instruction type, and one or more **operands**, which further specify the operation of the instruction. The formats for each of the categories is presented in Figure 10-1, while the various opcode fields are summarized in Table 10-1.

Table 10-2 lists the instructions recognized by the MPASMTM assembler. A complete description of each instruction is also available in the PIC[®] Mid-Range Reference Manual (DS33023).

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator, which selects the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, **'k**' represents an 8-bit or 11-bit constant, or literal value

One instruction cycle consists of four oscillator periods; for an oscillator frequency of 4 MHz, this gives a normal instruction execution time of 1 μ s. All instructions are executed within a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of an instruction. When this occurs, the execution takes two instruction cycles, with the second cycle executed as a NOP.

Note:	To maintain upward compatibility with
	future products, do not use the OPTION
	and TRIS instructions.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

10.1 READ-MODIFY-WRITE OPERATIONS

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register. For example, a CLRF PORTA instruction will read PORTA, clear all the data bits, then write the result back to PORTA. This example would have the unintended result of clearing the condition that set the RAIF flag.

TABLE 10-1:OPCODE FIELD
DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
PC	Program Counter
ТО	Time-out bit
PD	Power-down bit

FIGURE 10-1: GENERAL FORMAT FOR INSTRUCTIONS

		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
Param	Davis a Okamataniatian		T 4		11		Conditions
No.	Device Characteristics	wiin			Units	VDD	Note
D010	Supply Current (IDD)	-	9	16	μA	2.0	Fosc = 32 kHz
		—	18	28	μA	3.0	LP Oscillator Mode
		_	35	54	μA	5.0	
D011		—	110	150	μA	2.0	Fosc = 1 MHz
		—	190	280	μΑ	3.0	XT Oscillator Mode
		—	330	450	μA	5.0	
D012		—	220	280	μA	2.0	Fosc = 4 MHz
		—	370	650	μΑ	3.0	XT Oscillator Mode
		—	0.6	1.4	mA	5.0	
D013		—	70	110	μA	2.0	Fosc = 1 MHz
		—	140	250	μA	3.0	EC Oscillator Mode
		_	260	390	μA	5.0	
D014		_	180	250	μA	2.0	Fosc = 4 MHz
		—	320	470	μA	3.0	EC Oscillator Mode
		—	580	850	μA	5.0	
D015		_	340	450	μA	2.0	Fosc = 4 MHz
		—	500	780	μA	3.0	INTOSC Mode
		_	0.8	1.1	mA	5.0	
D016		_	180	250	μA	2.0	Fosc = 4 MHz
			320	450	μA	3.0	EXTRC Mode
		_	580	800	μA	5.0	
D017		_	2.1	2.95	mA	4.5	Fosc = 20 MHz
		—	2.4	3.0	mA	5.0	HS Oscillator Mode

12.2 DC Characteristics: PIC16F630/676-I (Industrial)

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

12.5 DC Characteristics: PIC16F630/676-E (Extended)

		Standa Operat	ard Opera ting tempe	ting Co rature	ig Conditions (unless otherwise stated) ure $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
Param	Davias Characteristics	Min	Turnt	Mox	Unito		Conditions			
No.	Device Characteristics	WIIN	турт	IVIAX	Units	Vdd	Note			
D020E	Power-down Base Current	—	0.00099	3.5	μA	2.0	WDT, BOD, Comparators, VREF,			
	(IPD)	_	0.0012	4.0	μA	3.0	and T1OSC disabled			
			0.0029	8.0	μA	5.0				
D021E		_	0.3	6.0	μA	2.0	WDT Current ⁽¹⁾			
		_	1.8	9.0	μA	3.0				
		—	8.4	20	μA	5.0				
D022E		_	58	70	μA	3.0	BOD Current ⁽¹⁾			
		_	109	130	μA	5.0				
D023E		_	3.3	10	μA	2.0	Comparator Current ⁽¹⁾			
		_	6.1	13	μA	3.0				
		—	11.5	24	μA	5.0				
D024E		_	58	70	μA	2.0	CVREF Current ⁽¹⁾			
		_	85	100	μA	3.0				
		_	138	165	μA	5.0				
D025E			4.0	10	μA	2.0	T1 Osc Current ⁽¹⁾			
		_	4.6	12	μA	3.0				
		—	6.0	20	μA	5.0				
D026E		_	0.0012	6.0	μA	3.0	A/D Current ⁽¹⁾			
		—	0.0022	8.5	μA	5.0				

[†] Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

12.8 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created with one of the following formats:

- 1. TppS2ppS
- 2. TppS

· · ·			
Т			
F	Frequency	Т	Time
Lower	case letters (pp) and their meanings:		
рр			
сс	CCP1	OSC	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Uppero	case letters and their meanings:		
S			
F	Fall	Р	Period
н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance

