
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	12
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	16-VQFN Exposed Pad
Supplier Device Package	16-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f676-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (see Table 2-1). These registers are static RAM.

The special registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the "core" are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

FIGURE 2-2: DATA MEMORY MAP OF THE PIC16F630/676

THE PIC16F630/676										
	File Address	A	File ddress							
Indirect addr. ⁽¹⁾	00h	Indirect addr. ⁽¹⁾	80h							
TMR0	01h	OPTION_REG	81h							
PCL	02h	PCL	82h							
STATUS	03h	STATUS	83h							
FSR	04h	FSR	84h							
PORTA	05h	TRISA	85h							
	06h	-	86h							
PORTC	07h	TRISC	87h							
	08h	-	88h							
	09h		89h							
PCLATH	0Ah	PCLATH	8Ah							
INTCON	0Bh	INTCON	8Bh							
PIR1	0Ch	PIE1	8Ch							
	0Dh		8Dh							
TMR1L	0Eh	PCON	8Eh							
TMR1H	0Fh		8Fh							
T1CON	10h	OSCCAL	90h							
TICON	11h	ANSEL ⁽²⁾	91h							
	12h	THOLE	92h							
	13h	-	93h							
	14h		94h							
	15h	WPUA	95h							
	16h	IOCA	96h							
	17h	IOCA	97h							
	18h		98h							
CMCON	19h	VRCON	99h							
CINCON	1Ah	EEDAT	9Ah							
	1Bh	EEADR	9Bh							
	1Ch	EECON1	9Ch							
	1Dh	EECON2 ⁽¹⁾	9Dh							
ADRESH ⁽²⁾	1Eh	ADRESL ⁽²⁾	9Eh							
ADCON0 ⁽²⁾	1Fh	ADCON1 ⁽²⁾	9Fh							
ADCONU	20h	ADCONT	A0h							
General Purpose Registers 64 Bytes	2011	accesses 20h-5Fh								
	5Fh		DFh							
	60h		E0h							
	001		Lon							
	7Fh	_	FFh							
Bank 0		Bank 1								
Unimplemente1: Not a physical2: PIC16F676 on	register.	mory locations, rea	d as '0'.							

2.2.2.4 PIE1 Register

The PIE1 register contains the interrupt enable bits, as shown in Register 2-4.

- n = Value at POR

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

REGISTER 2-4: PIE1 — PERIPHERAL INTERRUPT ENABLE REGISTER 1 (ADDRESS: 8Ch) R/W-0 R/W-0 U-0 R/W-0 U-0 R/W-0 U-0 U-0 EEIE ADIE CMIE TMR1IE bit 7 bit 0 bit 7 **EEIE:** EE Write Complete Interrupt Enable bit 1 = Enables the EE write complete interrupt 0 = Disables the EE write complete interrupt bit 6 ADIE: A/D Converter Interrupt Enable bit (PIC16F676 only) 1 = Enables the A/D converter interrupt 0 = Disables the A/D converter interrupt bit 5-4 Unimplemented: Read as '0' bit 3 CMIE: Comparator Interrupt Enable bit 1 = Enables the comparator interrupt 0 = Disables the comparator interrupt bit 2-1 Unimplemented: Read as '0' bit 0 TMR1IE: TMR1 Overflow Interrupt Enable bit 1 = Enables the TMR1 overflow interrupt 0 = Disables the TMR1 overflow interrupt Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

'1' = Bit is set

'0' = Bit is cleared

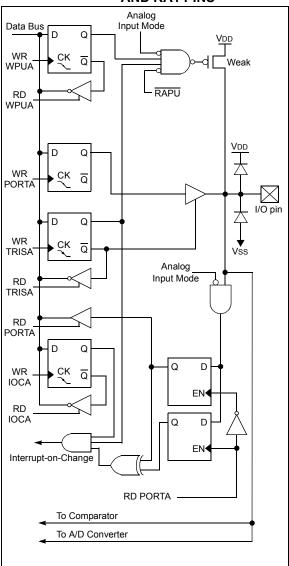
x = Bit is unknown

3.2.3 PIN DESCRIPTIONS AND DIAGRAMS

Each PORTA pin is multiplexed with other functions. The pins and their combined functions are briefly described here. For specific information about individual functions such as the comparator or the A/D, refer to the appropriate section in this Data Sheet.

