

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	12
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 × 8
RAM Size	64 × 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-VQFN Exposed Pad
Supplier Device Package	16-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f676t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-60932-173-4

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

PIC16F630/676

TABLE 2-1:	PIC16F630/676 SPECIAL	REGISTERS SUMMARY BANK 0

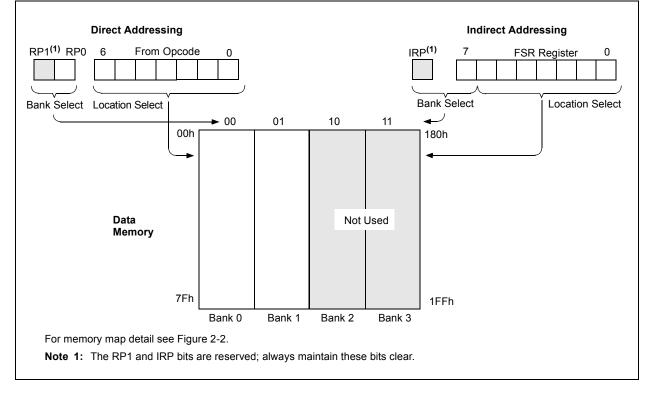
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Page
Bank 0											
00h	INDF	Addressing	this location	uses content	ts of FSR to a	address data	memory (not	a physical re	gister)	XXXX XXXX	20,63
01h	TMR0	Timer0 Mod	dule's Registe	er						XXXX XXXX	31
02h	PCL	Program Co	ounter's (PC)) Least Signifi	icant Byte					0000 0000	19
03h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	13
04h	FSR	Indirect dat	a memory Ac	dress Pointe	r					xxxx xxxx	20
05h	PORTA		—	I/O Control	Registers					xx xxxx	21
06h	_	Unimpleme	nted							-	_
07h	PORTC	_	_	I/O Control	Registers					xx xxxx	28
08h	_	Unimpleme	nted	1						_	-
09h	_	Unimpleme	nted							-	_
0Ah	PCLATH	_	_	l —	Write buffer	for upper 5 b	oits of progra	m counter		0 0000	19
0Bh	INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	0000 0000	15
0Ch	PIR1	EEIF	ADIF	_	_	CMIF	_	—	TMR1IF	00 00	17
0Dh	—	Unimpleme	Unimplemented								-
0Eh	TMR1L	Holding reg	ister for the l	_east Signific	ant Byte of th	ie 16-bit TMR	1			XXXX XXXX	34
0Fh	TMR1H	Holding reg	ister for the I	Most Significa	ant Byte of th	e 16-bit TMR	1			XXXX XXXX	34
10h	T1CON	_	T1GE	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	-000 0000	36
11h	—	Unimpleme	nted							_	-
12h	—	Unimpleme	nted							-	-
13h	—	Unimpleme	nted							-	-
14h	—	Unimpleme	nted							-	-
15h	—	Unimpleme	nted							_	-
16h	_	Unimpleme	nted							_	-
17h	_	Unimpleme								_	-
18h		Unimpleme					•			-	-
19h	CMCON	—	COUT	—	CINV	CIS	CM2	CM1	CM0	-0-0 0000	39
1Ah	—	Unimpleme								-	-
1Bh	—	Unimpleme								-	-
1Ch	-	Unimpleme								-	-
1Dh		Unimpleme								-	-
1Eh	ADRESH ⁽³⁾		1	f the left shifte	ed A/D result	or 2 bits of rig	ght shifted re	1		XXXX XXXX	46
1Fh	ADCON0 ⁽³⁾	ADFM	VCFG	—	CHS2	CHS1	CHS0	GO/DONE	ADON	00-0 0000	47,63

 – = Unimplemented locations read <u>as '0'</u>, <u>u</u> = unchanged, <u>x</u> = unknown, <u>q</u> = value depends on condition shaded = unimplemented
Other (non Power-up) Resets include MCLR Reset, Brown-out Detect and Watchdog Timer Reset during normal operation.
IRP and RP1 bits are reserved, always maintain these bits clear.
PIC16F676 only. Legend: Note 1:

2: 3:

2.4 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.


Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a no operation (although Status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-4.

A simple program to clear RAM location 20h-2Fh using indirect addressing is shown in Example 2-1.

EXAMPLE 2-1: INDIRECT ADDRESSING

	MOVLW	0x20	;initialize pointer
	MOVWF	FSR	;to RAM
NEXT	CLRF	INDF	;clear INDF register
	INCF	FSR	;inc pointer
	BTFSS	FSR,4	;all done?
	GOTO	NEXT	;no clear next
CONTINUE			;yes continue

FIGURE 2-4: DIRECT/INDIRECT ADDRESSING PIC16F630/676

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Value on all other Resets
05h	PORTA	_	—	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxxx	uu uuuu
0Bh/8Bh	INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	0000 0000	0000 000u
19h	CMCON	_	COUT	_	CINV	CIS	CM2	CM1	CM0	-0-0 0000	-0-0 0000
81h	OPTION_REG	RAPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	_	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
91h	ANSEL ⁽¹⁾	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	1111 1111
95h	WPUA	_	_	WPUA5	WPUA4	_	WPUA2	WPUA1	WPUA0	11 -111	11 -111
96h	IOCA	_	_	IOCA5	IOCA4	IOCA3	IOCA2	IOCA1	IOCA0	00 0000	00 0000

Note 1: PIC16F676 only.

