

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	12
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f676t-e-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (see Table 2-1). These registers are static RAM.

The special registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the "core" are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

FIGURE 2-2: DATA MEMORY MAP OF THE PIC16F630/676

	THEF	PIC16F630/676	
	File Address	A	File ddress
Indirect addr. ⁽¹⁾	00h	Indirect addr. ⁽¹⁾	80h
TMR0	01h	OPTION_REG	81h
PCL	02h	PCL	82h
STATUS	03h	STATUS	83h
FSR	04h	FSR	84h
PORTA	05h	TRISA	85h
	06h	-	86h
PORTC	07h	TRISC	87h
	08h	-	88h
	09h		89h
PCLATH	0Ah	PCLATH	8Ah
INTCON	0Bh	INTCON	8Bh
PIR1	0Ch	PIE1	8Ch
	0Dh		8Dh
TMR1L	0Eh	PCON	8Eh
TMR1H	0Fh		8Fh
T1CON	10h	OSCCAL	90h
TICON	11h	ANSEL ⁽²⁾	91h
	12h	THOLE	92h
	13h	-	93h
	14h		94h
	15h	WPUA	95h
	16h	IOCA	96h
	17h	IOCA	97h
	18h		98h
CMCON	19h	VRCON	99h
CINCON	1Ah	EEDAT	9Ah
	1Bh	EEADR	9Bh
	1Ch	EECON1	9Ch
	1Dh	EECON2 ⁽¹⁾	9Dh
ADRESH ⁽²⁾	1Eh	ADRESL ⁽²⁾	9Eh
ADCON0 ⁽²⁾	1Fh	ADCON1 ⁽²⁾	9Fh
ADCONU	20h	ADCONT	A0h
General Purpose Registers 64 Bytes	2011	accesses 20h-5Fh	
	5Fh		DFh
	60h		E0h
	001		Lon
	7Fh	_	FFh
Bank 0		Bank 1	
Unimplemente1: Not a physical2: PIC16F676 on	register.	mory locations, rea	d as '0'.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Page
Bank 1			•		•	•	•		•		
80h	INDF	Addressing	this location	egister)	xxxx xxxx	20,63					
81h	OPTION_REG	RAPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	14,32
82h	PCL	Program Co	Program Counter's (PC) Least Significant Byte								19
83h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	13
84h	FSR		a memory Ad	-				50	, v	xxxx xxxx	20
85h	TRISA	_	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	21
86h	_	Unimpleme	nted				•	•		_	_
87h	TRISC		_	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	11 1111	_
88h	_	Unimpleme	nted	•		•	•	•		-	_
89h	_	Unimpleme	nted							-	-
8Ah	PCLATH	_	_	_	Write buffer	for upper 5 l	oits of progra	m counter		0 0000	19
8Bh	INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	0000 0000	15
8Ch	PIE1	EEIE	ADIE		—	CMIE	—		TMR1IE	0000	16
8Dh	—	Unimpleme	Unimplemented								-
8Eh	PCON	_	_		_	_	_	POR	BOD	dd	18
8Fh	_		•		•	•	•	•		-	
90h	OSCCAL	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0		_	1000 00	18
91h	ANSEL ⁽³⁾	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	48
92h	—	Unimpleme	nted	•			•	•		-	-
93h	_	Unimpleme	nted							_	l –
94h	_	Unimpleme	nted							-	-
95h	WPUA	_	_	WPUA5	WPUA4	_	WPUA2	WPUA1	WPUA0	11 -111	22
96h	IOCA	_	_	IOCA5	IOCA4	IOCA3	IOCA2	IOCA1	IOCA0	00 0000	23
97h	_	Unimpleme	nted				•	•		_	-
98h	_	Unimpleme	nted							_	l –
99h	VRCON	VREN	_	VRR	_	VR3	VR2	VR1	VR0	0-0- 0000	44
9Ah	EEDAT	EEPROM d	lata register							0000 0000	51
9Bh	EEADR	_	EEPROM a	ddress regis	ter					0000 0000	51
9Ch	EECON1	_	_	_	_	WRERR	WREN	WR	RD	x000	52
9Dh	EECON2	EEPROM c	ontrol registe	r 2 (not a ph	ysical registe	r)					51
9Eh	ADRESL ⁽³⁾	Least Signi	ficant 2 bits o	f the left shift	ted result or 8	B bits of the ri	ght shifted re	sult		xxxx xxxx	46
9Fh	ADCON1 ⁽³⁾	_	ADCS2	ADCS1	ADCS0	—	_		—	-000	47,63
Legend: Note 1 2 3	: Other (non Po	ower-up) Res bits are rese	sets include N	ICLR Reset,	Brown-out D	= unknown, o etect and Wa	g = value dep atchdog Time	ends on con r Reset durir	dition, shade ng normal op	ed = unimplemer eration.	ited