3.2.3.1 RA0/AN0/CIN+

Figure 3-1 shows the diagram for this pin. The RA0 pin is configurable to function as one of the following:


- a general purpose I/O
- an analog input for the A/D (PIC16F676 only)
- · an analog input to the comparator

3.2.3.2 RA1/AN1/CIN-/VREF

Figure 3-1 shows the diagram for this pin. The RA1 pin is configurable to function as one of the following:

- as a general purpose I/O
- an analog input for the A/D (PIC16F676 only)
- an analog input to the comparator
- a voltage reference input for the A/D (PIC16F676 only)

FIGURE 3-1: BLOCK DIAGRAM OF RA0 AND RA1 PINS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Value on all other Resets
05h	PORTA	_	—	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxxx	uu uuuu
0Bh/8Bh	INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	0000 0000	0000 000u
19h	CMCON	_	COUT	_	CINV	CIS	CM2	CM1	CM0	-0-0 0000	-0-0 0000
81h	OPTION_REG	RAPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	_	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
91h	ANSEL ⁽¹⁾	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	1111 1111
95h	WPUA	_	_	WPUA5	WPUA4	_	WPUA2	WPUA1	WPUA0	11 -111	11 -111
96h	IOCA	_	_	IOCA5	IOCA4	IOCA3	IOCA2	IOCA1	IOCA0	00 0000	00 0000

Note 1: PIC16F676 only.

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

NOTES:

4.4 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer. For simplicity, this counter will be referred to as "prescaler" throughout this Data Sheet. The prescaler assignment is controlled in software by the control bit PSA (OPTION_REG<3>). Clearing the PSA bit will assign the prescaler to Timer0. Prescale values are selectable via the PS2:PS0 bits (OPTION_REG<2:0>).

The prescaler is not readable or writable. When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1, x...etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer.

4.4.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on the fly" during program execution). To avoid an unintended device Reset, the following instruction sequence (Example 4-1) must be executed when changing the prescaler assignment from Timer0 to WDT.

EXAMPLE 4-1: CHANGING PRESCALER (TIMER0→WDT)

BCF CLRWDT	STATUS, RPO	;Bank 0 ;Clear WDT
	T N (T) (1)	,
CLRF	TMR0	;Clear TMR0 and
		; prescaler
BSF	STATUS, RPO	;Bank 1
MOVLW	b'00101111'	;Required if desired
MOVWF	OPTION REG	; PS2:PS0 is
CLRWDT	_	; 000 or 001
		;
MOVLW	b'00101xxx'	;Set postscaler to
MOVWF	OPTION REG	; desired WDT rate
BCF	STATUS, RPO	;Bank 0

To change prescaler from the WDT to the TMR0 module, use the sequence shown in Example 4-2. This precaution must be taken even if the WDT is disabled.

EXAMPLE 4-2: CHANGING PRESCALER (WDT→TIMER0)

CLRWDT		;Clear WDT and
BSF	STATUS, RPO	; postscaler ;Bank 1
MOVLW	b'xxxx0xxx'	;Select TMR0, ; prescale, and ; clock source
MOVWF BCF	OPTION_REG STATUS,RPO	; ;Bank O

TABLE 4-1:REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Value on all other Resets
01h	TMR0	Timer0 M	imer0 Module Register								uuuu uuuu
0Bh/8Bh	INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	0000 0000	0000 000u
81h	OPTION_REG	RAPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	_	—	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111

Legend: -= Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Timer0 module.

NOTES:

	WROOM	IOLIAO			NOL NEO		DIVECC: 0	011)			
	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	VREN		VRR	_	VR3	VR2	VR1	VR0			
	bit 7							bit 0			
bit 7	1 = CVREF	REF Enable circuit powe circuit powe		no IDD drain							
bit 6	Unimplem	Unimplemented: Read as '0'									
bit 5	VRR: CVR 1 = Low rat 0 = High ra	0	election bit								
bit 4	Unimplem	ented: Rea	d as '0'								
bit 3-0	When VRR	Unimplemented: Read as '0' VR3:VR0: CVREF value selection bits $0 \le VR$ [3:0] ≤ 15 When VRR = 1: CVREF = (VR3:VR0 / 24) * VDD When VRR = 0: CVREF = VDD/4 + (VR3:VR0 / 32) * VDD									
	Legend:										
	R = Reada	ble bit	W = W	/ritable bit	U = Unim	nplemented	bit, read as	'0'			
	- n = Value	at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is u	inknown			