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

REGISTER 3-5: PORTC — PORTC REGISTER (ADDRESS: 07h)

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	RC5	RC4	RC3	RC2	RC1	RC0
bit 7							bit 0
Unimplemented: Read as '0'							
PORTC<5:0>: General Purpose I/O pin bits							

bit 7-6:

bit 5-0:

1 = Port pin is >VIH

0 = Port pin is <VIL

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 3-6: TRISC — PORTC TRI-STATE REGISTER (ADDRESS: 87h)

U-(C	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
		—	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0
bit 7								bit 0

bit 7-6: Unimplemented: Read as '0'

bit 5-0: TRISC<5:0>: PORTC Tri-State Control bits

1 = PORTC pin configured as an input (tri-stated)

0 = PORTC pin configured as an output

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Value on all other Resets
07h	PORTC	—	_	RC5	RC4	RC3	RC2	RC1	RC0	xx xxxx	uu uuuu
87h	TRISC	_	_	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	11 1111	11 1111
91h	ANSEL ⁽¹⁾	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	1111 1111

Note 1: PIC16F676 only.

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTC.

5.1 Timer1 Modes of Operation

Timer1 can operate in one of three modes:

- 16-bit timer with prescaler
- 16-bit synchronous counter
- · 16-bit asynchronous counter

FIGURE 5-2:

In Timer mode, Timer1 is incremented on every instruction cycle. In Counter mode, Timer1 is incremented on the rising edge of the external clock input T1CKI. In addition, the Counter mode clock can be synchronized to the microcontroller system clock or run asynchronously.

In counter and timer modules, the counter/timer clock can be gated by the $\overline{T1G}$ input.

If an external clock oscillator is needed (and the microcontroller is using the INTOSC w/o CLKOUT), Timer1 can use the LP oscillator as a clock source.

Note:	In Counter mode, a falling edge must be
	registered by the counter prior to the first
	incrementing rising edge.

TIMER1 INCREMENTING EDGE

5.2 Timer1 Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit (PIR1<0>) is set. To enable the interrupt on rollover, you must set these bits:

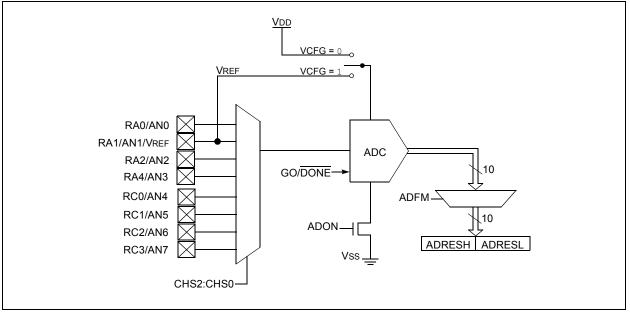
- Timer1 interrupt Enable bit (PIE1<0>)
- PEIE bit (INTCON<6>)
- GIE bit (INTCON<7>).

The interrupt is cleared by clearing the TMR1IF in the Interrupt Service Routine.

Note: The TMR1H:TTMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.

5.3 Timer1 Prescaler

Timer1 has four prescaler options allowing 1, 2, 4, or 8 divisions of the clock input. The T1CKPS bits (T1CON<5:4>) control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.


T1CKI = 1 when TMR1 Enabled T1CKI = 0 when TMR1 Enabled Note 1: Arrows indicate counter increments. 2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of the clock.

7.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE (PIC16F676 ONLY)

The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. The PIC16F676 has eight analog inputs, multiplexed into one sample and hold

FIGURE 7-1: A/D BLOCK DIAGRAM

circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a binary result via successive approximation and stores the result in a 10-bit register. The voltage reference used in the conversion is software selectable to either VDD or a voltage applied by the VREF pin. Figure 7-1 shows the block diagram of the A/D on the PIC16F676.

7.1 A/D Configuration and Operation

There are three registers available to control the functionality of the A/D module:

- 1. ADCON0 (Register 7-1)
- 2. ADCON1 (Register 7-2)
- 3. ANSEL (Register 7-3)

7.1.1 ANALOG PORT PINS

The ANS7:ANS0 bits (ANSEL<7:0>) and the TRISA bits control the operation of the A/D port pins. Set the corresponding TRISA bits to set the pin output driver to its high-impedance state. Likewise, set the corresponding ANS bit to disable the digital input buffer.

Note: Analog voltages on any pin that is defined as a digital input may cause the input buffer to conduct excess current.

7.1.2 CHANNEL SELECTION

There are eight analog channels on the PIC16F676, AN0 through AN7. The CHS2:CHS0 bits (ADCON0<4:2>) control which channel is connected to the sample and hold circuit.

7.1.3 VOLTAGE REFERENCE

There are two options for the voltage reference to the A/D converter: either VDD is used, or an analog voltage applied to VREF is used. The VCFG bit (ADCON0<6>) controls the voltage reference selection. If VCFG is set, then the voltage on the VREF pin is the reference; otherwise, VDD is the reference.

