
Microchip Technology - ATMEGA644PV-10AUR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 10MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 32

Program Memory Size 64KB (32K x 16)

Program Memory Type FLASH

EEPROM Size 2K x 8

RAM Size 4K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 44-TQFP

Supplier Device Package 44-TQFP (10x10)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega644pv-10aur

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega644pv-10aur-4410999
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

25.4. Prescaling and Conversion Timing...307
25.5. Changing Channel or Reference Selection.. 310
25.6. ADC Noise Canceler.. 312
25.7. ADC Conversion Result..316
25.8. Register Description... 318

26. JTAG Interface and On-chip Debug System..328
26.1. Features... 328
26.2. Overview...328
26.3. TAP – Test Access Port..329
26.4. TAP Controller.. 330
26.5. Using the Boundary-scan Chain...331
26.6. Using the On-chip Debug System.. 331
26.7. On-chip Debug Specific JTAG Instructions.. 332
26.8. Using the JTAG Programming Capabilities.. 332
26.9. Bibliography..333
26.10. IEEE 1149.1 (JTAG) Boundary-scan..333
26.11. Data Registers..334
26.12. Boundry-scan Specific JTAG Instructions.. 335
26.13. Boundary-scan Chain...337
26.14. ATmega644P Boundary-scan Order.. 340
26.15. Boundary-scan Description Language Files.. 342
26.16. Register Description...342

27. BTLDR - Boot Loader Support – Read-While-Write Self-Programming................ 347
27.1. Features... 347
27.2. Overview...347
27.3. Application and Boot Loader Flash Sections..347
27.4. Read-While-Write and No Read-While-Write Flash Sections...348
27.5. Entering the Boot Loader Program...350
27.6. Boot Loader Lock Bits.. 351
27.7. Addressing the Flash During Self-Programming.. 352
27.8. Self-Programming the Flash...353
27.9. Register Description... 361

28. MEMPROG- Memory Programming..364
28.1. Program And Data Memory Lock Bits.. 364
28.2. Fuse Bits...365
28.3. Signature Bytes.. 368
28.4. Calibration Byte.. 368
28.5. Serial Number...368
28.6. Page Size... 368
28.7. Parallel Programming Parameters, Pin Mapping, and Commands..369
28.8. Parallel Programming...371
28.9. Serial Downloading...378
28.10. Programming Via the JTAG Interface...383

29. Electrical Characteristics... 397
29.1. Absolute Maximum Ratings..397

Atmel ATmega644P/V [DATASHEET]
Atmel-42744B-ATmega644P/V_Datasheet_Complete-08/2016

8

Figure 8-3. The X-, Y-, and Z-registers
15 XH XL 0

X-register 7 0 7 0

R27 R26

15 YH YL 0

Y-register 7 0 7 0

R29 R28

15 ZH ZL 0

Z-register 7 0 7 0

R31 R30

In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see the instruction set reference for details).

Related Links
Instruction Set Summary on page 437

8.5. Stack Pointer
The Stack is mainly used for storing temporary data, for storing local variables and for storing return
addresses after interrupts and subroutine calls. The Stack is implemented as growing from higher to
lower memory locations. The Stack Pointer Register always points to the top of the Stack.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt Stacks are
located. A Stack PUSH command will decrease the Stack Pointer. The Stack in the data SRAM must be
defined by the program before any subroutine calls are executed or interrupts are enabled. Initial Stack
Pointer value equals the last address of the internal SRAM and the Stack Pointer must be set to point
above start of the SRAM. See the table for Stack Pointer details.

Table 8-1. Stack Pointer Instructions

Instruction Stack pointer Description

PUSH Decremented by 1 Data is pushed onto the stack

CALL

ICALL

RCALL

Decremented by 2 Return address is pushed onto the stack with a subroutine call or
interrupt

POP Incremented by 1 Data is popped from the stack

RET

RETI

Incremented by 2 Return address is popped from the stack with return from subroutine or
return from interrupt

The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of bits actually
used is implementation dependent. Note that the data space in some implementations of the AVR
architecture is so small that only SPL is needed. In this case, the SPH Register will not be present.