REGISTER 6-2: VRCON — VOLTAGE REFERENCE CONTROL REGISTER (ADDRESS: 99h)

6.9 Comparator Interrupts

The comparator interrupt flag is set whenever there is a change in the output value of the comparator. Software will need to maintain information about the status of the output bits, as read from CMCON<6>, to determine the actual change that has occurred. The CMIF bit, PIR1<3>, is the comparator interrupt flag. This bit must be reset in software by clearing it to '0'. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

The CMIE bit (PIE1<3>) and the PEIE bit (INTCON<6>) must be set to enable the interrupt. In addition, the GIE bit must also be set. If any of these bits are cleared, the interrupt is not enabled, though the CMIF bit will still be set if an interrupt condition occurs.

The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of CMCON. This will end the mismatch condition.
- b) Clear flag bit CMIF.

A mismatch condition will continue to set flag bit CMIF. Reading CMCON will end the mismatch condition and allow flag bit CMIF to be cleared.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Value on all other Resets
0Bh/8Bh	INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	0000 0000	0000 000u
0Ch	PIR1	EEIF	ADIF	—	_	CMIF	_	_	TMR1IF	00 00	00 00
19h	CMCON	_	COUT	—	CINV	CIS	CM2	CM1	CM0	-0-0 0000	-0-0 0000
8Ch	PIE1	EEIE	ADIE	_		CMIE	_	_	TMR1IE	00 00	00 00
85h	TRISA	_	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
99h	VRCON	VREN	_	VRR	_	VR3	VR2	VR1	VR0	0-0- 0000	0-0- 0000

TABLE 6-2: REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the comparator module.

Note: If a change in the CMCON register (COUT) should occur when a read operation is being executed (start of the Q2 cycle), then the CMIF (PIR1<3>) interrupt flag may not get set.