7.1.4 CONVERSION CLOCK

The A/D conversion cycle requires 11 TAD. The source of the conversion clock is software selectable via the ADCS bits (ADCON1<6:4>). There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- FRC (dedicated internal oscillator)

For correct conversion, the A/D conversion clock (1/TaD) must be selected to ensure a minimum TaD of 1.6 $\mu s.$ Table 7-1 shows a few TaD calculations for selected frequencies.

	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	ADFM	VCFG	_	CHS2	CHS1	CHS0	GO/DONE	ADON
	bit 7							bit 0
bit 7	ADFM: A/D Result Formed Select bit 1 = Right justified 0 = Left justified							
bit 6	VCFG: Voltage Reference bit 1 = VREF pin 0 = VDD							
bit 5	Unimplem	ented: Rea	d as zero					
bit 4-2	CHS2:CHS0: Analog Channel Select bits 000 = Channel 00 (AN0) 001 = Channel 01 (AN1) 010 = Channel 02 (AN2) 011 = Channel 03 (AN3) 100 = Channel 04 (AN4) 101 = Channel 05 (AN5) 110 = Channel 06 (AN6) 111 = Channel 07 (AN7)							
bit 1	GO/DONE 1 = A/D co This bit	A/D Conve	rsion Status cle in progre cally cleared	ss. Setting f d by hardwa			nversion cycle rsion has com	
bit 0	ADON: A/D Conversion Status bit 1 = A/D converter module is operating 0 = A/D converter is shut-off and consumes no operating current							
	Logond							
	Legend:	blo bit	۱۵/ – ۱۸	<i>I</i> ritabla bit		nnlomontor	hit road as '()'
	R = Reada			/ritable bit		•	l bit, read as '(
	-			/ritable bit it is set		nplemented is cleared	l bit, read as '(x = Bit is ur	
REGISTER 7-2:	R = Reada - n = Value	at POR	'1' = B	it is set	'0' = Bit	is cleared		
REGISTER 7-2:	R = Reada - n = Value ADCON1 ·	at POR — A/D CO	'1' = B	it is set EGISTER 1	'0' = Bit	is cleared	x = Bit is ur	iknown
REGISTER 7-2:	R = Reada - n = Value	at POR — A/D CO R/W-0	'1' = B NTROL RE R/W-0	it is set EGISTER 1 R/W-0	'0' = Bit	is cleared		
REGISTER 7-2:	R = Reada - n = Value ADCON1 - U-0 —	at POR — A/D CO	'1' = B	it is set EGISTER 1	'0' = Bit	is cleared	x = Bit is ur	U-0
REGISTER 7-2:	R = Reada - n = Value ADCON1 ·	at POR — A/D CO R/W-0	'1' = B NTROL RE R/W-0	it is set EGISTER 1 R/W-0	'0' = Bit	is cleared	x = Bit is ur	iknown
	R = Reada - n = Value ADCON1 - U-0 bit 7	at POR — A/D CO R/W-0 ADCS2	'1' = B NTROL RE R/W-0 ADCS1	it is set EGISTER 1 R/W-0	'0' = Bit	is cleared	x = Bit is ur	U-0
bit 7:	R = Reada - n = Value ADCON1 - U-0 bit 7 Unimplem	at POR – A/D CO R/W-0 ADCS2 ented: Rea	'1' = B NTROL RI R/W-0 ADCS1 d as '0'	it is set EGISTER 1 R/W-0 ADCS0	'0' = Bit i I (ADRESS U-0 —	is cleared	x = Bit is ur	U-0
	R = Reada - n = Value ADCON1 - U-0 bit 7 Unimplem ADCS<2:0	at POR — A/D CO R/W-0 ADCS2 ented: Read	'1' = B NTROL RI R/W-0 ADCS1 d as '0'	it is set EGISTER 1 R/W-0 ADCS0	'0' = Bit i I (ADRESS U-0 —	is cleared	x = Bit is ur	U-0
bit 7:	R = Reada - n = Value ADCON1 - U-0 bit 7 Unimplem	at POR — A/D CO R/W-0 ADCS2 ented: Read >: A/D Conv c/2 c/8	'1' = B NTROL RI R/W-0 ADCS1 d as '0'	it is set EGISTER 1 R/W-0 ADCS0	'0' = Bit i I (ADRESS U-0 —	is cleared	x = Bit is ur	U-0
bit 7:	R = Reada - n = Value ADCON1 - U-0 bit 7 Unimplem ADCS<2:0 000 = Fos 001 = Fos 010 = Fos x11 = FRC 100 = Fos	at POR — A/D CO R/W-0 ADCS2 ented: Read >: A/D Conv c/2 c/8 c/32 (clock derive c/4 c/16	'1' = B NTROL RI R/W-0 ADCS1 d as '0' version Cloc	it is set EGISTER 1 R/W-0 ADCS0	'0' = Bit i I (ADRESS U-0 —	6: 9Fh) U-0	x = Bit is ur U-0	U-0
bit 7: bit 6-4:	R = Reada - n = Value ADCON1 - U-0 bit 7 Unimplem ADCS<2:0 000 = Fos 001 = Fos 010 = Fos 100 = Fos 101 = Fos	at POR — A/D CO R/W-0 ADCS2 ented: Read >: A/D Conv c/2 c/8 c/32 (clock deriv c/4 c/16 c/64	'1' = B NTROL RI R/W-0 ADCS1 d as '0' version Cloc ed from a d	it is set EGISTER 1 R/W-0 ADCS0	'0' = Bit i I (ADRESS U-0 —	6: 9Fh) U-0	x = Bit is ur U-0	U-0
bit 7:	R = Reada - n = Value ADCON1 - U-0 bit 7 Unimplem ADCS<2:0 000 = Fos 001 = Fos 010 = Fos 100 = Fos 101 = Fos	at POR — A/D CO R/W-0 ADCS2 ented: Read >: A/D Conv c/2 c/8 c/32 (clock derive c/4 c/16	'1' = B NTROL RI R/W-0 ADCS1 d as '0' version Cloc ed from a d	it is set EGISTER 1 R/W-0 ADCS0	'0' = Bit i I (ADRESS U-0 —	6: 9Fh) U-0	x = Bit is ur U-0	U-0
bit 7: bit 6-4:	R = Reada - n = Value ADCON1 - U-0 bit 7 Unimplem ADCS<2:0 000 = Fos 010 = Fos 010 = Fos 110 = Fos 101 = Fos 110 = Fos	at POR — A/D CO R/W-0 ADCS2 ented: Read >: A/D Conv c/2 c/8 c/32 (clock deriv c/4 c/16 c/64	'1' = B NTROL RI R/W-0 ADCS1 d as '0' version Cloc ed from a d	it is set EGISTER 1 R/W-0 ADCS0	'0' = Bit i I (ADRESS U-0 —	6: 9Fh) U-0	x = Bit is ur U-0	U-0
bit 7: bit 6-4:	R = Reada - n = Value ADCON1 - U-0 bit 7 Unimplem ADCS<2:0 000 = Fos 001 = Fos 010 = Fos 100 = Fos 101 = Fos 101 = Fos 101 = Fos	at POR — A/D CO R/W-0 ADCS2 ented: Read >: A/D Conv C/2 C/8 C/32 (clock deriv C/4 C/16 C/64 ented: Read	'1' = B NTROL RI R/W-0 ADCS1 d as '0' version Cloc ed from a d	it is set EGISTER 1 R/W-0 ADCS0	'0' = Bit i I (ADRESS U-0 —	s: 9Fh) U-0	x = Bit is ur U-0 	U-0
bit 7: bit 6-4:	R = Reada - n = Value ADCON1 - U-0 bit 7 Unimplem ADCS<2:0 000 = Fos 010 = Fos 010 = Fos 110 = Fos 101 = Fos 110 = Fos	at POR — A/D CO R/W-0 ADCS2 ented: Read >: A/D Conv C/2 C/8 C/32 (clock deriv C/4 C/16 C/64 ented: Read	'1' = B NTROL RI R/W-0 ADCS1 d as '0' version Cloc ed from a d	it is set EGISTER 1 R/W-0 ADCS0 k Select bits edicated inte	'0' = Bit i I (ADRESS U-0 —	s: 9Fh) U-0 	x = Bit is ur U-0	U-0 — bit 0