TABLE 2-2: PIC16F630/676 SPECIAL FUNCTION REGISTERS SUMMARY BANK 1

2.2.2.2 OPTION Register

The OPTION register is a readable and writable register, which contains various control bits to configure:

- TMR0/WDT prescaler
- External RA2/INT interrupt
- TMR0
- Weak pull-ups on PORTA

REGISTER 2-2: OPTION_REG — OPTION REGISTER (ADDRESS: 81h)

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
	RAPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0		
	bit 7							bit 0		
bit 7		RAPU: PORTA Pull-up Enable bit								
	 1 = PORTA pull-ups are disabled 0 = PORTA pull-ups are enabled by individual PORT latch values 									
bit 6	INTEDG: Interrupt Edge Select bit									
Site			edge of RA							
	0 = Interru	pt on falling	g edge of RA	2/INT pin						
bit 5			Source Selec	t bit						
			2/T0CKI pin n cycle clock							
bit 4			Edge Select	· ,						
				sition on RA2	2/T0CKI pin					
	0 = Increm	nent on low	-to-high trans	sition on RA2	2/T0CKI pin					
bit 3		scaler Assig								
			ned to the V aned to the T	imer0 modul	e					
bit 2-0			Rate Select I		-					
		Bit Value	TMR0 Rate	WDT Rate						
		000	1:2	1:1						
		001	1:4	1:2						
		010	1:8	1:4						
		011 100	1 : 16 1 : 32	1:8 1:16						
		101	1:64	1:32						
		110	1 : 128	1:64						
		111	1 : 256	1 : 128						
	· ·]		
	Legend:									

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Note: To achieve a 1:1 prescaler assignment for TMR0, assign the prescaler to the WDT by setting PSA bit to '1' (OPTION<3>). See Section 4.4 "Prescaler".

2.2.2.6 PCON Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- · Power-on Reset (POR)
- Brown-out Detect (BOD)
- Watchdog Timer Reset (WDT)
- External MCLR Reset

The PCON Register bits are shown in Register 2-6.

REGISTER 2-6: PCON — POWER CONTROL REGISTER (ADDRESS: 8Eh)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-x
_	_	_	—	_	-	POR	BOD
bit 7							bit 0

bit 7-2 Unimplemented: Read as '0'

bit 1 **POR:** Power-on Reset Status bit

1 = No Power-on Reset occurred

0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)

bit 0 BOD: Brown-out Detect Status bit

- 1 = No Brown-out Detect occurred
- 0 = A Brown-out Detect occurred (must be set in software after a Brown-out Detect occurs)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.2.2.7 OSCCAL Register

bit 7-2

bit 1-0

The Oscillator Calibration register (OSCCAL) is used to calibrate the internal 4 MHz oscillator. It contains 6 bits to adjust the frequency up or down to achieve 4 MHz.

The OSCCAL register bits are shown in Register 2-7.

REGISTER 2-7: OSCCAL—INTERNALOSCILLATOR CALIBRATION REGISTER (ADDRESS: 90h)

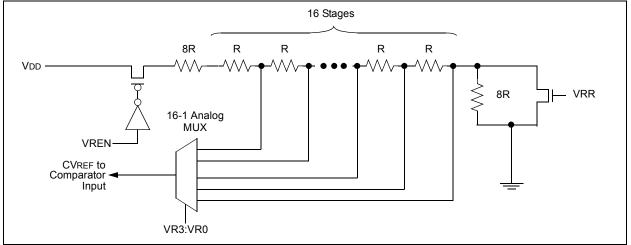
							-			
R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0			
CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	_	_			
bit 7							bit			
111111 = Maximum frequency 100000 = Center frequency 000000 = Minimum frequency										
Unimplem	ented: Read	d as '0'								
Legend:										
R = Reada	ble bit	W = W	ritable bit	U = Unin	nplemented	bit, read as '	ʻ0'			
- n = Value	at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is u	nknown			

