

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	12
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f676-e-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2.2 OPTION Register

The OPTION register is a readable and writable register, which contains various control bits to configure:

- TMR0/WDT prescaler
- External RA2/INT interrupt
- TMR0
- Weak pull-ups on PORTA

REGISTER 2-2: OPTION_REG — OPTION REGISTER (ADDRESS: 81h)

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	RAPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0
	bit 7							bit 0
bit 7			ip Enable bit					
			are disabled are enabled l	oy individual	PORT latch	values		
bit 6		· ·	lge Select bi	•		Valueo		
Site			edge of RA					
	0 = Interru	pt on falling	g edge of RA	2/INT pin				
bit 5			Source Selec	t bit				
			2/T0CKI pin n cycle clock					
bit 4			Edge Select	· ,				
				sition on RA2	2/T0CKI pin			
	0 = Increm	nent on low	-to-high trans	sition on RA2	2/T0CKI pin			
bit 3		scaler Assig						
			ned to the V aned to the T	imer0 modul	e			
bit 2-0			Rate Select I		-			
		Bit Value	TMR0 Rate	WDT Rate				
		000	1:2	1:1				
		001	1:4	1:2				
		010	1:8	1:4				
		011 100	1 : 16 1 : 32	1:8 1:16				
		101	1:64	1:32				
		110	1 : 128	1:64				
		111	1 : 256	1 : 128				
	· ·]
	Legend:							

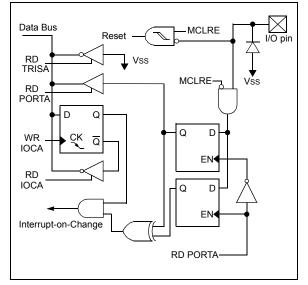
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Note: To achieve a 1:1 prescaler assignment for TMR0, assign the prescaler to the WDT by setting PSA bit to '1' (OPTION<3>). See Section 4.4 "Prescaler".

3.2.3.3 RA2/AN2/T0CKI/INT/COUT

Figure 3-2 shows the diagram for this pin. The RA2 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the A/D (PIC16F676 only)
- · a digital output from the comparator
- the clock input for TMR0
- · an external edge triggered interrupt


BLOCK DIAGRAM OF RA2 FIGURE 3-2: Analog Data Bus Input Mode Q D Vdd WR СК Q Weak WPUA RAPU RD WPUA Analog COUT Input Mode Enable Vdd D Q +WR СК Q COUT PORTA 1 \times I/O pin Ż Q D WR **∀** Vss СК Q TRIS. Analog Input Mode RD Ч TRISA RD PORTA Q П D Q WR CK Q IOCA EN RD IOCA D Q EN Interrupt-on-Change **RD PORTA** To TMR0 To INT To A/D Converter

3.2.3.4 RA3/MCLR/VPP

Figure 3-3 shows the diagram for this pin. The RA3 pin is configurable to function as one of the following:

- a general purpose input
- · as Master Clear Reset

FIGURE 3-3: BLOCK DIAGRAM OF RA3

STER 5-1:	T1CON — TIMER1 CONTROL REGISTER (ADDRESS: 10h)								
	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	—	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	
	bit 7							bit 0	
bit 7	Unimplem	ented: Read	as '0'						
bit 6	-	Timer1 Gate							
	If TMR10								
	This bit is i If TMR10N								
		is on if T1G	pin is low						
	0 = Timer1								
bit 5-4		:T1CKPS0: T	•	t Clock Pres	scale Select I	oits			
	-	rescale Value rescale Value							
		rescale Value							
	00 = 1:1 P	rescale Value	9						
bit 3		: LP Oscillato							
		without CLK			<u>).</u>				
		illator is off							
	<u>Else:</u> This hit is i	aparad							
bit 2	This bit is i	ignored Timer1 Exteri	aal Clock I	nnut Synchr	onization Co	atrol bit			
DIL Z	TMR1CS =			iiput Synchii					
	1 = Do not	synchronize							
	0 = Synchi <u>TMR1CS =</u>	ronize externa 	al clock inp	but					
		<u>gnored</u> . Time	er1 uses th	e internal clo	ock.				
bit 1	TMR1CS:	Timer1 Clock	Source S	elect bit					
		al clock from		1CKI pin (on	the rising ed	lge)			
h# 0		al clock (Fosc	-						
bit 0	1 = Enable	Timer1 On b s Timer1	IL						
	0 = Stops	Timer1							
	Legend:								
	R = Reada	able bit	VV = V	Vritable bit	U = Unim	plemented	bit, read as	'0'	
	- n = Value	e at POR	'1' = E	Bit is set	'0' = Bit is	s cleared	x = Bit is u	Inknown	