	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	ADFM	VCFG	_	CHS2	CHS1	CHS0	GO/DONE	ADON			
	bit 7							bit 0			
bit 7	ADFM: A/E 1 = Right ju 0 = Left jus		med Select	bit							
bit 6		VCFG: Voltage Reference bit 1 = VREF pin 0 = VDD									
bit 5	Unimplem	ented: Rea	d as zero								
bit 4-2	000 = Cha 001 = Cha 010 = Cha 011 = Cha 100 = Cha 101 = Cha 110 = Cha	60: Analog (annel 00 (AN annel 01 (AN annel 02 (AN annel 03 (AN annel 04 (AN annel 05 (AN annel 06 (AN annel 07 (AN	NO) N1) N2) N3) N4) N5) N6)	ect bits							
bit 1	GO/DONE 1 = A/D co This bit	A/D Conve	rsion Status cle in progre cally cleared	ss. Setting f d by hardwa			nversion cycle rsion has com				
bit 0	ADON: A/D Conversion Status bit 1 = A/D converter module is operating 0 = A/D converter is shut-off and consumes no operating current										
	Logond										
	Legend:	blo bit	۱۵/ – ۱۸	<i>I</i> ritabla bit		nnlomontor	hit road as '()'			
	R = Reada			/ritable bit		•	l bit, read as '(
	-			/ritable bit it is set		nplemented is cleared	l bit, read as '(x = Bit is ur				
REGISTER 7-2:	R = Reada - n = Value	at POR	'1' = B	it is set	'0' = Bit	is cleared					
REGISTER 7-2:	R = Reada - n = Value ADCON1 ·	at POR — A/D CO	'1' = B	it is set EGISTER 1	'0' = Bit	is cleared	x = Bit is ur	iknown			
REGISTER 7-2:	R = Reada - n = Value	at POR — A/D CO R/W-0	'1' = B NTROL RE R/W-0	it is set EGISTER 1 R/W-0	'0' = Bit	is cleared					
REGISTER 7-2:	R = Reada - n = Value ADCON1 - U-0 —	at POR — A/D CO	'1' = B	it is set EGISTER 1	'0' = Bit	is cleared	x = Bit is ur	U-0			
REGISTER 7-2:	R = Reada - n = Value ADCON1 ·	at POR — A/D CO R/W-0	'1' = B NTROL RE R/W-0	it is set EGISTER 1 R/W-0	'0' = Bit	is cleared	x = Bit is ur	iknown			
	R = Reada - n = Value ADCON1 - U-0 bit 7	at POR — A/D CO R/W-0 ADCS2	'1' = B NTROL RE R/W-0 ADCS1	it is set EGISTER 1 R/W-0	'0' = Bit	is cleared	x = Bit is ur	U-0			
bit 7:	R = Reada - n = Value ADCON1 - U-0 bit 7 Unimplem	at POR – A/D CO R/W-0 ADCS2 ented: Rea	'1' = B NTROL RI R/W-0 ADCS1 d as '0'	it is set EGISTER 1 R/W-0 ADCS0	'0' = Bit i I (ADRESS U-0 —	is cleared	x = Bit is ur	U-0			
	R = Reada - n = Value ADCON1 - U-0 bit 7 Unimplem ADCS<2:0	at POR — A/D CO R/W-0 ADCS2 ented: Read	'1' = B NTROL RI R/W-0 ADCS1 d as '0'	it is set EGISTER 1 R/W-0 ADCS0	'0' = Bit i I (ADRESS U-0 —	is cleared	x = Bit is ur	U-0			
bit 7:	R = Reada - n = Value ADCON1 - U-0 bit 7 Unimplem	at POR — A/D CO R/W-0 ADCS2 ented: Read >: A/D Conv c/2 c/8	'1' = B NTROL RI R/W-0 ADCS1 d as '0'	it is set EGISTER 1 R/W-0 ADCS0	'0' = Bit i I (ADRESS U-0 —	is cleared	x = Bit is ur	U-0			
bit 7:	R = Reada - n = Value ADCON1 - U-0 bit 7 Unimplem ADCS<2:0 000 = Fos 001 = Fos 010 = Fos x11 = FRC 100 = Fos	at POR — A/D CO R/W-0 ADCS2 ented: Read >: A/D Conv c/2 c/8 c/32 (clock derive c/4 c/16	'1' = B NTROL RI R/W-0 ADCS1 d as '0' version Cloc	it is set EGISTER 1 R/W-0 ADCS0	'0' = Bit i I (ADRESS U-0 —	5: 9Fh) U-0	x = Bit is ur U-0	U-0			
bit 7: bit 6-4:	R = Reada - n = Value ADCON1 - U-0 bit 7 Unimplem ADCS<2:0 000 = Fos 001 = Fos 010 = Fos 100 = Fos 101 = Fos	at POR — A/D CO R/W-0 ADCS2 ented: Read >: A/D Conv c/2 c/8 c/32 (clock deriv c/4 c/16 c/64	'1' = B NTROL RI R/W-0 ADCS1 d as '0' version Cloc ed from a d	it is set EGISTER 1 R/W-0 ADCS0	'0' = Bit i I (ADRESS U-0 —	5: 9Fh) U-0	x = Bit is ur U-0	U-0			
bit 7:	R = Reada - n = Value ADCON1 - U-0 bit 7 Unimplem ADCS<2:0 000 = Fos 001 = Fos 010 = Fos 100 = Fos 101 = Fos	at POR — A/D CO R/W-0 ADCS2 ented: Read >: A/D Conv c/2 c/8 c/32 (clock derive c/4 c/16	'1' = B NTROL RI R/W-0 ADCS1 d as '0' version Cloc ed from a d	it is set EGISTER 1 R/W-0 ADCS0	'0' = Bit i I (ADRESS U-0 —	5: 9Fh) U-0	x = Bit is ur U-0	U-0			
bit 7: bit 6-4:	R = Reada - n = Value ADCON1 - U-0 bit 7 Unimplem ADCS<2:0 000 = Fos 010 = Fos 010 = Fos 110 = Fos 101 = Fos 110 = Fos	at POR — A/D CO R/W-0 ADCS2 ented: Read >: A/D Conv c/2 c/8 c/32 (clock deriv c/4 c/16 c/64	'1' = B NTROL RI R/W-0 ADCS1 d as '0' version Cloc ed from a d	it is set EGISTER 1 R/W-0 ADCS0	'0' = Bit i I (ADRESS U-0 —	5: 9Fh) U-0	x = Bit is ur U-0	U-0			
bit 7: bit 6-4:	R = Reada - n = Value ADCON1 - U-0 bit 7 Unimplem ADCS<2:0 000 = Fos 001 = Fos 010 = Fos 100 = Fos 101 = Fos 101 = Fos 101 = Fos	at POR — A/D CO R/W-0 ADCS2 ented: Read >: A/D Conv C/2 C/8 C/32 (clock deriv C/4 C/16 C/64 ented: Read	'1' = B NTROL RI R/W-0 ADCS1 d as '0' version Cloc ed from a d	it is set EGISTER 1 R/W-0 ADCS0	'0' = Bit i I (ADRESS U-0 —	s: 9Fh) U-0	x = Bit is ur U-0 	U-0			
bit 7: bit 6-4:	R = Reada - n = Value ADCON1 - U-0 bit 7 Unimplem ADCS<2:0 000 = Fos 010 = Fos 010 = Fos 110 = Fos 101 = Fos 110 = Fos	at POR — A/D CO R/W-0 ADCS2 ented: Read >: A/D Conv C/2 C/8 C/32 (clock deriv C/4 C/16 C/64 ented: Read	'1' = B NTROL RI R/W-0 ADCS1 d as '0' version Cloc ed from a d	it is set EGISTER 1 R/W-0 ADCS0 k Select bits edicated inte	'0' = Bit i I (ADRESS U-0 —	s: 9Fh) U-0 	x = Bit is ur U-0	U-0 — bit 0			

