

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	12
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f676t-i-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PIC16F630/676 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description
RA0/AN0/CIN+/ICSPDAT	RA0	TTL	CMOS	Bidirectional I/O w/ programmable pull-up and interrupt-on-change.
	AN0	AN	—	A/D Channel 0 input.
	CIN+	AN		Comparator input.
	ICSPDAT	TTL	CMOS	Serial Programming Data I/O.
RA1/AN1/CIN-/VREF/ ICSPCLK	RA1	TTL	CMOS	Bidirectional I/O w/ programmable pull-up and interrupt-on-change.
	AN1	AN		A/D Channel 1 input.
	CIN-	AN	_	Comparator input.
	VREF	AN	_	External Voltage reference.
	ICSPCLK	ST	_	Serial Programming Clock.
RA2/AN2/COUT/T0CKI/INT	RA2	ST	CMOS	Bidirectional I/O w/ programmable pull-up and interrupt-on-change.
	AN2	AN	_	A/D Channel 2 input.
	COUT	_	CMOS	Comparator output.
	TOCKI	ST	_	Timer0 clock input.
	INT	ST	_	External Interrupt.
RA3/MCLR/Vpp	RA3	TTL	_	Input port with interrupt-on-change.
	MCLR	ST	_	Master Clear.
	VPP	HV	_	Programming voltage.
RA4/T1G/AN3/OSC2/	RA4	TTL	CMOS	Bidirectional I/O w/ programmable pull-up and
CLKOUT				interrupt-on-change.
	T1G	ST	—	Timer1 gate.
	AN3	AN3		A/D Channel 3 input.
	OSC2	—	XTAL	Crystal/Resonator.
	CLKOUT	—	CMOS	Fosc/4 output.
RA5/T1CKI/OSC1/CLKIN	RA5	TTL	CMOS	Bidirectional I/O w/ programmable pull-up and interrupt-on-change.
	T1CKI	ST	_	Timer1 clock.
	OSC1	XTAL		Crystal/Resonator.
	CLKIN	ST	—	External clock input/RC oscillator connection.
RC0/AN4	RC0	TTL	CMOS	Bidirectional I/O.
	AN4	AN4		A/D Channel 4 input.
RC1/AN5	RC1	TTL	CMOS	Bidirectional I/O.
	AN5	AN5	_	A/D Channel 5 input.
RC2/AN6	RC2	TTL	CMOS	Bidirectional I/O.
	AN6	AN6	_	A/D Channel 6 input.
RC3/AN7	RC3	TTL	CMOS	Bidirectional I/O.
	AN7	AN7	—	A/D Channel 7 input.
RC4	RC4	TTL	CMOS	Bidirectional I/O.
RC5	RC5	TTL	CMOS	Bidirectional I/O.
Vss	Vss	Power		Ground reference.
Vdd	Vdd	Power	_	Positive supply.

Legend: Shade = PIC16F676 only

TTL = TTL input buffer

ST = Schmitt Trigger input buffer

REGISTER 3-4: IOCA — INTERRUPT-ON-CHANGE PORTA REGISTER (ADDRESS: 96h)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	IOCA5	IOCA4	IOCA3	IOCA3 IOCA2		IOCA0
bit 7							bit 0

bit 7-6 Unimplemented: Read as '0'

bit 5-0

IOCA<5:0>: Interrupt-on-Change PORTA Control bits

1 = Interrupt-on-change enabled

0 = Interrupt-on-change disabled

Note: Global Interrupt Enable (GIE) must be enabled for individual interrupts to be recognized.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

3.2.3 PIN DESCRIPTIONS AND DIAGRAMS

Each PORTA pin is multiplexed with other functions. The pins and their combined functions are briefly described here. For specific information about individual functions such as the comparator or the A/D, refer to the appropriate section in this Data Sheet.

3.2.3.1 RA0/AN0/CIN+

Figure 3-1 shows the diagram for this pin. The RA0 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the A/D (PIC16F676 only)
- · an analog input to the comparator

3.2.3.2 RA1/AN1/CIN-/VREF

Figure 3-1 shows the diagram for this pin. The RA1 pin is configurable to function as one of the following:

- as a general purpose I/O
- an analog input for the A/D (PIC16F676 only)
- an analog input to the comparator
- a voltage reference input for the A/D (PIC16F676 only)

FIGURE 3-1: BLOCK DIAGRAM OF RA0 AND RA1 PINS

3.3 PORTC

PORTC is a general purpose I/O port consisting of 6 bidirectional pins. The pins can be configured for either digital I/O or analog input to A/D converter. For specific information about individual functions such as the comparator or the A/D, refer to the appropriate section in this Data Sheet.