Atmel ATmega644P/V [DATASHEET]
Atmel-42744B-ATmega644P/V_Datasheet_Complete-08/2016

25

When applying an external clock, it is required to avoid sudden changes in the applied clock frequency to
ensure stable operation of the MCU. A variation in frequency of more than 2% from one clock cycle to the
next can lead to unpredictable behavior. If changes of more than 2% is required, ensure that the MCU is
kept in Reset during the changes.

The System Clock Prescaler can be used to implement run-time changes of the internal clock frequency
while still ensuring stable operation.

Related Links
System Clock Prescaler on page 52

10.9. Timer/Counter Oscillator
The device uses the same crystal oscillator for Low-frequency Oscillator and Timer/Counter Oscillator.
See Low Frequency Crystal Oscillator for details on the oscillator and crystal requirements.

On this device, the Timer/Counter Oscillator Pins (TOSC1 and TOSC2) are shared with XTAL1 and
XTAL2. When using the Timer/Counter Oscillator, the system clock needs to be four times the oscillator
frequency. Due to this and the pin sharing, the Timer/Counter Oscillator can only be used when the
Calibrated Internal RC Oscillator is selected as system clock source.

Applying an external clock source to TOSC1 can be done if the Enable External Clock Input bit in the
Asynchronous Status Register (ASSR.EXCLK) is written to '1'. See the description of the Asynchronous
Operation of Timer/Counter2 for further description on selecting external clock as input instead of a
32.768kHz watch crystal.

Related Links
Low Frequency Crystal Oscillator on page 48
OCR2B on page 210
ASSR on page 213

10.10. Clock Output Buffer
The device can output the system clock on the CLKO pin. To enable the output, the CKOUT Fuse has to
be programmed. This mode is suitable when the chip clock is used to drive other circuits on the system.
The clock also will be output during reset, and the normal operation of I/O pin will be overridden when the
fuse is programmed. Any clock source, including the internal RC Oscillator, can be selected when the
clock is output on CLKO. If the System Clock Prescaler is used, it is the divided system clock that is
output.

10.11. System Clock Prescaler
The device has a system clock prescaler, and the system clock can be divided by configuring the Clock
Prescale Register (CLKPR). This feature can be used to decrease the system clock frequency and the
power consumption when the requirement for processing power is low. This can be used with all clock
source options, and it will affect the clock frequency of the CPU and all synchronous peripherals. clkI/O,
clkADC, clkCPU, and clkFLASH are divided by a factor as shown in the CLKPR description.

When switching between prescaler settings, the System Clock Prescaler ensures that no glitches occurs
in the clock system. It also ensures that no intermediate frequency is higher than neither the clock
frequency corresponding to the previous setting, nor the clock frequency corresponding to the new
setting. The ripple counter that implements the prescaler runs at the frequency of the undivided clock,
which may be faster than the CPU's clock frequency. Hence, it is not possible to determine the state of

Atmel ATmega644P/V [DATASHEET]
Atmel-42744B-ATmega644P/V_Datasheet_Complete-08/2016

52

– OC0A: Output Compare Match A output. The PB3 pin can serve as an external output for the
Timer/Counter0 Output Compare. The pin has to be configured as an output (DDB3 set “1”) to
serve this function. The OC0A pin is also the output pin for the PWM mode timer function.

– PCINT11: Pin Change Interrupt source 11. The PB3 pin can serve as an external interrupt
source.

• AIN0/INT2/PCINT10 – Port B, Bit 2
– AIN0: Analog Comparator Positive input. This pin is directly connected to the positive input of

the Analog Comparator.
– INT2: External Interrupt source 2. The PB2 pin can serve as an External Interrupt source to

the MCU.
– PCINT10: Pin Change Interrupt source 10. The PB2 pin can serve as an external interrupt

source.