FIGURE 12-4: LOAD CONDITIONS

12.9 AC CHARACTERISTICS: PIC16F630/676 (INDUSTRIAL, EXTENDED)

FIGURE 12-5: EXTERNAL CLOCK TIMING

TABLE 12-1: EXTERNAL CLOCK TIMING REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency ⁽¹⁾	DC	_	37	kHz	LP Osc mode
			DC	—	4	MHz	XT mode
			DC	—	20	MHz	HS mode
			DC	—	20	MHz	EC mode
		Oscillator Frequency ⁽¹⁾	5	_	37	kHz	LP Osc mode
			—	4	—	MHz	INTOSC mode
			DC	—	4	MHz	RC Osc mode
			0.1	—	4	MHz	XT Osc mode
			1	_	20	MHz	HS Osc mode
1	Tosc	External CLKIN Period ⁽¹⁾	27	—	∞	μS	LP Osc mode
			50	—	∞	ns	HS Osc mode
			50	—	∞	ns	EC Osc mode
			250	—	∞	ns	XT Osc mode
		Oscillator Period ⁽¹⁾	27		200	μS	LP Osc mode
			—	250	—	ns	INTOSC mode
			250	—	—	ns	RC Osc mode
			250	—	10,000	ns	XT Osc mode
			50	_	1,000	ns	HS Osc mode
2	Тсү	Instruction Cycle Time ⁽¹⁾	200	TCY	DC	ns	Tcy = 4/Fosc
3	TosL,	External CLKIN (OSC1) High	2*	_	—	μS	LP oscillator, Tosc L/H duty cycle
	TosH	External CLKIN Low	20*	—	—	ns	HS oscillator, Tosc L/H duty cycle
			100 *		_	ns	XT oscillator, Tosc L/H duty cycle
4	TosR,	External CLKIN Rise	—	—	50*	ns	LP oscillator
	TosF	External CLKIN Fall	—	—	25*	ns	XT oscillator
			—	_	15*	ns	HS oscillator

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

Param No.	Sym	Characteristic	Freq Tolerance	Min	Тур†	Max	Units	Conditions
F10	Fosc	Internal Calibrated	±1	3.96	4.00	4.04	MHz	VDD = 3.5V, 25°C
		INTOSC Frequency	±2	3.92	4.00	4.08	MHz	$2.5V \leq V\text{DD} \leq 5.5V$
								$0^{\circ}C \le TA \le +85^{\circ}C$
			±5	3.80	4.00	4.20	MHz	$2.0V \leq V\text{DD} \leq 5.5V$
								$-40^{\circ}C \le TA \le +85^{\circ}C$ (IND)
								$-40^{\circ}C \le TA \le +125^{\circ}C \text{ (EXT)}$
F14	Tiosc	Oscillator Wake-up from	—	-	6	8	μS	VDD = 2.0V, -40°C to +85°C
ST Sleep s		Sleep start-up time*	—	_	4	6	μS	VDD = 3.0V, -40°C to +85°C
			—	—	3	5	μS	VDD = 5.0V, -40°C to +85°C
* *	* These parameters are characterized but not tested.							

TABLE 12-2: PRECISION INTERNAL OSCILLATOR PARAMETERS

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

	TABLE 12-3:	CLKOUT AND I/O TIMING REQUIREMENTS
--	-------------	---

Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
10	TosH2ckL	OSC1↑ to CLOUT↓	—	75	200	ns	(Note 1)
11	TosH2ckH	OSC1↑ to CLOUT↑	—	75	200	ns	(Note 1)
12	TckR	CLKOUT rise time	—	35	100	ns	(Note 1)
13	TckF	CLKOUT fall time	—	35	100	ns	(Note 1)
14	TckL2ioV	CLKOUT↓ to Port out valid	—		20	ns	(Note 1)
15	TioV2ckH	Port in valid before CLKOUT↑	Tosc + 200 ns	—	_	ns	(Note 1)
16	TckH2iol	Port in hold after CLKOUT↑	0	—	_	ns	(Note 1)
17	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid	—	50	150 *	ns	
			—	—	300	ns	
18	TosH2iol	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold time)	100	_	—	ns	
19	TioV2osH	Port input valid to OSC1↑ (I/O in setup time)	0	_	_	ns	
20	TioR	Port output rise time	—	10	40	ns	
21	TioF	Port output fall time	—	10	40	ns	
22	Tinp	INT pin high or low time	25	_	_	ns	
23	Trbp	PORTA change INT high or low time	Тсү	_	—	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated.

Note 1: Measurements are taken in RC mode where CLKOUT output is 4xTosc.

14.2 Package Details

The following sections give the technical details of the packages.

14-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
Dimensio	on Limits	MIN	NOM	MAX
Number of Pins	Ν		14	
Pitch	е		.100 BSC	
Top to Seating Plane	Α	-	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	Е	.290	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.735	.750	.775
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.045	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	_	_	.430

Notes:

- 1. Pin 1 visual index feature may vary, but must be located with the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-005B

NOTES:

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
From	n: Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Appl	ication (optional):	
Wou	ld you like a reply?YN	
Devi	ce: PIC16F630/676	Literature Number: DS40039F
Ques	stions:	
1. \	What are the best features of this do	cument?
_		
_		
2. ł	How does this document meet your	hardware and software development needs?
_		
-		
3. [Do you find the organization of this o	locument easy to follow? If not, why?
-		
-		
4. \	What additions to the document do y	you think would enhance the structure and subject?
-		
5. N	What deletions from the document c	ould be made without affecting the overall usefulness?
-		
- 6	a thora any incorrect or micloading i	pformation (what and whata)?
0. 1		
-		
- 7. ŀ	How would you improve this docume	ent?
1		
-		
-		