Note: The ANSEL register (91h) must be clear to configure an analog channel as a digital input. Pins configured as analog inputs will read '0'. The ANSEL register is defined for the PIC16F676.

EXAMPLE 3-2: INITIALIZING PORTC

BCF	STATUS, RPO	;Bank 0
CLRF	PORTC	;Init PORTC
BSF	STATUS, RPO	;Bank 1
CLRF	ANSEL	;digital I/O
MOVLW	0Ch	;Set RC<3:2> as inputs
MOVWF	TRISC	;and set RC<5:4,1:0>
		;as outputs
BCF	STATUS, RPO	;Bank 0

3.3.1 RC0/AN4, RC1/AN5, RC2/AN6, RC3/ AN7

The RC0/RC1/RC2/RC3 pins are configurable to function as one of the following:

- · a general purpose I/O
- an analog input for the A/D Converter (PIC16F676 only)

3.3.2 RC4 AND RC5

The RC4 and RC5 pins are configurable to function as a general purpose I/Os.

5.0 TIMER1 MODULE WITH GATE CONTROL

The PIC16F630/676 devices have a 16-bit timer. Figure 5-1 shows the basic block diagram of the Timer1 module. Timer1 has the following features:

- 16-bit timer/counter (TMR1H:TMR1L)
- · Readable and writable
- Internal or external clock selection
- Synchronous or asynchronous operation
- Interrupt on overflow from FFFFh to 0000h
- Wake-up upon overflow (Asynchronous mode)
- Optional external enable input $(\overline{T1G})$
- · Optional LP oscillator

FIGURE 5-1: TIMER1 BLOCK DIAGRAM

The Timer1 Control register (T1CON), shown in Register 5-1, is used to enable/disable Timer1 and select the various features of the Timer1 module.

Note: Additional information on timer modules is available in the PIC[®] Mid-Range Reference Manual, (DS33023).

7.3 A/D Operation During Sleep

The A/D converter module can operate during Sleep. This requires the A/D clock source to be set to the internal oscillator. When the RC clock source is selected, the A/D waits one instruction before starting the conversion. This allows the SLEEP instruction to be executed, thus eliminating much of the switching noise from the conversion. When the conversion is complete, the GO/DONE bit is cleared, and the result is loaded into the ADRESH:ADRESL registers. If the A/D interrupt is enabled, the device awakens from Sleep. If the A/D interrupt is not enabled, the A/D module is turned off, although the ADON bit remains set. When the A/D clock source is something other than RC, a SLEEP instruction causes the present conversion to be aborted, and the A/D module is turned off. The ADON bit remains set.

7.4 Effects of Reset

A device Reset forces all registers to their Reset state. Thus, the A/D module is turned off and any pending conversion is aborted. The ADRESH:ADRESL registers are unchanged.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Value on all other Resets
05h	PORTA	—		PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	xx xxxx	uu uuuu
07h	PORTC	—	_	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	xx xxxx	uu uuuu
0Bh, 8Bh	INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	0000 0000	0000 000u
0Ch	PIR1	EEIF	ADIF	_		CMIF	—		TMR1IF	00 00	00 00
1Eh	ADRESH	Most Signi	ficant 8 bits	of the Left	Shifted A/D	result or 2	bits of the R	light Shifted	Result	XXXX XXXX	uuuu uuuu
1Fh	ADCON0	ADFM	VCFG	—	CHS2	CHS1	CHS0	GO	ADON	00-0 0000	00-0 0000
85h	TRISA	_	—	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
87h	TRISC	—	_	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	11 1111	11 1111
8Ch	PIE1	EEIE	ADIE	—	_	CMIE	—	_	TMR1IE	00 00	00 00
91h	ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	1111 1111
9Eh	ADRESL	Least Sign	ificant 2 bits	s of the Left	Shifted A/D	Result or 8	3 bits of the	Right Shifte	ed Result	XXXX XXXX	uuuu uuuu
9Fh	ADCON1	—	ADCS2	ADCS1	ADCS0	_	—	_	_	-000	-000

TABLE 7-2: SUMMARY OF A/D REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D converter module.