6.5 Comparator Reference

The comparator module also allows the selection of an internally generated voltage reference for one of the comparator inputs. The internal reference signal is used for four of the eight Comparator modes. The VRCON register, Register 6-2, controls the voltage reference module shown in Figure 6-5.

6.5.1 CONFIGURING THE VOLTAGE REFERENCE

The voltage reference can output 32 distinct voltage levels, 16 in a high range and 16 in a low range.


The following equations determine the output voltages:

$VRR = 1$ (low range): $CVREF = (VR3: VR0 / 24) \times VDD$	
VRR = 0 (high range): $CVREF = (VDD / 4) + (VR3:VR0 x)$	
VDD / 32)	

6.5.2 VOLTAGE REFERENCE ACCURACY/ERROR

The full range of VSS to VDD cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 6-5) keep CVREF from approaching VSS or VDD. The Voltage Reference is VDD derived and therefore, the CVREF output changes with fluctuations in VDD. The tested absolute accuracy of the Comparator Voltage Reference can be found in **Section 12.0 "Electrical Specifications"**.

6.6 Comparator Response Time

Response time is the minimum time, after selecting a new reference voltage or input source, before the comparator output is ensured to have a valid level. If the internal reference is changed, the maximum delay of the internal voltage reference must be considered when using the comparator outputs. Otherwise, the maximum delay of the comparators should be used (Table 12-7).

6.7 Operation During Sleep

Both the comparator and voltage reference, if enabled before entering Sleep mode, remain active during Sleep. This results in higher Sleep currents than shown in the power-down specifications. The additional current consumed by the comparator and the voltage reference is shown separately in the specifications. To minimize power consumption while in Sleep mode, turn off the comparator, CM2:CM0 = 111, and voltage reference, VRCON<7> = 0. While the comparator is enabled during Sleep, an interrupt will wake-up the device. If the device wakes up from Sleep, the contents of the CMCON and VRCON registers are not affected.

6.8 Effects of a Reset

A device Reset forces the CMCON and VRCON registers to their Reset states. This forces the comparator module to be in the Comparator Reset mode, CM2:CM0 = 000 and the voltage reference to its off state. Thus, all potential inputs are analog inputs with the comparator and voltage reference disabled to consume the smallest current possible.

7.3 A/D Operation During Sleep

The A/D converter module can operate during Sleep. This requires the A/D clock source to be set to the internal oscillator. When the RC clock source is selected, the A/D waits one instruction before starting the conversion. This allows the SLEEP instruction to be executed, thus eliminating much of the switching noise from the conversion. When the conversion is complete, the GO/DONE bit is cleared, and the result is loaded into the ADRESH:ADRESL registers. If the A/D interrupt is enabled, the device awakens from Sleep. If the A/D interrupt is not enabled, the A/D module is turned off, although the ADON bit remains set. When the A/D clock source is something other than RC, a SLEEP instruction causes the present conversion to be aborted, and the A/D module is turned off. The ADON bit remains set.

7.4 Effects of Reset

A device Reset forces all registers to their Reset state. Thus, the A/D module is turned off and any pending conversion is aborted. The ADRESH:ADRESL registers are unchanged.

IADLL				DIVEOR							
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Value on all other Resets
05h	PORTA	—	—	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	xx xxxx	uu uuuu
07h	PORTC	—	_	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	xx xxxx	uu uuuu
0Bh, 8Bh	INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	0000 0000	0000 000u
0Ch	PIR1	EEIF	ADIF	—	_	CMIF	—	_	TMR1IF	00 00	00 00
1Eh	ADRESH	Most Signi	Most Significant 8 bits of the Left Shifted A/D result or 2 bits of the Right Shifted Result								uuuu uuuu
1Fh	ADCON0	ADFM	VCFG	—	CHS2	CHS1	CHS0	GO	ADON	00-0 0000	00-0 0000
85h	TRISA	—	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
87h	TRISC	—	_	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	11 1111	11 1111
8Ch	PIE1	EEIE	ADIE	—	_	CMIE	—	_	TMR1IE	00 00	00 00
91h	ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	1111 1111
9Eh	ADRESL	Least Sign	ast Significant 2 bits of the Left Shifted A/D Result or 8 bits of the Right Shifted Result xxxx xxxx u								uuuu uuuu
9Fh	ADCON1		ADCS2	ADCS1	ADCS0	_	—	_	—	-000	-000