• T1/CLKO/PCINT9 – Port B, Bit 1
– T1: Timer/Counter1 counter source.
– CLKO: Divided System Clock: The divided system clock can be output on the PB1 pin. The

divided system clock will be output if the CKOUT Fuse is programmed, regardless of the
PORTB1 and DDB1 settings. It will also be output during reset.

– PCINT9: Pin Change Interrupt source 9. The PB1 pin can serve as an external interrupt
source.

• T0/XCK0/PCINT8 – Port B, Bit 0
– T0: Timer/Counter0 counter source.
– XCK0: USART0 External clock. The Data Direction Register (DDB0) controls whether the

clock is output (DDB0 set “1”) or input (DDB0 cleared). The XCK0 pin is active only when the
USART0 operates in Synchronous mode.

– PCINT8: Pin Change Interrupt source 8. The PB0 pin can serve as an external interrupt
source.

Table 15-7 and Table 15-8 relate the alternate functions of Port B to the overriding signals shown in
Figure 15-5. SPI MSTR INPUT and SPI SLAVE OUTPUT constitute the MISO signal, while MOSI is
divided into SPI MSTR OUTPUT and SPI SLAVE INPUT.

Table 15-7. Overriding Signals for Alternate Functions in PB[7:4]

Signal
Name

PB7/SCK/PCINT15 PB6/MISO/PCINT14 PB5/MOSI/PCINT13 PB4/SS/OC0B/PCINT12

PUOE SPE • MSTR SPE • MSTR SPE • MSTR SPE • MSTR

PUOV PORTB7 • PUD PORTB6 • PUD PORTB5 • PUD PORTB4 • PUD

DDOE SPE • MSTR SPE • MSTR SPE • MSTR SPE • MSTR

DDOV 0 0 0 0

PVOE SPE • MSTR SPE • MSTR SPE • MSTR OC0B ENABLE

PVOV SCK OUTPUT SPI SLAVE OUTPUT SPI MSTR OUTPUT OC0B

DIEOE PCINT15 • PCIE1 PCINT14 • PCIE1 PCINT13 • PCIE1 PCINT12 • PCIE1

DIEOV 1 1 1 1

Atmel ATmega644P/V [DATASHEET]
Atmel-42744B-ATmega644P/V_Datasheet_Complete-08/2016

106

SPI Mode Conditions Leading Edge Trailing Edge

2 CPOL=1, CPHA=0 Sample (Falling) Setup (Rising)

3 CPOL=1, CPHA=1 Setup (Falling) Sample (Rising)

The SPI data transfer formats are shown in the following figure.

Figure 20-3. SPI Transfer Format with CPHA = 0

Bit 1
Bit 6

LSB
MSB

SCK (CPOL = 0)
mode 0

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN
CHANGE 0
MISO PIN

SCK (CPOL = 1)
mode 2

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

MSB first (DORD = 0)
LSB first (DORD = 1)

Figure 20-4. SPI Transfer Format with CPHA = 1

SCK (CPOL = 0)
mode 1

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN
CHANGE 0
MISO PIN

SCK (CPOL = 1)
mode 3

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

LSB
MSB

MSB first (DORD = 0)
LSB first (DORD = 1)

20.5. Register Description

Atmel ATmega644P/V [DATASHEET]
Atmel-42744B-ATmega644P/V_Datasheet_Complete-08/2016

220

20.5.3. SPI Data Register 0
When addressing I/O Registers as data space using LD and ST instructions, the provided offset must be
used. When using the I/O specific commands IN and OUT, the offset is reduced by 0x20, resulting in an
I/O address offset within 0x00 - 0x3F.