8.1 EEADR

The EEADR register can address up to a maximum of 128 bytes of data EEPROM. Only seven of the eight bits in the register (EEADR<6:0>) are required. The MSb (bit 7) is ignored.

The upper bit should always be '0' to remain upward compatible with devices that have more data EEPROM memory.

8.2 EECON1 AND EECON2 REGISTERS

EECON1 is the control register with four low order bits physically implemented. The upper four bits are nonimplemented and read as '0's.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set, in software. They are cleared in hardware at completion

of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a MCLR Reset, or a WDT Time-out Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit. clear it. and rewrite the location. The data and address will be cleared, therefore, the EEDATA and EEADR registers will need to be re-initialized.

The Interrupt flag bit EEIF in the PIR1 register is set when the write is complete. This bit must be cleared in software.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the data EEPROM write sequence.

REGISTE

U-0	U-0	U-0	U-0	R/W-x	R/W-0	R/S-0	R/S-0		
_	—	—	—	WRERR	WREN	WR	RD		
bit 7							bit		
Unimplem	ented: Read	d as '0'							
WRERR: E	WRERR: EEPROM Error Flag bit								
1 =A write normal 0 =The wri	operation is operation or te operation	Prematurely BOD detection completed	/ terminatec t)	l (any MCLR	Reset, any	WDT Rese	t during		
WREN: EE	PROM Writ	e Enable bit							
1 = Allows	write cycles								
0 = Inhibits	write to the	data EEPR	OM						
WR: Write	Control bit								
1 = Initiates can onl 0 = Write c	s a write cyc y be set, no ycle to the d	le (The bit is t cleared, in ata EEPRO	s cleared by software.) M is comple	hardware or	nce write is o	complete. T	he WR bit		
RD: Read	Control bit								
1 = Initiates can onl	s an EEPRC y be set, no	M read (Re t cleared, in	ad takes or software.)	e cycle. RD	is cleared in	n hardware.	The RD b		
0 = Does not initiate an EEPROM read									
Legend:									
S = Bit can	only be set								
R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as	'0'		
- n = Value	at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is u	Inknown		

SWAPF	Swap Nibbles in f
Syntax:	[<i>label</i>] SWAPF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed in register 'f'.

XORWF	Exclusive OR W with f						
Syntax:	[<i>label</i>] XORWF f,d						
Operands:	$0 \le f \le 127$ d $\in [0,1]$						
Operation:	(W) .XOR. (f) \rightarrow (destination)						
Status Affected:	Z						
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.						

XORLW	Exclusive OR Literal with W
Syntax:	[/abe/] XORLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .XOR. $k \rightarrow (W)$
Status Affected:	Z
Description:	The contents of the W register are XOR'ed with the eight-bit literal 'k'. The result is placed in the W register.

		Standa Operat	ard Ope ting tem	perating (Conditio	ns (unless otherwise stated) $C \le TA \le +125^{\circ}C$ for extended				
Param	Device Characteristics	Mire	Turat	Max	Unite		Conditions			
No.	Device Characteristics	MIN	турт	урт мах	Units	VDD	Note			
D010E	Supply Current (IDD)	—	9	16	μA	2.0	Fosc = 32 kHz			
		—	18	28	μA	3.0	LP Oscillator Mode			
		—	35	54	μA	5.0				
D011E		—	110	150	μA	2.0	Fosc = 1 MHz			
		_	190	280	μΑ	3.0	XT Oscillator Mode			
		—	330	450	μA	5.0				
D012E		—	220	280	μA	2.0	Fosc = 4 MHz			
		_	370	650	μΑ	3.0	XT Oscillator Mode			
		—	0.6	1.4	mA	5.0				
D013E		_	70	110	μA	2.0	Fosc = 1 MHz			
		—	140	250	μA	3.0	EC Oscillator Mode			
		—	260	390	μA	5.0				
D014E		—	180	250	μA	2.0	Fosc = 4 MHz			
		—	320	470	μA	3.0	EC Oscillator Mode			
		—	580	850	μA	5.0				
D015E		—	340	450	μA	2.0	Fosc = 4 MHz			
		—	500	780	μA	3.0	INTOSC Mode			
		—	0.8	1.1	mA	5.0				
D016E		_	180	250	μA	2.0	Fosc = 4 MHz			
		_	320	450	μA	3.0	EXTRC Mode			
		—	580	800	μA	5.0				
D017E		_	2.1	2.95	mA	4.5	Fosc = 20 MHz			
		—	2.4	3.0	mA	5.0	HS Oscillator Mode			