TABLE 7-2: SUMMARY OF A/D REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D converter module.

8.7 DATA EEPROM OPERATION DURING CODE-PROTECT

Data memory can be code-protected by programming the CPD bit to '0'.

When the data memory is code-protected, the CPU is able to read and write data to the data EEPROM. It is recommended to code-protect the program memory when code protecting data memory. This prevents anyone from programming zeroes over the existing code (which will execute as NOPS) to reach an added routine, programmed in unused program memory, which outputs the contents of data memory. Programming unused locations to '0' will also help prevent data memory code protection from becoming breached.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu POR,	e on	Value oth Res	ner
0Ch	PIR1	EEIF	ADIF	_		CMIF	_	—	TMR1IF	00	00	00	00
9Ah	EEDATA	EEPROM	EPROM Data Register							0000	0000	0000	0000
9Bh	EEADR	_	EEPRON	1 Address	Register					-000	0000	-000	0000
9Ch	EECON1	_	— — — WRERR WREN WR RD						RD		x000		q000
9Dh	EECON2 ⁽¹⁾ EEPROM Control Register 2												

TABLE 8-1: REGISTERS/BITS ASSOCIATED WITH DATA EEPROM

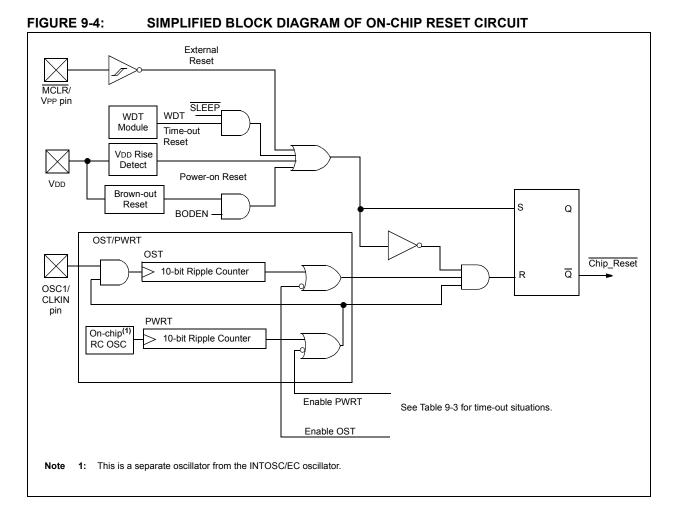
Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends upon condition. Shaded cells are not used by the data EEPROM module.

Note 1: EECON2 is not a physical register.

9.3 Reset

The PIC16F630/676 differentiates between various kinds of Reset:

- a) Power-on Reset (POR)
- b) WDT Reset during normal operation
- c) WDT Reset during Sleep
- d) MCLR Reset during normal operation
- e) MCLR Reset during Sleep
- f) Brown-out Detect (BOD)


Some registers are not affected in any Reset condition; their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on:

- · Power-on Reset
- MCLR Reset
- WDT Reset
- WDT Reset during Sleep
- Brown-out Detect (BOD)

They are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different Reset situations as indicated in Table 9-4. These bits are used in software to determine the nature of the Reset. See Table 9-7 for a full description of Reset states of all registers.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 9-4.

The $\overline{\text{MCLR}}$ Reset path has a noise filter to detect and ignore small pulses. See Table 12-4 in Electrical Specifications Section for pulse-width specification.