REGISTER 5-1: T1CON — TIMER1 CONTROL REGISTER (ADDRESS: 10h)

5.4 Timer1 Operation in Asynchronous Counter Mode

If control bit $\overline{T1SYNC}$ (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (Section 5.4.1).

Note: The ANSEL (91h) and CMCON (19h) registers must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read '0'. The ANSEL register is defined for the PIC16F676.

5.4.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L, while the timer is running from an external asynchronous clock, will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. Examples 12-2 and 12-3 in the PIC[®] Mid-Range MCU Family Reference Manual (DS33023) show how to read and write Timer1 when it is running in Asynchronous mode.

5.5 Timer1 Oscillator

A crystal oscillator circuit is built-in between pins OSC1 (input) and OSC2 (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 32 kHz. It will continue to run during Sleep. It is primarily intended for a 32 kHz crystal. Table 9-2 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is shared with the system LP oscillator. Thus, Timer1 can use this mode only when the system clock is derived from the internal oscillator. As with the system LP oscillator, the user must provide a software time delay to ensure proper oscillator start-up.

TRISA5 and TRISA4 bits are set when the Timer1 oscillator is enabled. RA5 and RA4 read as '0' and TRISA5 and TRISA4 bits read as '1'.

Note: The oscillator requires a start-up and stabilization time before use. Thus, T1OSCEN should be set and a suitable delay observed prior to enabling Timer1.

5.6 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To setup the timer to wake the device:

- Timer1 must be on (T1CON<0>)
- TMR1IE bit (PIE1<0>) must be set
- PEIE bit (INTCON<6>) must be set

The device will wake-up on an overflow. If the GIE bit (INTCON<7>) is set, the device will wake-up and jump to the Interrupt Service Routine on an overflow.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR,			e on other sets
0Bh/8Bh	INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	0000	0000	0000	000u
0Ch	PIR1	EEIF	ADIF		_	CMIF	—	-	TMR1IF	00	00	00	00
0Eh	TMR1L	Holding	lolding Register for the Least Significant Byte of the 16-bit TMR1 Register								XXXX	uuuu	uuuu
0Fh	TMR1H	Holding	lolding Register for the Most Significant Byte of the 16-bit TMR1 Register							uuuu	uuuu		
10h	T1CON	_	TMR1GE	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	-000	0000	-uuu	uuuu
8Ch	PIE1	EEIE	ADIE	_	_	CMIE	_	_	TMR1IE	00	00	00	00

 TABLE 5-1:
 REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

NOTES:

6.0 **COMPARATOR MODULE**

The PIC16F630/676 devices have one analog comparator. The inputs to the comparator are multiplexed with the RA0 and RA1 pins. There is an on-chip Comparator Voltage Reference that can also be applied to an input of the comparator. In addition, RA2 can be configured as the comparator output. The Comparator Control Register (CMCON), shown in Register 6-1, contains the bits to control the comparator.

REGISTER 6-1: CMCON — COMPARATOR CONTROL REGISTER (ADDRESS: 19h)

	U-0	R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	COUT	_	CINV	CIS	CM2	CM1	CM0
	bit 7							bit 0
bit 7	Unimplem	ented: Rea	d as '0'					
bit 6	COUT: Con	nparator Ou	Itput bit					
	When CIN\							
	1 = VIN+ > ' 0 = VIN+ < '							
	U = VIN+ < When CIN\							
	1 = VIN+ < 1							
	0 = VIN+ >	Vin-						
bit 5	Unimplem	ented: Rea	d as '0'					
bit 4			put Inversio	n bit				
	1 = Output		ı					
1:10	0 = Output							
bit 3	CIS: Compa When CM2							
	1 = VIN- COI							
	0 = VIN- COI	nnects to C	IN-					
bit 2-0	CM2:CM0:							
	Figure 6-2	shows the C	Comparator	modes and (CM2:CM0 b	it settings		
	Legend:							
		hla hit	$\lambda A = \lambda A$	/ritable bit		anlamantad	hit road on	<u>o'</u>