REGISTER 7-1: ADCON0 — A/D CONTROL REGISTER (ADDRESS: 1Fh)

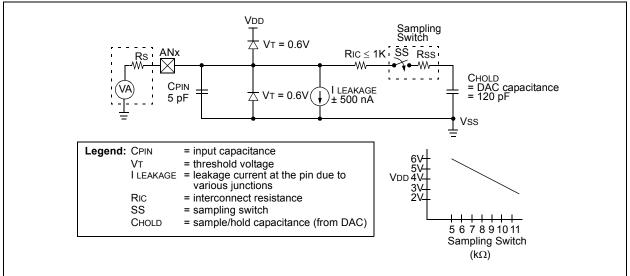
7.2 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 7-3. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 7-3. The maximum recommended impedance for analog sources is 10 k\Omega. As the impedance

EQUATION 7-1: ACQUISITION TIME

is decreased, the acquisition time may be decreased. After the analog input channel is selected (changed), this acquisition must be done before the conversion can be started.

To calculate the minimum acquisition time, Equation 7-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.


To calculate the minimum acquisition time, TACQ, see the PIC[®] Mid-Range Reference Manual (DS33023).

TACQ	= Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient
Тс	= TAMP + TC + TCOFF = $2\mu s$ + TC + [(Temperature -25°C)(0.05 μs /°C)] = CHOLD (RIC + RSS + RS) In(1/2047) = -120pF (1k Ω + 7k Ω + 10k Ω) In(0.0004885)
TACQ	= 16.47μs = 2μs + 16.47μs + [(50°C -25°C)(0.05μs/°C) = 19.72μs

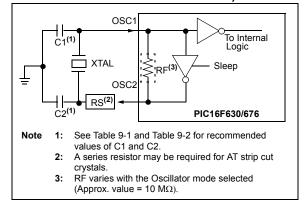
Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- **2:** The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is 10 kΩ. This is required to meet the pin leakage specification.