Register	Address	Power-on Reset	 MCLR Reset WDT Reset Brown-out Detect⁽¹⁾ 	 Wake-up from Sleep through interrupt Wake-up from Sleep through WDT time-out
W	—	XXXX XXXX	นนนน นนนน	นนนน นนนน
INDF	00h/80h	—	—	_
TMR0	01h	XXXX XXXX	นนนน นนนน	นนนน นนนน
PCL	02h/82h	0000 0000	0000 0000	PC + 1 ⁽³⁾
STATUS	03h/83h	0001 1xxx	000q quuu (4)	uuuq quuu ⁽⁴⁾
FSR	04h/84h	XXXX XXXX	นนนน นนนน	นนนน นนนน
PORTA	05h	xx xxxx	uu uuuu	uu uuuu
PORTC	07h	xx xxxx	uu uuuu	uu uuuu
PCLATH	0Ah/8Ah	0 0000	0 0000	u uuuu
INTCON	0Bh/8Bh	0000 0000	0000 000u	uuuu uuqq ⁽²⁾
PIR1	0Ch	00 00	00 00	qq qq ^(2,5)
T1CON	10h	-000 0000	-uuu uuuu	-uuu uuuu
CMCON	19h	-0-0 0000	-0-0 0000	-u-u uuuu
ADRESH	1Eh	XXXX XXXX	นนนน นนนน	սսսս սսսս
ADCON0	1Fh	00-0 0000	00-0 0000	นน-น นนนน
OPTION_REG	81h	1111 1111	1111 1111	սսսս սսսս
TRISA	85h	11 1111	11 1111	uu uuuu
TRISC	87h	11 1111	11 1111	uu uuuu
PIE1	8Ch	00 00	00 00	uu uu
PCON	8Eh	0x	(1,6)	
OSCCAL	90h	1000 00	1000 00	uuuu uu
ANSEL	91h	1111 1111	1111 1111	սսսս սսսս
WPUA	95h	11 -111	11 -111	սսսս սսսս
IOCA	96h	00 0000	00 0000	uu uuuu
VRCON	99h	0-0- 0000	0-0- 0000	u-u- uuuu
EEDATA	9Ah	0000 0000	0000 0000	սսսս սսսս
EEADR	9Bh	-000 0000	-000 0000	-uuu uuuu
EECON1	9Ch	x000	q000	uuuu
EECON2	9Dh			
ADRESL	9Eh	XXXX XXXX	uuuu uuuu	սսսս սսսս
ADCON1	9Fh	-000	-000	-uuu

TABLE 9-7: INITIALIZATION CONDITION FOR REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition.

- Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.
 2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).
 - **3:** When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).
 - 4: See Table 9-6 for Reset value for specific condition.
 - 5: If wake-up was due to data EEPROM write completing, bit 7 = 1; A/D conversion completing, bit 6 = 1; Comparator input changing, bit 3 = 1; or Timer1 rolling over, bit 0 = 1. All other interrupts generating a wake-up will cause these bits to = u.
 - **6:** If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.

9.4.1 RA2/INT INTERRUPT

External interrupt on RA2/INT pin is edge-triggered; either rising if INTEDG bit (OPTION<6>) is set, or falling, if INTEDG bit is clear. When a valid edge appears on the RA2/INT pin, the INTF bit (INTCON<1>) is set. This interrupt can be disabled by clearing the INTE control bit (INTCON<4>). The INTF bit must be cleared in software in the Interrupt Service Routine before re-enabling this interrupt. The RA2/INT interrupt can wake-up the processor from Sleep if the INTE bit was set prior to going into Sleep. The status of the GIE bit decides whether or not the processor branches to the interrupt vector following wake-up. See **Section 9.7 "Power-Down Mode (Sleep)"** for details on Sleep and Figure 9-13 for timing of wake-up from Sleep through RA2/INT interrupt.

Note: The ANSEL (91h) and CMCON (19h) registers must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read '0'. The ANSEL register is defined for the PIC16F676.