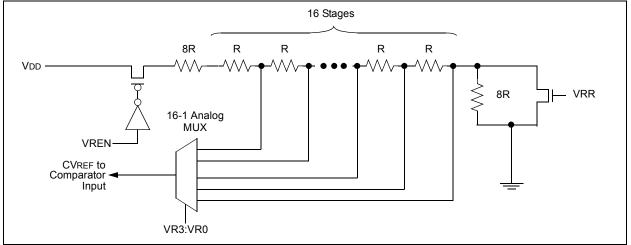
Legenu.			
R = Readable bi	t W = Writable bit	U = Unimplemente	d bit, read as '0'
- n = Value at P	OR '1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

6.5 Comparator Reference

The comparator module also allows the selection of an internally generated voltage reference for one of the comparator inputs. The internal reference signal is used for four of the eight Comparator modes. The VRCON register, Register 6-2, controls the voltage reference module shown in Figure 6-5.

6.5.1 CONFIGURING THE VOLTAGE REFERENCE

The voltage reference can output 32 distinct voltage levels, 16 in a high range and 16 in a low range.


The following equations determine the output voltages:

$VRR = 1$ (low range): $CVREF = (VR3:VR0 / 24) \times VDD$	
VRR = 0 (high range): $CVREF = (VDD / 4) + (VR3:VR0 x)$	
VDD / 32)	

6.5.2 VOLTAGE REFERENCE ACCURACY/ERROR

The full range of VSS to VDD cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 6-5) keep CVREF from approaching VSS or VDD. The Voltage Reference is VDD derived and therefore, the CVREF output changes with fluctuations in VDD. The tested absolute accuracy of the Comparator Voltage Reference can be found in **Section 12.0 "Electrical Specifications"**.

6.6 Comparator Response Time

Response time is the minimum time, after selecting a new reference voltage or input source, before the comparator output is ensured to have a valid level. If the internal reference is changed, the maximum delay of the internal voltage reference must be considered when using the comparator outputs. Otherwise, the maximum delay of the comparators should be used (Table 12-7).

6.7 Operation During Sleep

Both the comparator and voltage reference, if enabled before entering Sleep mode, remain active during Sleep. This results in higher Sleep currents than shown in the power-down specifications. The additional current consumed by the comparator and the voltage reference is shown separately in the specifications. To minimize power consumption while in Sleep mode, turn off the comparator, CM2:CM0 = 111, and voltage reference, VRCON<7> = 0. While the comparator is enabled during Sleep, an interrupt will wake-up the device. If the device wakes up from Sleep, the contents of the CMCON and VRCON registers are not affected.

6.8 Effects of a Reset

A device Reset forces the CMCON and VRCON registers to their Reset states. This forces the comparator module to be in the Comparator Reset mode, CM2:CM0 = 000 and the voltage reference to its off state. Thus, all potential inputs are analog inputs with the comparator and voltage reference disabled to consume the smallest current possible.

REGISTER 7-3:	ANSEL — ANALOG SELECT REGISTER (ADRESS: 91h) (PIC16F676 ONLY)
---------------	---

	R/W-1							
	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0
b	it 7							bit 0

bit 7-0: **ANS<7:0>**: Analog Select between analog or digital function on pins AN<7:0>, respectively. 1 = Analog input. Pin is assigned as analog input.⁽¹⁾

0 = Digital I/O. Pin is assigned to port or special function.