9.2 Oscillator Configurations

9.2.1 OSCILLATOR TYPES

The PIC16F630/676 can be operated in eight different Oscillator Option modes. The user can program three Configuration bits (FOSC2 through FOSC0) to select one of these eight modes:


- LP Low-Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC External Resistor/Capacitor (2 modes)
- · INTOSC Internal Oscillator (2 modes)
- EC External Clock In

Note:	Additional information on oscillator config- urations is available in the PIC [®] Mid-Range
	Reference Manual, (DS33023).

9.2.2 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

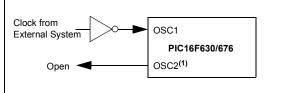

In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation (see Figure 9-1). The PIC16F630/676 oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may yield a frequency outside of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1 pin (see Figure 9-2).

FIGURE 9-1: CRYSTAL OPERATION (OR CERAMIC RESONATOR) (HS, XT OR LP OSC CONFIGURATION)

EXTERNAL CLOCK INPUT OPERATION (HS, XT, EC, OR LP OSC CONFIGURATION)

Note 1: Functions as RA4 in EC Osc mode.

TABLE 9-1:CAPACITOR SELECTION FOR
CERAMIC RESONATORS

Ranges Characterized:				
Mode	Freq	OSC1(C1)	OSC2(C2)	
ХТ	455 kHz 2.0 MHz 4.0 MHz	68-100 pF 15-68 pF 15-68 pF	68-100 pF 15-68 pF 15-68 pF	
HS	8.0 MHz 16.0 MHz	10-68 pF 10-22 pF	10-68 pF 10-22 pF	
Note 1: Higher capacitance increases the stability of the oscillator but also increases the start-up time. These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.				

TABLE 9-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR

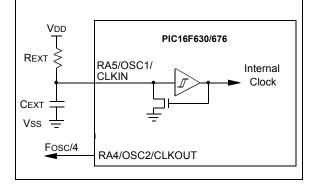
Mode	Freq	OSC1(C1)	OSC2(C2)
LP	32 kHz	68-100 pF	68-100 pF
ХТ	100 kHz 2 MHz 4 MHz	68-150 pF 15-30 pF 15-30 pF	150-200 pF 15-30 pF 15-30 pF
HS	8 MHz 10 MHz 20 MHz	15-30 pF 15-30 pF 15-30 pF	15-30 pF 15-30 pF 15-30 pF
Note 1: Higher capacitance increases the stability			

of the oscillator but also increases the start-up time. These values are for design guidance only. Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

9.2.3 EXTERNAL CLOCK IN

For applications where a clock is already available elsewhere, users may directly drive the PIC16F630/ 676 provided that this external clock source meets the AC/DC timing requirements listed in **Section 12.0 "Electrical Specifications"**. Figure 9-2 shows how an external clock circuit should be configured.

9.2.4 RC OSCILLATOR


For applications where precise timing is not a requirement, the RC oscillator option is available. The operation and functionality of the RC oscillator is dependent upon a number of variables. The RC oscillator frequency is a function of:

- · Supply voltage
- Resistor (REXT) and capacitor (CEXT) values
- Operating temperature

The oscillator frequency will vary from unit to unit due to normal process parameter variation. The difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to account for the tolerance of the external R and C components. Figure 9-3 shows how the R/C combination is connected.

Two options are available for this Oscillator mode which allow RA4 to be used as a general purpose I/O or to output Fosc/4.

FIGURE 9-3: RC OSCILLATOR MODE

9.2.5 INTERNAL 4 MHz OSCILLATOR

When calibrated, the internal oscillator provides a fixed 4 MHz (nominal) system clock. See Electrical Specifications, **Section 12.0** "Electrical Specifications", for information on variation over voltage and temperature.

Two options are available for this Oscillator mode which allow RA4 to be used as a general purpose I/O or to output Fosc/4.

9.2.5.1 Calibrating the Internal Oscillator

A calibration instruction is programmed into the last location of program memory. This instruction is a RETLW XX, where the literal is the calibration value. The literal is placed in the OSCCAL register to set the calibration of the internal oscillator. Example 9-1 demonstrates how to calibrate the internal oscillator. For best operation, decouple (with capacitance) VDD and Vss as close to the device as possible.

Note: Erasing the device will also erase the preprogrammed internal calibration value for the internal oscillator. The calibration value must be saved prior to erasing part as specified in the PIC16F630/676 Programming specification. Microchip Development Tools maintain all calibration bits to factory settings.

EXAMPLE 9-1: CALIBRATING THE INTERNAL OSCILLATOR

BSF CALL MOVWF	STATUS, 3FFh OSCCAL		;Bank 1 ;Get the cal value ;Calibrate
BCF	STATUS,	RP0	;Bank 0

9.2.6 CLKOUT

The PIC16F630/676 devices can be configured to provide a clock out signal in the INTOSC and RC Oscillator modes. When configured, the oscillator frequency divided by four (Fosc/4) is output on the RA4/OSC2/CLKOUT pin. Fosc/4 can be used for test purposes or to synchronize other logic.

9.7 Power-Down Mode (Sleep)

The Power-down mode is entered by executing a SLEEP instruction.

If the Watchdog Timer is enabled:

- · WDT will be cleared but keeps running
- PD bit in the STATUS register is cleared
- TO bit is set
- · Oscillator driver is turned off
- I/O ports maintain the status they had before SLEEP was executed (driving high, low, or high-impedance).