The device is a complex microcontroller with more peripheral units than can be supported within the 64
locations reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 in
SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

Name:  SPDR0
Offset:  0x4E
Reset:  0xXX
Property:
 

When addressing as I/O Register: address offset is 0x2E

Bit 7 6 5 4 3 2 1 0
 SPID[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset x x x x x x x x

Bits 7:0 – SPID[7:0]: SPI Data
The SPI Data Register is a read/write register used for data transfer between the Register File and the
SPI Shift Register. Writing to the register initiates data transmission. Reading the register causes the Shift
Register Receive buffer to be read.

Atmel ATmega644P/V [DATASHEET]
Atmel-42744B-ATmega644P/V_Datasheet_Complete-08/2016

224

About Code Examples on page 20

21.7.2. Sending Frames with 9 Data Bit
If 9-bit characters are used (UCSZn = 7), the ninth bit must be written to the TXB8 bit in UCSRnB before
the low byte of the character is written to UDRn.

The ninth bit can be used for indicating an address frame when using multi processor communication
mode or for other protocol handling as for example synchronization.

The following code examples show a transmit function that handles 9-bit characters. For
the assembly code, the data to be sent is assumed to be stored in registers R17:R16.

Assembly Code Example

USART_Transmit:
 ; Wait for empty transmit buffer
 in r18, UCSR0A
 sbrs r18, UDRE
 rjmp USART_Transmit
 ; Copy 9th bit from r17 to TXB8
 cbi UCSR0B,TXB8
 sbrc r17,0
 sbi UCSR0B,TXB8
 ; Put LSB data (r16) into buffer, sends the data
 out UDR0,r16
 ret

C Code Example

void USART_Transmit(unsigned int data)
{
 /* Wait for empty transmit buffer */
 while (!(UCSR0A & (1<<UDRE))))
 ;
 /* Copy 9th bit to TXB8 */
 UCSR0B &= ~(1<<TXB8);
 if (data & 0x0100)
 UCSR0B |= (1<<TXB8);
 /* Put data into buffer, sends the data */
 UDR0 = data;
}

Note:  These transmit functions are written to be general functions. They can be
optimized if the contents of the UCSRnB is static. For example, only the TXB8 bit of the
UCSRnB Register is used after initialization.

Related Links
About Code Examples on page 20

21.7.3. Transmitter Flags and Interrupts
The USART Transmitter has two flags that indicate its state: USART Data Register Empty (UDRE) and
Transmit Complete (TXC). Both flags can be used for generating interrupts.

The Data Register Empty (UDRE) Flag indicates whether the transmit buffer is ready to receive new data.
This bit is set when the transmit buffer is empty, and cleared when the transmit buffer contains data to be
transmitted that has not yet been moved into the Shift Register. For compatibility with future devices,
always write this bit to zero when writing the UCSRnA Register.

When the Data Register Empty Interrupt Enable (UDRIE) bit in UCSRnB is written to '1', the USART Data
Register Empty Interrupt will be executed as long as UDRE is set (provided that global interrupts are
enabled). UDRE is cleared by writing UDRn. When interrupt-driven data transmission is used, the Data
Register Empty interrupt routine must either write new data to UDRn in order to clear UDRE or disable

Atmel ATmega644P/V [DATASHEET]
Atmel-42744B-ATmega644P/V_Datasheet_Complete-08/2016

232

the Data Register Empty interrupt - otherwise, a new interrupt will occur once the interrupt routine
terminates.

The Transmit Complete (TXC) Flag bit is set when the entire frame in the Transmit Shift Register has
been shifted out and there are no new data currently present in the transmit buffer. The TXC Flag bit is
either automatically cleared when a transmit complete interrupt is executed, or it can be cleared by writing
a '1' to its bit location. The TXC Flag is useful in half-duplex communication interfaces (like the RS-485
standard), where a transmitting application must enter receive mode and free the communication bus
immediately after completing the transmission.

When the Transmit Compete Interrupt Enable (TXCIE) bit in UCSRnB is written to '1', the USART
Transmit Complete Interrupt will be executed when the TXC Flag becomes set (provided that global
interrupts are enabled). When the transmit complete interrupt is used, the interrupt handling routine does
not have to clear the TXC Flag, this is done automatically when the interrupt is executed.