Note 1: Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups, and interrupt-on-change if available. The corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

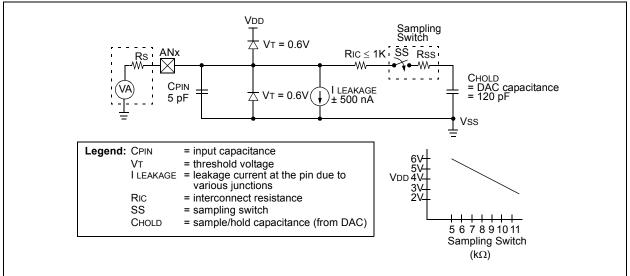
7.2 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 7-3. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 7-3. The maximum recommended impedance for analog sources is 10 k\Omega. As the impedance

EQUATION 7-1: ACQUISITION TIME

is decreased, the acquisition time may be decreased. After the analog input channel is selected (changed), this acquisition must be done before the conversion can be started.

To calculate the minimum acquisition time, Equation 7-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.


To calculate the minimum acquisition time, TACQ, see the PIC[®] Mid-Range Reference Manual (DS33023).

TACQ	= Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient
Тс	= TAMP + TC + TCOFF = $2\mu s$ + TC + [(Temperature -25°C)(0.05 μs /°C)] = CHOLD (RIC + RSS + RS) In(1/2047) = -120pF (1k Ω + 7k Ω + 10k Ω) In(0.0004885)
TACQ	= 16.47μs = 2μs + 16.47μs + [(50°C -25°C)(0.05μs/°C) = 19.72μs

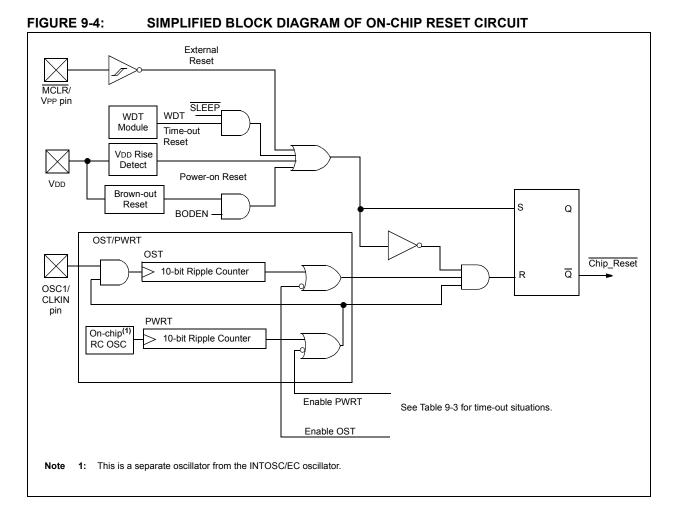
Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

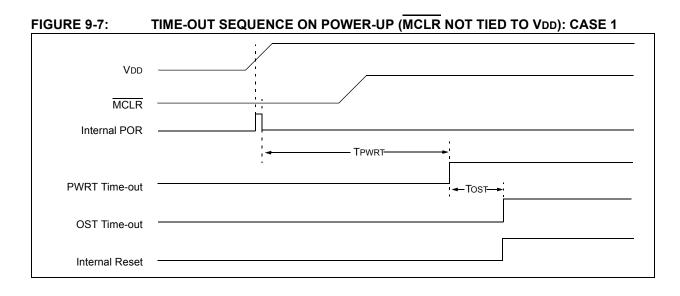
- **2:** The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is 10 kΩ. This is required to meet the pin leakage specification.

9.3 Reset

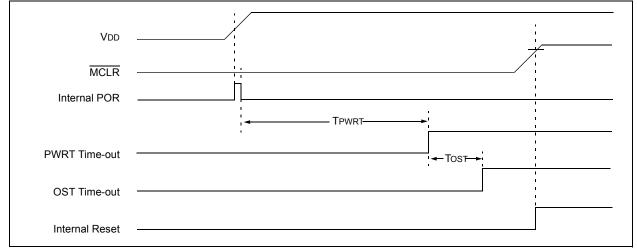
The PIC16F630/676 differentiates between various kinds of Reset:

- a) Power-on Reset (POR)
- b) WDT Reset during normal operation
- c) WDT Reset during Sleep
- d) MCLR Reset during normal operation
- e) MCLR Reset during Sleep
- f) Brown-out Detect (BOD)


Some registers are not affected in any Reset condition; their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on:


- · Power-on Reset
- MCLR Reset
- WDT Reset
- WDT Reset during Sleep
- Brown-out Detect (BOD)

They are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different Reset situations as indicated in Table 9-4. These bits are used in software to determine the nature of the Reset. See Table 9-7 for a full description of Reset states of all registers.