REGISTER 7-1: ADCON0 — A/D CONTROL REGISTER (ADDRESS: 1Fh)

REGISTER 7-3:	ANSEL — ANALOG SELECT REGISTER (ADRESS: 91h) (PIC16F676 ONLY)
---------------	---

	R/W-1							
	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0
b	it 7							bit 0

bit 7-0: **ANS<7:0>**: Analog Select between analog or digital function on pins AN<7:0>, respectively. 1 = Analog input. Pin is assigned as analog input.⁽¹⁾

0 = Digital I/O. Pin is assigned to port or special function.

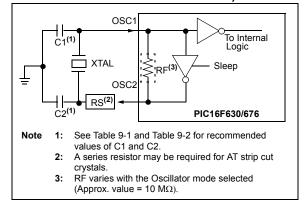
Note 1: Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups, and interrupt-on-change if available. The corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

9.2 Oscillator Configurations

9.2.1 OSCILLATOR TYPES

The PIC16F630/676 can be operated in eight different Oscillator Option modes. The user can program three Configuration bits (FOSC2 through FOSC0) to select one of these eight modes:


- LP Low-Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC External Resistor/Capacitor (2 modes)
- · INTOSC Internal Oscillator (2 modes)
- EC External Clock In

Note:	Additional information on oscillator config- urations is available in the PIC [®] Mid-Range
	Reference Manual, (DS33023).

9.2.2 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

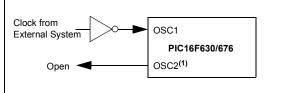

In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation (see Figure 9-1). The PIC16F630/676 oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may yield a frequency outside of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1 pin (see Figure 9-2).

FIGURE 9-1: CRYSTAL OPERATION (OR CERAMIC RESONATOR) (HS, XT OR LP OSC CONFIGURATION)

EXTERNAL CLOCK INPUT OPERATION (HS, XT, EC, OR LP OSC CONFIGURATION)

Note 1: Functions as RA4 in EC Osc mode.

TABLE 9-1:CAPACITOR SELECTION FOR
CERAMIC RESONATORS

Ranges Characterized:			
Mode	Freq	OSC1(C1)	OSC2(C2)
ХТ	455 kHz 2.0 MHz 4.0 MHz	68-100 pF 15-68 pF 15-68 pF	68-100 pF 15-68 pF 15-68 pF
HS	8.0 MHz 16.0 MHz	10-68 pF 10-22 pF	10-68 pF 10-22 pF
Note 1: Higher capacitance increases the stability of the oscillator but also increases the start-up time. These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.			

TABLE 9-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR

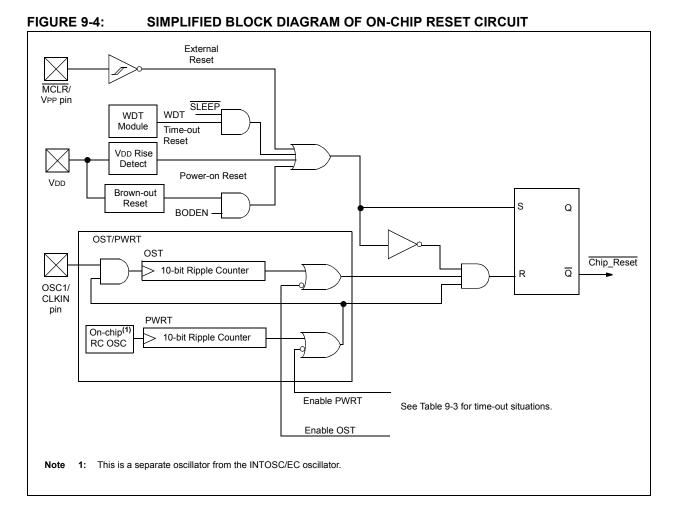
Mode	Freq	OSC1(C1)	OSC2(C2)
LP	32 kHz	68-100 pF	68-100 pF
ХТ	100 kHz 2 MHz 4 MHz	68-150 pF 15-30 pF 15-30 pF	150-200 pF 15-30 pF 15-30 pF
HS	8 MHz 10 MHz 20 MHz	15-30 pF 15-30 pF 15-30 pF	15-30 pF 15-30 pF 15-30 pF
Note 1: Higher capacitance increases the stability			