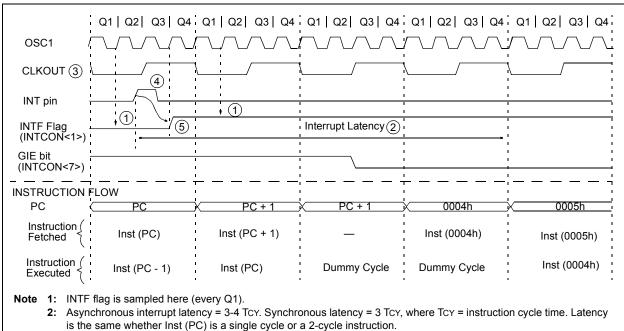
9.4.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set the T0IF (INTCON<2>) bit. The interrupt can be enabled/disabled by setting/clearing T0IE (INTCON<5>) bit. For operation of the Timer0 module, see **Section 4.0 "Timer0 Module"**.

9.4.3 PORTA INTERRUPT

An input change on PORTA change sets the RAIF (INTCON<0>) bit. The interrupt can be enabled/ disabled by setting/clearing the RAIE (INTCON<3>) bit. Plus individual pins can be configured through the IOCA register.

Note:	If a change on the I/O pin should occur	
	when the read operation is being executed	
	(start of the Q2 cycle), then the RAIF inter-	
	rupt flag may not get set.	


9.4.4 COMPARATOR INTERRUPT

See **Section 6.9 "Comparator Interrupts"** for description of comparator interrupt.

9.4.5 A/D CONVERTER INTERRUPT

After a conversion is complete, the ADIF flag (PIR<6>) is set. The interrupt can be enabled/disabled by setting or clearing ADIE (PIE<6>).

See Section 7.0 "Analog-to-Digital Converter (A/D) Module (PIC16F676 only)" for operation of the A/D converter interrupt.

FIGURE 9-11: INT PIN INTERRUPT TIMING

4: For minimum width of INT pulse, refer to AC specs.

3: CLKOUT is available only in RC Oscillator mode.

5: INTF is enabled to be set any time during the Q4-Q1 cycles.

9.7 Power-Down Mode (Sleep)

The Power-down mode is entered by executing a SLEEP instruction.

If the Watchdog Timer is enabled:

- · WDT will be cleared but keeps running
- PD bit in the STATUS register is cleared
- TO bit is set
- Oscillator driver is turned off
- · I/O ports maintain the status they had before SLEEP was executed (driving high, low, or high-impedance).

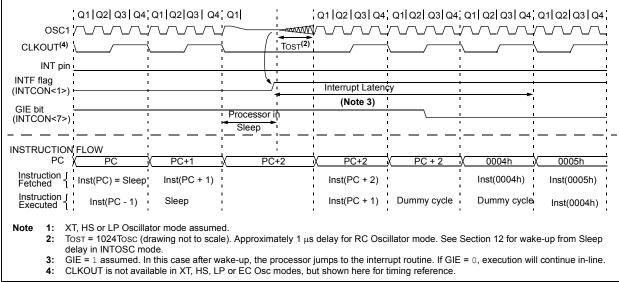
For lowest current consumption in this mode, all I/O pins should be either at VDD, or VSS, with no external circuitry drawing current from the I/O pin and the comparators and CVREF should be disabled. I/O pins that are high-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or Vss for lowest current consumption. The contribution from on-chip pull-ups on PORTA should be considered.

The MCLR pin must be at a logic high level (VIHMC).

Note:	It should be noted that a Reset generated	
	by a WDT time-out does not drive MCLR	
	pin low.	

9.7.1 WAKE-UP FROM SLEEP

The device can wake-up from Sleep through one of the following events:


- 1. External Reset input on MCLR pin
- 2. Watchdog Timer Wake-up (if WDT was enabled)
- Interrupt from RA2/INT pin, PORTA change, or 3. a peripheral interrupt.

The first event will cause a device Reset. The two latter events are considered a continuation of program execution. The TO and PD bits in the STATUS register can be used to determine the cause of device Reset. The PD bit, which is set on power-up, is cleared when Sleep is invoked. TO bit is cleared if WDT Wake-up occurred.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction, then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have an NOP after the SLEEP instruction.

Note:	If the global interrupts are disabled (GIE is
	cleared), but any interrupt source has both
	its interrupt enable bit and the correspond-
	ing interrupt flag bits set, the device will
	immediately wake-up from Sleep. The
	SLEEP instruction is completely executed.

The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up.