A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 9-4.

The $\overline{\text{MCLR}}$ Reset path has a noise filter to detect and ignore small pulses. See Table 12-4 in Electrical Specifications Section for pulse-width specification.

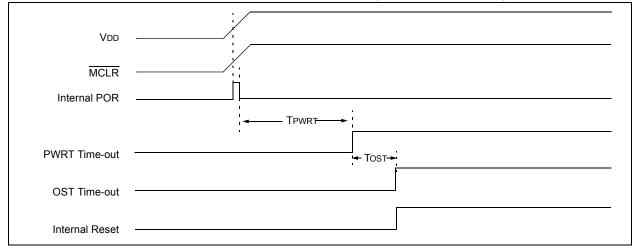


FIGURE 9-8: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 9-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

9.4.1 **RA2/INT INTERRUPT**

External interrupt on RA2/INT pin is edge-triggered; either rising if INTEDG bit (OPTION<6>) is set, or falling, if INTEDG bit is clear. When a valid edge appears on the RA2/INT pin, the INTF bit (INTCON<1>) is set. This interrupt can be disabled by clearing the INTE control bit (INTCON<4>). The INTF bit must be cleared in software in the Interrupt Service Routine before re-enabling this interrupt. The RA2/INT interrupt can wake-up the processor from Sleep if the INTE bit was set prior to going into Sleep. The status of the GIE bit decides whether or not the processor branches to the interrupt vector following wake-up. See Section 9.7 "Power-Down Mode (Sleep)" for details on Sleep and Figure 9-13 for timing of wake-up from Sleep through RA2/INT interrupt.

Note: The ANSEL (91h) and CMCON (19h) registers must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read '0'. The ANSEL register is defined for the PIC16F676.

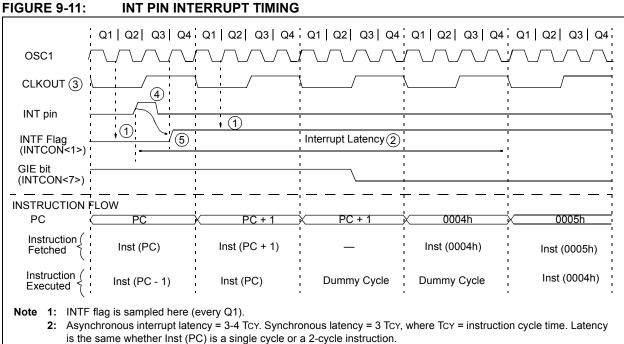
9.4.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set the T0IF (INTCON<2>) bit. The interrupt can be enabled/disabled by setting/clearing T0IE (INTCON<5>) bit. For operation of the Timer0 module, see Section 4.0 "Timer0 Module".

9.4.3 PORTA INTERRUPT

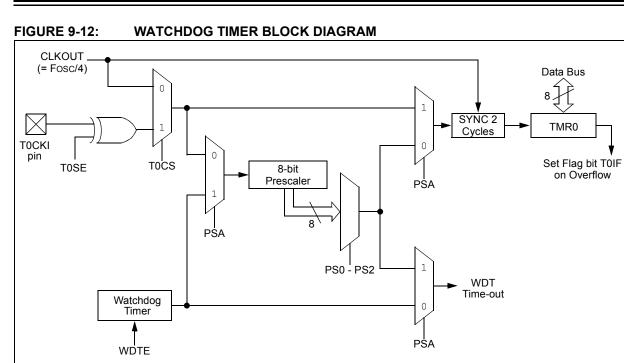
An input change on PORTA change sets the RAIF (INTCON<0>) bit. The interrupt can be enabled/ disabled by setting/clearing the RAIE (INTCON<3>) bit. Plus individual pins can be configured through the IOCA register.

Note:	If a change on the I/O pin should occur
	when the read operation is being executed
	(start of the Q2 cycle), then the RAIF inter-
	rupt flag may not get set.