of the oscillator but also increases the start-up time. These values are for design guidance only. Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

9.3 Reset

The PIC16F630/676 differentiates between various kinds of Reset:

- a) Power-on Reset (POR)
- b) WDT Reset during normal operation
- c) WDT Reset during Sleep
- d) MCLR Reset during normal operation
- e) MCLR Reset during Sleep
- f) Brown-out Detect (BOD)


Some registers are not affected in any Reset condition; their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on:

- · Power-on Reset
- MCLR Reset
- WDT Reset
- WDT Reset during Sleep
- Brown-out Detect (BOD)

They are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different Reset situations as indicated in Table 9-4. These bits are used in software to determine the nature of the Reset. See Table 9-7 for a full description of Reset states of all registers.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 9-4.

The $\overline{\text{MCLR}}$ Reset path has a noise filter to detect and ignore small pulses. See Table 12-4 in Electrical Specifications Section for pulse-width specification.

10.0 INSTRUCTION SET SUMMARY

The PIC16F630/676 instruction set is highly orthogonal and is comprised of three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

Each PIC16 instruction is a 14-bit word divided into an **opcode**, which specifies the instruction type, and one or more **operands**, which further specify the operation of the instruction. The formats for each of the categories is presented in Figure 10-1, while the various opcode fields are summarized in Table 10-1.

Table 10-2 lists the instructions recognized by the MPASMTM assembler. A complete description of each instruction is also available in the PIC[®] Mid-Range Reference Manual (DS33023).

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

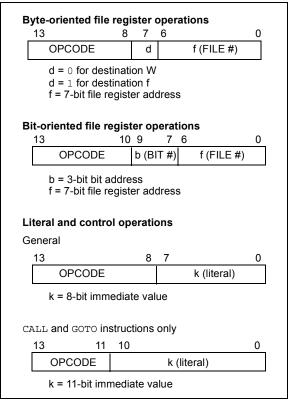
For **bit-oriented** instructions, 'b' represents a bit field designator, which selects the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, **'k**' represents an 8-bit or 11-bit constant, or literal value

One instruction cycle consists of four oscillator periods; for an oscillator frequency of 4 MHz, this gives a normal instruction execution time of 1 μ s. All instructions are executed within a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of an instruction. When this occurs, the execution takes two instruction cycles, with the second cycle executed as a NOP.

Note:	To maintain upward compatibility with
	future products, do not use the OPTION
	and TRIS instructions.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.


10.1 READ-MODIFY-WRITE OPERATIONS

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register. For example, a CLRF PORTA instruction will read PORTA, clear all the data bits, then write the result back to PORTA. This example would have the unintended result of clearing the condition that set the RAIF flag.

TABLE 10-1:OPCODE FIELD
DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
PC	Program Counter
то	Time-out bit
PD	Power-down bit

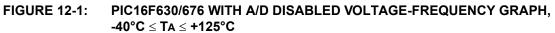
FIGURE 10-1: GENERAL FORMAT FOR INSTRUCTIONS

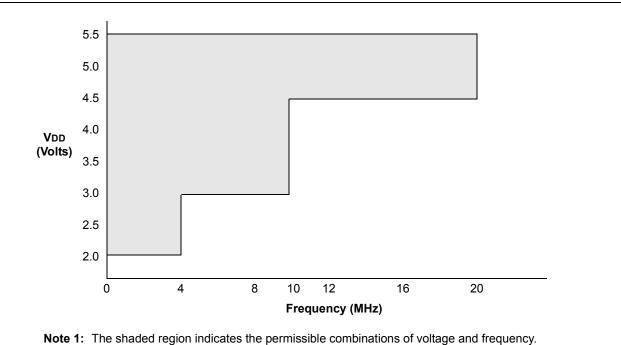
10.2 Instruction Descriptions

ADDLW	Add Literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \leq k \leq 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.