12.4 DC Characteristics: PIC16F630/676-E (Extended)

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

12.5 DC Characteristics: PIC16F630/676-E (Extended)

		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param	Davias Characteristics	Min	Turnt	Mox	Unito		Conditions		
No.	Device Characteristics	WIIN	турт	IVIAX	Units	Vdd	Note		
D020E	Power-down Base Current	—	0.00099	3.5	μA	2.0	WDT, BOD, Comparators, VREF,		
	(IPD)	_	0.0012	4.0	μA	3.0	and T1OSC disabled		
			0.0029	8.0	μA	5.0			
D021E		_	0.3	6.0	μA	2.0	WDT Current ⁽¹⁾		
		_	1.8	9.0	μA	3.0			
		—	8.4	20	μA	5.0			
D022E		_	58	70	μA	3.0	BOD Current ⁽¹⁾		
		—	109	130	μA	5.0			
D023E			3.3	10	μA	2.0	Comparator Current ⁽¹⁾		
		_	6.1	13	μA	3.0			
		_	11.5	24	μA	5.0			
D024E			58	70	μA	2.0	CVREF Current ⁽¹⁾		
		_	85	100	μA	3.0			
		_	138	165	μA	5.0			
D025E			4.0	10	μA	2.0	T1 Osc Current ⁽¹⁾		
		_	4.6	12	μA	3.0			
		—	6.0	20	μA	5.0			
D026E		_	0.0012	6.0	μA	3.0	A/D Current ⁽¹⁾		
		—	0.0022	8.5	μA	5.0			

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

12.9 AC CHARACTERISTICS: PIC16F630/676 (INDUSTRIAL, EXTENDED)

FIGURE 12-5: EXTERNAL CLOCK TIMING

TABLE 12-1: EXTERNAL CLOCK TIMING REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency ⁽¹⁾	DC	_	37	kHz	LP Osc mode
			DC	—	4	MHz	XT mode
			DC	—	20	MHz	HS mode
			DC	—	20	MHz	EC mode
		Oscillator Frequency ⁽¹⁾	5	_	37	kHz	LP Osc mode
			—	4	—	MHz	INTOSC mode
			DC	—	4	MHz	RC Osc mode
			0.1	—	4	MHz	XT Osc mode
			1	_	20	MHz	HS Osc mode
1	Tosc	External CLKIN Period ⁽¹⁾	27	—	∞	μS	LP Osc mode
			50	—	∞	ns	HS Osc mode
			50	—	∞	ns	EC Osc mode
			250	—	∞	ns	XT Osc mode
		Oscillator Period ⁽¹⁾	27		200	μS	LP Osc mode
			—	250	—	ns	INTOSC mode
			250	—	—	ns	RC Osc mode
			250	—	10,000	ns	XT Osc mode
			50	_	1,000	ns	HS Osc mode
2	Тсү	Instruction Cycle Time ⁽¹⁾	200	TCY	DC	ns	Tcy = 4/Fosc
3	TosL,	External CLKIN (OSC1) High	2*	_	—	μS	LP oscillator, Tosc L/H duty cycle
	TosH	External CLKIN Low	20*	—	—	ns	HS oscillator, Tosc L/H duty cycle
			100 *	_	—	ns	XT oscillator, Tosc L/H duty cycle
4	TosR,	External CLKIN Rise	—	—	50*	ns	LP oscillator
	TosF	External CLKIN Fall	—	—	25*	ns	XT oscillator
			—	—	15*	ns	HS oscillator

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

TABLE 12-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS	TABLE 12-5:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
---	-------------	---