9.4.4 COMPARATOR INTERRUPT

See Section 6.9 "Comparator Interrupts" for description of comparator interrupt.

9.4.5 A/D CONVERTER INTERRUPT


After a conversion is complete, the ADIF flag (PIR<6>) is set. The interrupt can be enabled/disabled by setting or clearing ADIE (PIE<6>).

See Section 7.0 "Analog-to-Digital Converter (A/D) Module (PIC16F676 only)" for operation of the A/D converter interrupt.

3: CLKOUT is available only in RC Oscillator mode.

- 4: For minimum width of INT pulse, refer to AC specs.
- 5: INTF is enabled to be set any time during the Q4-Q1 cycles.

Note 1: T0SE, T0CS, PSA, PS0-PS2 are bits in the OPTION register.

TABLE 9-9: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Value on all other Resets
81h	OPTION_REG	RAPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
2007h	Config. bits	CP	BODEN	MCLRE	PWRTE	WDTE	F0SC2	F0SC1	F0SC0	uuuu uuuu	uuuu uuuu

Legend: u = Unchanged, shaded cells are not used by the Watchdog Timer.

10.2 Instruction Descriptions

ADDLW	Add Literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \leq k \leq 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.

ADDWF	Add W and f
Syntax:	[<i>label</i>] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

BCF	Bit Clear f
Syntax:	[<i>label</i>] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

ANDLW	AND Literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.

BTFSS	Bit Test f, Skip if Set
Syntax:	[<i>label</i>] BTFSS f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruc- tion is discarded and a NOP is executed instead, making this a 2-cycle instruction.

ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

BTFSC	Bit Test, Skip if Clear
Syntax:	[/abe/] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

MOVF	Move f
Syntax:	[<i>label</i>] MOVF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register f are moved to a destination dependant upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. d = 1 is useful to test a file register, since status flag Z is affected.

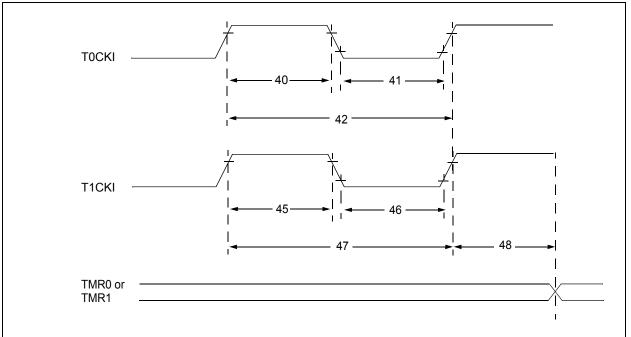
NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.

MOVLW	Move Literal to W					
Syntax:	[<i>label</i>] MOVLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	$k \rightarrow (W)$					
Status Affected:	None					
Description:	The eight-bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.					

RETFIE	Return from Interrupt				
Syntax:	[label] RETFIE				
Operands:	None				
Operation:	TOS \rightarrow PC, 1 \rightarrow GIE				
Status Affected:	None				

MOVWF	Move W to f					
Syntax:	[<i>label</i>] MOVWF f					
Operands:	$0 \leq f \leq 127$					
Operation:	$(W) \rightarrow (f)$					
Status Affected:	None					
Description:	Move data from W register to register 'f'.					

RETLW	Return with Literal in W					
Syntax:	[<i>label</i>] RETLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$					
Status Affected:	None					
Description:	The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.					