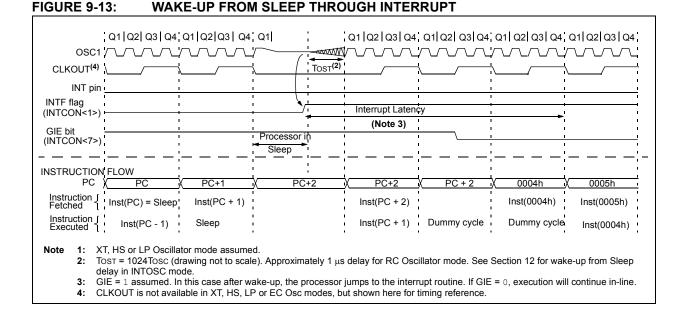
For lowest current consumption in this mode, all I/O pins should be either at VDD, or VSS, with no external circuitry drawing current from the I/O pin and the comparators and CVREF should be disabled. I/O pins that are high-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pull-ups on PORTA should be considered.

The $\overline{\text{MCLR}}$ pin must be at a logic high level (VIHMC).

Note:	It should be noted that a Reset generated
	by a WDT time-out does not drive MCLR
	pin low.

9.7.1 WAKE-UP FROM SLEEP

The device can wake-up from Sleep through one of the following events:


- 1. External Reset input on MCLR pin
- 2. Watchdog Timer Wake-up (if WDT was enabled)
- 3. Interrupt from RA2/INT pin, PORTA change, or a peripheral interrupt.

The first event will cause a device Reset. The two latter events are considered a continuation of program execution. The \overline{TO} and \overline{PD} bits in the STATUS register can be used to determine the cause of device Reset. The \overline{PD} bit, which is set on power-up, is cleared when Sleep is invoked. \overline{TO} bit is cleared if WDT Wake-up occurred.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction after the SLEEP instruction of the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have an NOP after the SLEEP instruction.

If the global interrupts are disabled (GIE is
cleared), but any interrupt source has both
its interrupt enable bit and the correspond-
ing interrupt flag bits set, the device will
immediately wake-up from Sleep. The
SLEEP instruction is completely executed.

The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up.

9.8 Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note: The entire data EEPROM and Flash program memory will be erased when the code protection is turned off. The INTOSC calibration data is also erased. See PIC16F630/676 Programming Specification for more information.

9.9 ID Locations

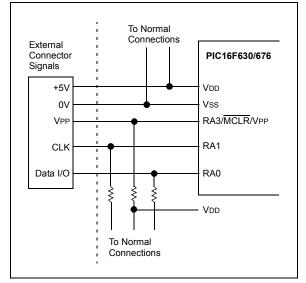
Four memory locations (2000h-2003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution but are readable and writable during Program/Verify. Only the Least Significant 7 bits of the ID locations are used.

9.10 In-Circuit Serial Programming

The PIC16F630/676 microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for:

- power
- ground
- programming voltage

This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.


The device is placed into a Program/Verify mode by holding the RA0 and RA1 pins low, while raising the MCLR (VPP) pin from VIL to VIHH (see Programming Specification). RA0 becomes the programming data and RA1 becomes the programming clock. Both RA0 and RA1 are Schmitt Trigger inputs in this mode.

After Reset, to place the device into Programming/Verify mode, the program counter (PC) is at location 00h. A 6-bit command is then supplied to the device. Depending on the command, 14 bits of program data are then supplied to or from the device, depending on whether the command was a load or a read. For complete details of serial programming, please refer to the PIC16F630/676 Programming Specification.

A typical In-Circuit Serial Programming connection is shown in Figure 9-14.

FIGURE 9-14:

TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

9.11 In-Circuit Debugger

Since in-circuit debugging requires the loss of clock, data and MCLR pins, MPLAB[®] ICD 2 development with an 14-pin device is not practical. A special 20-pin PIC16F676-ICD device is used with MPLAB ICD 2 to provide separate clock, data and MCLR pins and frees all normally available pins to the user.

This special ICD device is mounted on the top of the header and its signals are routed to the MPLAB ICD 2 connector. On the bottom of the header is an 14-pin socket that plugs into the user's target via the 14-pin stand-off connector.

When the ICD pin on the PIC16F676-ICD device is held low, the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB ICD 2. When the microcontroller has this feature enabled, some of the resources are not available for general use. Table 9-10 shows which features are consumed by the background debugger:

TABLE 9-10: DEBUGGER RESOURCES

I/O pins	ICDCLK, ICDDATA
Stack	1 level
Program Memory	Address 0h must be NOP 300h-3FEh

For more information, see 14-Pin MPLAB ICD 2 Header Information Sheet (DS51292) available on Microchip's web site (www.microchip.com).

10.2 Instruction Descriptions

ADDLW	Add Literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \leq k \leq 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.

ADDWF	Add W and f	
Syntax:	[<i>label</i>] ADDWF f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	
Operation:	(W) + (f) \rightarrow (destination)	
Status Affected:	C, DC, Z	
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.	

BCF	Bit Clear f
Syntax:	[<i>label</i>] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

ANDLW	AND Literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.