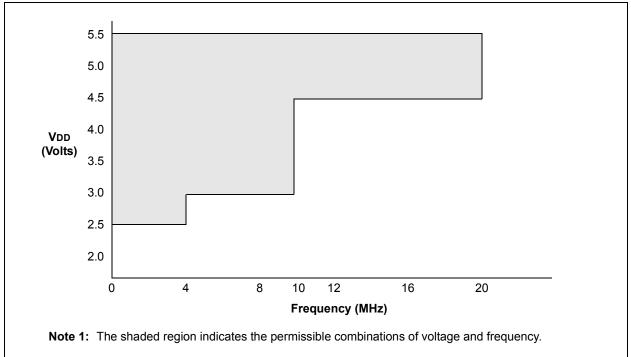
ADDWF	Add W and f	
Syntax:	[<i>label</i>] ADDWF f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	
Operation:	(W) + (f) \rightarrow (destination)	
Status Affected:	C, DC, Z	
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.	

BCF	Bit Clear f
Syntax:	[<i>label</i>] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.


BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.


ANDLW	AND Literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.

BTFSS	Bit Test f, Skip if Set
Syntax:	[<i>label</i>] BTFSS f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruc- tion is discarded and a NOP is executed instead, making this a 2-cycle instruction.


ANDWF	AND W with f			
Syntax:	[<i>label</i>] ANDWF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(W) .AND. (f) \rightarrow (destination)			
Status Affected:	Z			
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.			

BTFSC	Bit Test, Skip if Clear
Syntax:	[/abe/] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

FIGURE 12-2: PIC16F676 WITH A/D ENABLED VOLTAGE-FREQUENCY GRAPH, $\textbf{-40^{\circ}C} \leq \textbf{TA} \leq \textbf{+125^{\circ}C}$

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le Ta \le +85^{\circ}C$ for industrial							
Param Device Characteristics	Min	Typ†	Мах	Units	Conditions		
No.	Device characteristics with Typ1 wax onto	onno	VDD	Note			
D010	Supply Current (IDD)	-	9	16	μA	2.0	Fosc = 32 kHz
		—	18	28	μA	3.0	LP Oscillator Mode
		—	35	54	μA	5.0	
D011		—	110	150	μA	2.0	Fosc = 1 MHz
		_	190	280	μA	3.0	XT Oscillator Mode
		_	330	450	μA	5.0	
D012		_	220	280	μA	2.0	Fosc = 4 MHz
		_	370	650	μA	3.0	XT Oscillator Mode
		_	0.6	1.4	mA	5.0	
D013		_	70	110	μA	2.0	Fosc = 1 MHz
		_	140	250	μA	3.0	EC Oscillator Mode
		—	260	390	μA	5.0	
D014		—	180	250	μA	2.0	Fosc = 4 MHz
		_	320	470	μA	3.0	EC Oscillator Mode
		_	580	850	μA	5.0	
D015		—	340	450	μA	2.0	Fosc = 4 MHz
		_	500	780	μA	3.0	INTOSC Mode
		_	0.8	1.1	mA	5.0	
D016		_	180	250	μA	2.0	Fosc = 4 MHz
			320	450	μA	3.0	EXTRC Mode
		_	580	800	μA	5.0	
D017		_	2.1	2.95	mA	4.5	Fosc = 20 MHz
		_	2.4	3.0	mA	5.0	HS Oscillator Mode