Param No.	Sym		Characteristic		Min	Typ†	Мах	Units	Conditions
40*	Tt0H	T0CKI High Pulse	Width No Prescaler		0.5 TCY + 20	—	—	ns	
				With Prescaler	10	—	—	ns	
41*	TtOL	T0CKI Low Pulse Width		No Prescaler	0.5 Tcy + 20	Ι	_	ns	
				With Prescaler	10		_	ns	
42*	Tt0P	T0CKI Period			Greater of: 20 or <u>Tcy + 40</u> N	_	—	ns	N = prescale value (2, 4,, 256)
45*	Tt1H	T1CKI High Time	Synchronous, No Prescaler		0.5 Tcy + 20		_	ns	
	Synchronous, with Prescaler		15	_	—	ns			
			Asynchronous		30	—	—	ns	
46*	Tt1L	T1CKI Low Time	Synchronous, No Prescaler		0.5 TCY + 20	—	—	ns	
			Synchronous, with Prescaler		15	_	—	ns	
			Asynchronous		30	—	—	ns	
47*	Tt1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	—	—	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		60	—	—	ns	
	Ft1	Timer1 oscillator ir (oscillator enabled	nput frequency range J by setting bit T1OSCEN)		DC	_	200*	kHz	
48	TCKEZtmr1	Delay from externa	al clock edge to timer increment		2 Tosc*	—	7 Tosc*		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 12-11	PIC16F676	A/D CONVERSION	TIMING (SIFF	MODE)

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
130	TAD	A/D Clock Period	1.6	—	_	μS	$VREF \ge 3.0V$
			3.0*	—	—	μS	VREF full range
130	TAD	A/D Internal RC					ADCS<1:0> = 11 (RC mode)
		Oscillator Period	3.0*	6.0	9.0*	μS	At VDD = 2.5V
			2.0*	4.0	6.0*	μS	At VDD = 5.0V
131	ΤΟΝΥ	Conversion Time (not including Acquisition Time) ⁽¹⁾		11		Tad	
132	TACQ	Acquisition Time	(Note 2)	11.5		μS	
			5*	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 4.1 mV @ 4.096V) from the last sampled voltage (as stored on CHOLD).
134	TGO	Q4 to A/D Clock Start		Tosc/2 + Tcy		-	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Table 7-1 for minimum conditions.

NOTES:

13.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

The graphs and tables provided in this section are for design guidance and are not tested.

In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range.

The data presented in this section is a **statistical summary** of data collected on units from different lots over a period of time and matrix samples. "Typical" represents the mean of the distribution at 25°C. "Max" or "min" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is standard deviation, over the whole temperature range.

FIGURE 13-6: MAXIMUM IPD vs. VDD OVER TEMP (+125°C)

RESET, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer
Time-out Sequence on Power-up (MCLR not Tied to
VDD)/
Case 1 64
Case 2
Time-out Sequence on Power-up (MCLR Tied
to VDD)64
Timer0 and Timer1 External Clock 101
Timer1 Incrementing Edge35
Timing Parameter Symbology95
TRISIO Registers
V
Voltage Reference Accuracy/Error43
W
Watchdog Timer
Summary of Registers
Watchdog Timer (WDT) 68
WWW Address
WWW, On-Line Support5

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
From	n: Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Appl	ication (optional):	
Wou	ld you like a reply?YN	
Devi	ce: PIC16F630/676	Literature Number: DS40039F
Ques	stions:	
1. \	What are the best features of this do	cument?
_		
_		
2. ł	How does this document meet your	hardware and software development needs?
_		
-		
3. [Do you find the organization of this o	locument easy to follow? If not, why?
-		
-		
4. \	What additions to the document do y	you think would enhance the structure and subject?
-		
5. N	What deletions from the document c	ould be made without affecting the overall usefulness?
-		
- 6	a thora any incorrect or micloading i	pformation (what and whata)?
0. 1		
-		
- 7. ŀ	How would you improve this docume	ent?
1		
-		
-		

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	x <u>xx xxx</u>	Examples:
Device 1	emperature Package Pattern Range	 a) PIC16F630 - E/P 301 = Extended Temp., PDIP package, 20 MHz, QTP pattern #301 b) PIC16F676 - I/SL = Industrial Temp., SOIC
Device:	: Standard VDD range T: (Tape and Reel)	package, 20 MHz
Temperature Range:	$I = -40^{\circ}C \text{ to } +85^{\circ}C$ $E = -40^{\circ}C \text{ to } +125^{\circ}C$	
Package:	P = PDIP SL = SOIC (Gull wing, 3.90 mm body) ST = TSSOP(4.4 mm)	
Pattern:	3-Digit Pattern Code for QTP (blank otherwise)	

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.