BTFSS	Bit Test f, Skip if Set
Syntax:	[<i>label</i>] BTFSS f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruc- tion is discarded and a NOP is executed instead, making this a 2-cycle instruction.

ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

BTFSC	Bit Test, Skip if Clear
Syntax:	[/abe/] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
Param Device Characteristics		Min	Typt	Мах	Units		Conditions
No.	Berlee characteristics		1961	max	onito	VDD	Note
D010	Supply Current (IDD)	-	9	16	μA	2.0	Fosc = 32 kHz
		—	18	28	μA	3.0	LP Oscillator Mode
		—	35	54	μA	5.0	
D011		—	110	150	μA	2.0	Fosc = 1 MHz
		_	190	280	μA	3.0	XT Oscillator Mode
		_	330	450	μA	5.0	
D012		_	220	280	μA	2.0	Fosc = 4 MHz
		_	370	650	μA	3.0	XT Oscillator Mode
		_	0.6	1.4	mA	5.0	
D013		_	70	110	μA	2.0	Fosc = 1 MHz
	_	140	250	μA	3.0	EC Oscillator Mode	
		—	260	390	μA	5.0	
D014		—	180	250	μA	2.0	Fosc = 4 MHz
		_	320	470	μA	3.0	EC Oscillator Mode
		_	580	850	μA	5.0	
D015		—	340	450	μA	2.0	Fosc = 4 MHz
		_	500	780	μA	3.0	INTOSC Mode
		_	0.8	1.1	mA	5.0	
D016		_	180	250	μA	2.0	Fosc = 4 MHz
		_	320	450	μA	3.0	EXTRC Mode
		_	580	800	μA	5.0	
D017		_	2.1	2.95	mA	4.5	Fosc = 20 MHz
		_	2.4	3.0	mA	5.0	HS Oscillator Mode

12.2 DC Characteristics: PIC16F630/676-I (Industrial)

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param	Param Device Characteristics		Typt	Мах	Units		Conditions
No.	Device Characteristics	Min	iypi	WIAN	Onits	VDD	Note
D010E	Supply Current (IDD)	-	9	16	μA	2.0	Fosc = 32 kHz
		—	18	28	μA	3.0	LP Oscillator Mode
		_	35	54	μA	5.0	
D011E		-	110	150	μA	2.0	Fosc = 1 MHz
		_	190	280	μA	3.0	XT Oscillator Mode
		_	330	450	μA	5.0	
D012E		-	220	280	μA	2.0	Fosc = 4 MHz
		—	370	650	μA	3.0	XT Oscillator Mode
		_	0.6	1.4	mA	5.0	
D013E		-	70	110	μA	2.0	Fosc = 1 MHz
		—	140	250	μA	3.0	EC Oscillator Mode
		—	260	390	μA	5.0	
D014E		—	180	250	μA	2.0	Fosc = 4 MHz
		_	320	470	μA	3.0	EC Oscillator Mode
		—	580	850	μA	5.0	
D015E		—	340	450	μA	2.0	Fosc = 4 MHz
		—	500	780	μA	3.0	INTOSC Mode
		—	0.8	1.1	mA	5.0	
D016E			180	250	μA	2.0	Fosc = 4 MHz
		_	320	450	μA	3.0	EXTRC Mode
		_	580	800	μA	5.0	
D017E		_	2.1	2.95	mA	4.5	Fosc = 20 MHz
		_	2.4	3.0	mA	5.0	HS Oscillator Mode

12.4 DC Characteristics: PIC16F630/676-E (Extended)

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

12.6 DC Characteristics: PIC16F630/676-I (Industrial), PIC16F630/676-E (Extended)

DC CHARACTERISTICS			onditions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended				
Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
		Input Low Voltage					
	VIL	I/O ports					
D030		with TTL buffer	Vss	—	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$
D030A			Vss	—	0.15 Vdd	V	Otherwise
D031		with Schmitt Trigger buffer	Vss	—	0.2 Vdd	V	Entire range
D032		MCLR, OSC1 (RC mode)	Vss	—	0.2 Vdd	V	
D033		OSC1 (XT and LP modes)	Vss	—	0.3	V	(Note 1)
D033A		OSC1 (HS mode)	Vss	—	0.3 Vdd	V	(Note 1)
		Input High Voltage					
	Vін	I/O ports		—			
D040		with TTL buffer	2.0	—	Vdd	V	$4.5V \le VDD \le 5.5V$
D040A			(0.25 VDD+0.8)	—	Vdd	V	otherwise
D041		with Schmitt Trigger buffer	0.8 Vdd	—	Vdd		entire range
D042		MCLR	0.8 Vdd	—	Vdd	V	
D043		OSC1 (XT and LP modes)	1.6	—	Vdd	V	(Note 1)
D043A		OSC1 (HS mode)	0.7 Vdd	—	Vdd	V	(Note 1)
D043B		OSC1 (RC mode)	0.9 VDD	-	Vdd	V	
D070	Ipur	PORTA Weak Pull-up Current	50*	250	400*	μA	VDD = 5.0V, VPIN = VSS
		Input Leakage Current ⁽³⁾		-			
D060	lı∟	I/O ports	—	± 0.1	± 1	μA	Vss ≤ VPIN ≤ VDD, Pin at high-impedance
D060A		Analog inputs	_	± 0.1	± 1	μA	$Vss \leq VPIN \leq VDD$
D060B		VREF	_	± 0.1	± 1	μA	$VSS \leq VPIN \leq VDD$
D061		MCLR ⁽²⁾	_	± 0.1	± 5	μA	$Vss \leq VPIN \leq VDD$
D063		OSC1	—	± 0.1	± 5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration
		Output Low Voltage					
D080	Vol	I/O ports	_	_	0.6	V	IOL = 8.5 mA, VDD = 4.5V (Ind.
D083		OSC2/CLKOUT (RC mode)	—	—	0.6	V	IOL = 1.6 mA, VDD = 4.5V (Ind. IOL = 1.2 mA, VDD = 4.5V (Ext.
		Output High Voltage					
D090	Vон	I/O ports	Vdd - 0.7	_	—	V	ІОН = -3.0 mA, VDD = 4.5V (Ind.)
D092		OSC2/CLKOUT (RC mode)	Vdd - 0.7	—	—	V	ІОН = -1.3 mA, VDD = 4.5V (Ind.) ІОН = -1.0 mA, VDD = 4.5V (Ext.)