WAKE-UP FROM SLEEP THROUGH INTERRUPT

FIGURE 9-13:

RLF	Rotate Left f through Carry
Syntax:	[<i>label</i>] RLF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in[0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in register 'f'.
	C Register f

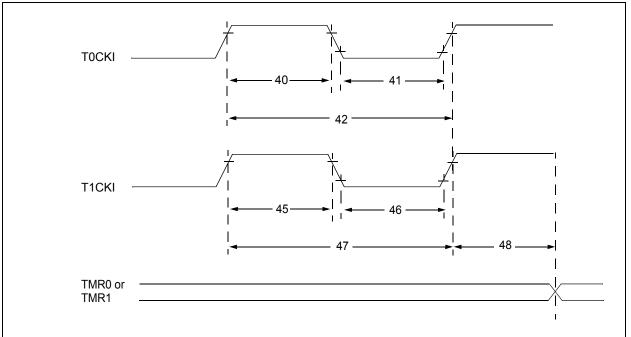
SLEEP

Syntax:	[<i>label</i>] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	The power-down Status bit, \overline{PD} is cleared. Time-out Status bit, \overline{TO} is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.

RETURN	Return from Subroutine
Syntax:	[label] RETURN
Operands:	None
Operation:	$TOS\toPC$
Status Affected:	None
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.

RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.
	C Register f

SUBLW	Subtract W from Literal
Syntax:	[<i>label</i>] SUBLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k - (W) \to (W)$
Status Affected:	C, DC, Z
Description:	The W register is subtracted (2's complement method) from the eight-bit literal 'k'. The result is placed in the W register.


SUBWF	Subtract W from f
Syntax:	[<i>label</i>] SUBWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - (W) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

SWAPF	Swap Nibbles in f
Syntax:	[<i>label</i>] SWAPF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>), (f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed in register 'f'.

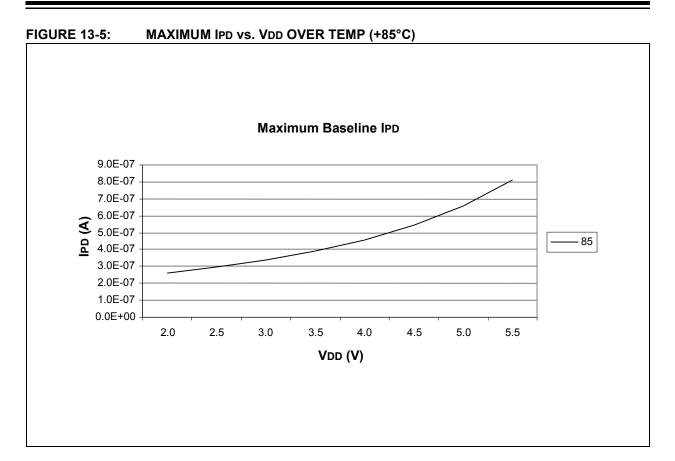
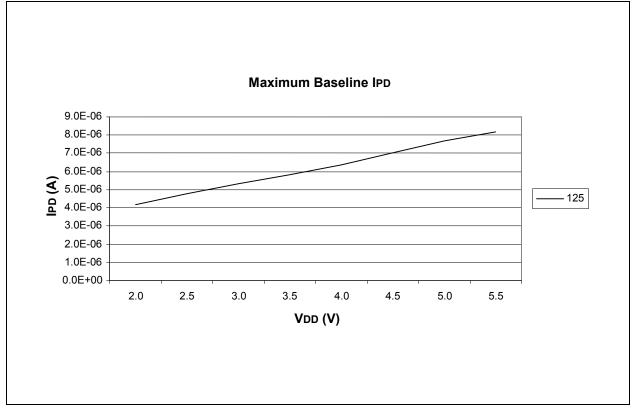
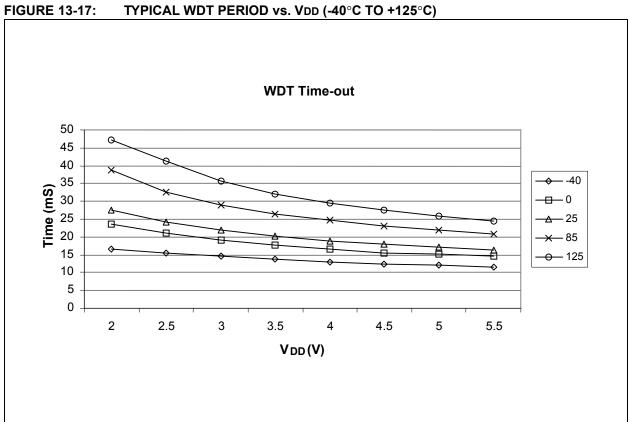
XORWF	Exclusive OR W with f
Syntax:	[<i>label</i>] XORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .XOR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