TABLE 12-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
AND BROWN-OUT DETECT REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TMCL	MCLR Pulse Width (low)	2 11	 18	 24	μs ms	VDD = 5V, -40°C to +85°C Extended temperature
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	10 10	17 17	25 30	ms ms	VDD = 5V, -40°C to +85°C Extended temperature
32	Тоѕт	Oscillation Start-up Timer Period	_	1024Tosc	_		Tosc = OSC1 period
33*	TPWRT	Power-up Timer Period	28* TBD	72 TBD	132* TBD	ms ms	VDD = 5V, -40°C to +85°C Extended Temperature
34	Tioz	I/O High-impedance from MCLR Low or Watchdog Timer Reset	—	_	2.0	μS	
	BVDD	Brown-out Detect Voltage	2.025		2.175	V	
		Brown-out Hysteresis	TBD	—		—	
35	TBOD	Brown-out Detect Pulse Width	100*		—	μS	$VDD \le BVDD$ (D005)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Param No.	Sym		Characteristic		Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse	Width	No Prescaler	0.5 Tcy + 20	-	_	ns	
				With Prescaler	10	—		ns	
41*	TtOL	T0CKI Low Pulse	Width	No Prescaler	0.5 TCY + 20	—	_	ns	
				With Prescaler	10	—	—	ns	
42*	TtOP	T0CKI Period			Greater of: 20 or <u>Tcy + 40</u> N	_	-	ns	N = prescale value (2, 4,, 256)
45*	Tt1H	T1CKI High Time	Synchronous, No	s, No Prescaler 0.5 Tcy + 20		—	_	ns	
			Synchronous, with Prescaler		15	-		ns	
			Asynchronous		30	—		ns	
46*	Tt1L	L T1CKI Low Time	Synchronous, No	Prescaler	0.5 Tcy + 20	—	_	ns	
			Synchronous, with Prescaler		15	-		ns	
			Asynchronous		30	—	_	ns	
47*	Tt1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	—	_	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		60	—	—	ns	
	Ft1		nput frequency range by setting bit T1OSCEN)		DC	—	200*	kHz	
48	TCKEZtmr1	Delay from externa	ternal clock edge to timer increment		2 Tosc*	—	7 Tosc*	_	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

NOTES:

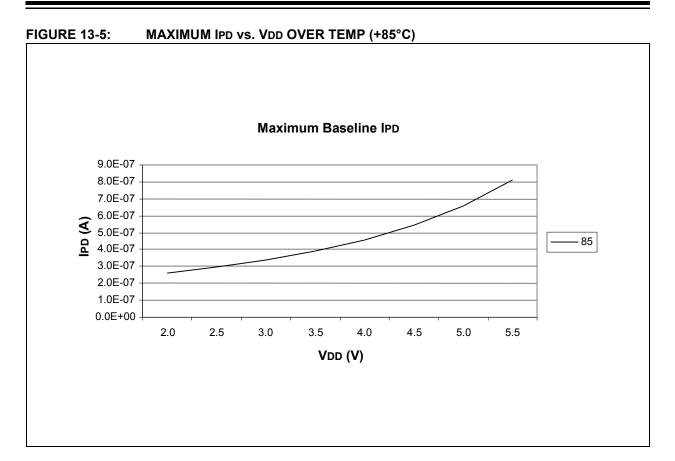
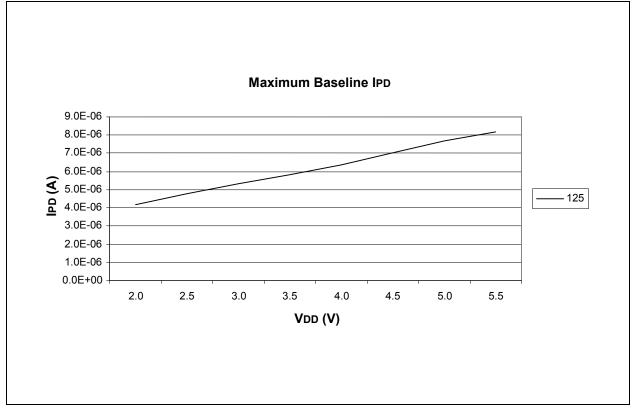



FIGURE 13-6: MAXIMUM IPD vs. VDD OVER TEMP (+125°C)

RESET, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer
Time-out Sequence on Power-up (MCLR not Tied to
VDD)/
Case 1 64
Case 2
Time-out Sequence on Power-up (MCLR Tied
to VDD)64
Timer0 and Timer1 External Clock 101
Timer1 Incrementing Edge35
Timing Parameter Symbology95
TRISIO Registers
V
Voltage Reference Accuracy/Error43
W
Watchdog Timer
Summary of Registers
Watchdog Timer (WDT) 68
WWW Address
WWW, On-Line Support5