12.2 DC Characteristics: PIC16F630/676-I (Industrial)

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

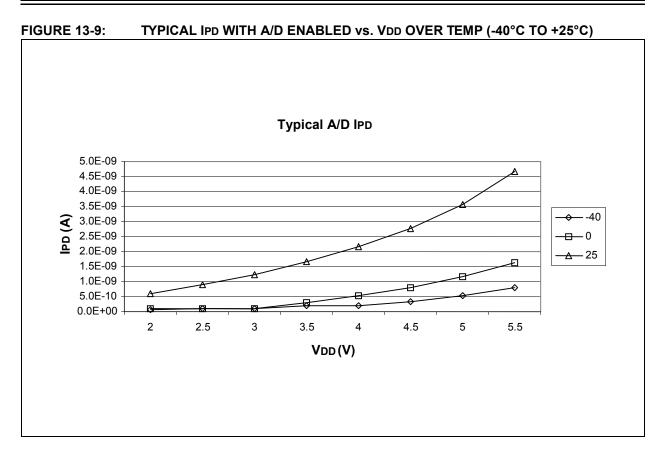
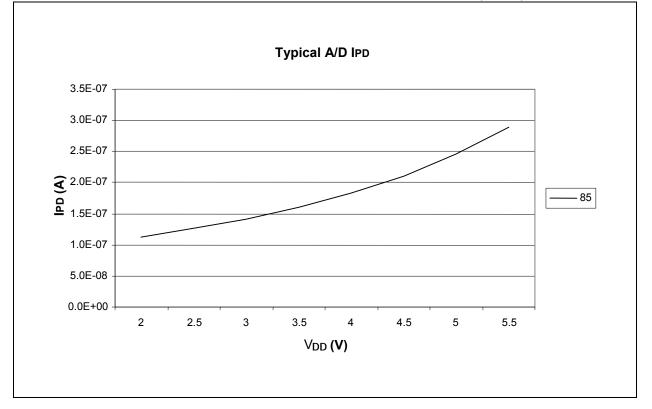
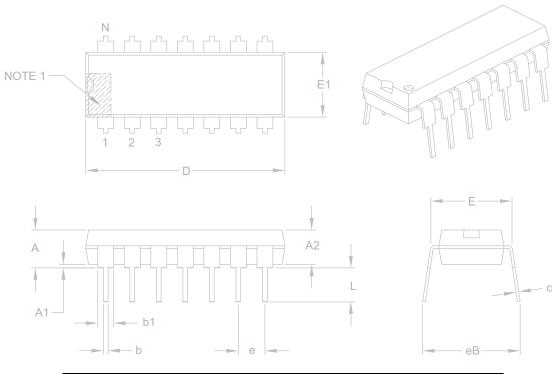



FIGURE 13-10: TYPICAL IPD WITH A/D ENABLED vs. VDD OVER TEMP (+85°C)



14.2 Package Details

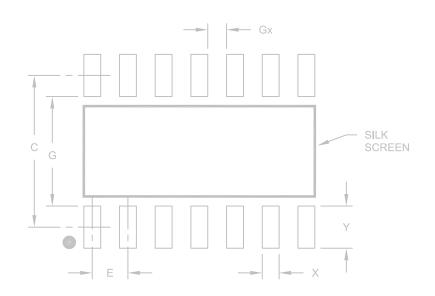
The following sections give the technical details of the packages.

14-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES			
Dimensio	Dimension Limits		NOM	MAX		
Number of Pins	Ν	14				
Pitch	е	.100 BSC				
Top to Seating Plane	Α	-	-	.210		
Molded Package Thickness	A2	.115	.130	.195		
Base to Seating Plane	A1	.015	-	-		
Shoulder to Shoulder Width	Е	.290	.310	.325		
Molded Package Width	E1	.240	.250	.280		
Overall Length	D	.735	.750	.775		
Tip to Seating Plane	L	.115	.130	.150		
Lead Thickness	С	.008	.010	.015		
Upper Lead Width	b1	.045	.060	.070		
Lower Lead Width	b	.014	.018	.022		
Overall Row Spacing §	eB	-	-	.430		

Notes:


- 1. Pin 1 visual index feature may vary, but must be located with the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-005B

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS		
Dimer	Dimension Limits		NOM	MAX
Contact Pitch	E	1.27 BSC		
Contact Pad Spacing	С		5.40	
Contact Pad Width	Х			0.60
Contact Pad Length	Y			1.50
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	3.90		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2065A

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A

This is a new data sheet.

Revision B

Added characterization graphs.

Updated specifications.

Added notes to indicate Microchip programmers maintain all calibration bits to factory settings and the PIC16F676 ANSEL register must be initialized to configure pins as digital I/O.

Revision C

Revision D

Updated Package Drawings; Replaced PICmicro with PIC.

Revision E (03/2007)

Replaced Package Drawings (Rev. AM); Replaced Development Support Section.

Revision F (05/2010)

Replaced Package Drawings (Rev. BD); Replaced Development Support Section.

APPENDIX B: DEVICE DIFFERENCES

The differences between the PIC16F630/676 devices listed in this data sheet are shown in Table B-1.

TABLE B-1: DEVICE DIFFERENCES

Feature	PIC16F630	PIC16F676
A/D	No	Yes