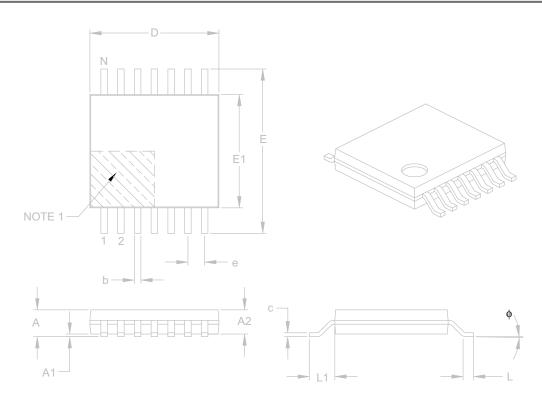
XORLW	Exclusive OR Literal with W
Syntax:	[<i>label</i>] XORLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .XOR. $k \rightarrow (W)$
Status Affected:	Z
Description:	The contents of the W register are XOR'ed with the eight-bit literal 'k'. The result is placed in the W register.

Param No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse Width		No Prescaler	0.5 Tcy + 20	-	_	ns	
				With Prescaler	10	—		ns	
41*	TtOL	T0CKI Low Pulse Width		No Prescaler	0.5 TCY + 20	—	_	ns	
				With Prescaler	10	—	—	ns	
42*	TtOP	T0CKI Period		Greater of: 20 or <u>Tcy + 40</u> N	_	-	ns	N = prescale value (2, 4,, 256)	
45*	Tt1H	T1CKI High Time	Synchronous, No Prescaler		0.5 TCY + 20	—	_	ns	
			Synchronous, with Prescaler		15	-		ns	
			Asynchronous		30	—		ns	
46*	Tt1L	T1CKI Low Time	Synchronous, No Prescaler		0.5 Tcy + 20	—	_	ns	
			Synchronous, with Prescaler		15	-		ns	
			Asynchronous		30	—	_	ns	
47*	Tt1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	—	_	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		60	—	—	ns	
	Ft1	Timer1 oscillator input frequency range (oscillator enabled by setting bit T1OSCEN)			DC	—	200*	kHz	
48	TCKEZtmr1	Delay from external clock edge to timer increment			2 Tosc*	—	7 Tosc*	_	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


FIGURE 13-6: MAXIMUM IPD vs. VDD OVER TEMP (+125°C)

14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimensio	on Limits	MIN	NOM	MAX		
Number of Pins	Ν	14				
Pitch	е	0.65 BSC				
Overall Height	А	—	-	1.20		
Molded Package Thickness	A2	0.80	1.00	1.05		
Standoff	A1	0.05	-	0.15		
Overall Width	E	6.40 BSC				
Molded Package Width	E1	4.30	4.40	4.50		
Molded Package Length	D	4.90	5.00	5.10		
Foot Length	L	0.45	0.60	0.75		
Footprint	L1	1.00 REF				
Foot Angle	ф	0°	-	8°		
Lead Thickness	с	0.09	-	0.20		
Lead Width	b	0.19	_	0.30		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-087B

RESET, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer
Time-out Sequence on Power-up (MCLR not Tied to
VDD)/
Case 1 64
Case 2
Time-out Sequence on Power-up (MCLR Tied
to VDD)64
Timer0 and Timer1 External Clock 101
Timer1 Incrementing Edge35
Timing Parameter Symbology95
TRISIO Registers
V
Voltage Reference Accuracy/Error43
W
Watchdog Timer
Summary of Registers
Watchdog Timer (WDT) 68
WWW Address
WWW, On-Line Support5

NOTES:

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com