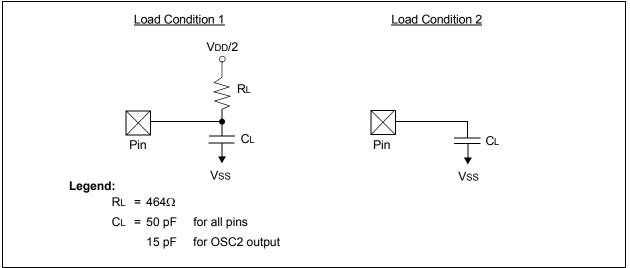
* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

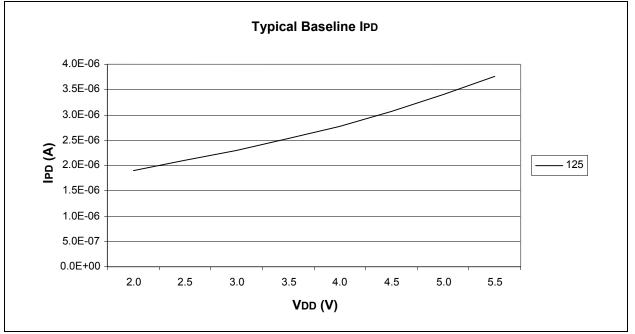
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

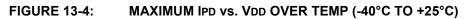
3: Negative current is defined as current sourced by the pin.

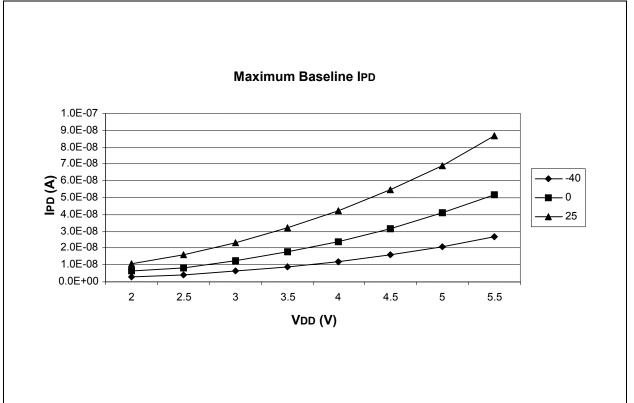

12.8 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created with one of the following formats:

- 1. TppS2ppS
- 2. TppS


<u>z. 1pp3</u>			
т			
F	Frequency	Т	Time
Lowerc	case letters (pp) and their meanings:		
рр			
сс	CCP1	OSC	OSC1
ck	CLKOUT	rd	RD
cs	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Upperc	ase letters and their meanings:		
S			
F	Fall	Р	Period
н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance


FIGURE 12-4: LOAD CONDITIONS



PIC16F630/676

APPENDIX C: DEVICE MIGRATIONS

This section is intended to describe the functional and electrical specification differences when migrating between functionally similar devices (such as from a PIC16C74A to a PIC16C74B).

Not Applicable

APPENDIX D: MIGRATING FROM OTHER PIC[®] DEVICES

This discusses some of the issues in migrating from other PIC devices to the PIC16F6XX family of devices.

D.1 PIC12C67X to PIC12F6XX

Feature	PIC12C67X	PIC16F6XX
Max Operating Speed	10 MHz	20 MHz
Max Program Memory	2048 bytes	1024 bytes
A/D Resolution	8-bit	10-bit
Data EEPROM	16 bytes	64 bytes
Oscillator Modes	5	8
Brown-out Detect	N	Y
Internal Pull-ups	RA0/1/3	RA0/1/2/4/5
Interrupt-on-change	RA0/1/3	RA0/1/2/3/4/5
Comparator	Ν	Y

TABLE 1: FEATURE COMPARISON

Note:	This device has been designed to perform to the parameters of its data sheet. It has been tested to an electrical specification designed to determine its conformance with these parameters. Due to process differences in the manufacture of this device, this device may have different performance characteristics than its earlier version. These differences may cause this device to perform differently in your application then the acclier version of this
	application than the earlier version of this device.