21.7.4. Parity Generator
The Parity Generator calculates the parity bit for the serial frame data. When parity bit is enabled
(UCSRnC.UPM[1]=1), the transmitter control logic inserts the parity bit between the last data bit and the
first stop bit of the frame that is sent.

21.7.5. Disabling the Transmitter
When writing the TX Enable bit in the USART Control and Status Register n B (UCSRnB.TXEN) to zero,
the disabling of the Transmitter will not become effective until ongoing and pending transmissions are
completed, i.e., when the Transmit Shift Register and Transmit Buffer Register do not contain data to be
transmitted. When disabled, the Transmitter will no longer override the TxDn pin.

21.8. Data Reception – The USART Receiver
The USART Receiver is enabled by writing the Receive Enable (RXEN) bit in the UCSRnB Register to '1'.
When the Receiver is enabled, the normal pin operation of the RxDn pin is overridden by the USART and
given the function as the Receiver’s serial input. The baud rate, mode of operation and frame format must
be set up once before any serial reception can be done. If synchronous operation is used, the clock on
the XCKn pin will be used as transfer clock.

21.8.1. Receiving Frames with 5 to 8 Data Bits
The Receiver starts data reception when it detects a valid start bit. Each bit that follows the start bit will be
sampled at the baud rate or XCKn clock, and shifted into the Receive Shift Register until the first stop bit
of a frame is received. A second stop bit will be ignored by the Receiver. When the first stop bit is
received, i.e., a complete serial frame is present in the Receive Shift Register, the contents of the Shift
Register will be moved into the receive buffer. The receive buffer can then be read by reading the UDRn
I/O location.

The following code example shows a simple USART receive function based on polling of
the Receive Complete (RXC) Flag. When using frames with less than eight bits the most
significant bits of the data read from the UDR0 will be masked to zero. The USART 0 has
to be initialized before the function can be used. For the assembly code, the received
data will be stored in R16 after the code completes.

Assembly Code Example

USART_Receive:
 ; Wait for data to be received
 in r17, UCSR0A
 sbrs r17, RXC

Atmel ATmega644P/V [DATASHEET]
Atmel-42744B-ATmega644P/V_Datasheet_Complete-08/2016

233

21.12.2. USART Control and Status Register n A

Name:  UCSR0A, UCSR1A
Offset:  0xC0 + n*0x08 [n=0..1]
Reset:  0x20
Property:
 

-

Bit 7 6 5 4 3 2 1 0
 RXC TXC UDRE FE DOR UPE U2X MPCM

Access R R/W R R R R R/W R/W
Reset 0 0 1 0 0 0 0 0

Bit 7 – RXC: USART Receive Complete
This flag bit is set when there are unread data in the receive buffer and cleared when the receive buffer is
empty (i.e., does not contain any unread data). If the Receiver is disabled, the receive buffer will be
flushed and consequently the RXC bit will become zero. The RXC Flag can be used to generate a
Receive Complete interrupt (see description of the RXCIE bit).

Bit 6 – TXC: USART Transmit Complete
This flag bit is set when the entire frame in the Transmit Shift Register has been shifted out and there are
no new data currently present in the transmit buffer (UDRn). The TXC Flag bit is automatically cleared
when a transmit complete interrupt is executed, or it can be cleared by writing a one to its bit location. The
TXC Flag can generate a Transmit Complete interrupt (see description of the TXCIE bit).

Bit 5 – UDRE: USART Data Register Empty
The UDRE Flag indicates if the transmit buffer (UDRn) is ready to receive new data. If UDRE is one, the
buffer is empty, and therefore ready to be written. The UDRE Flag can generate a Data Register Empty
interrupt (see description of the UDRIE bit). UDRE is set after a reset to indicate that the Transmitter is
ready.

Bit 4 – FE: Frame Error
This bit is set if the next character in the receive buffer had a Frame Error when received. I.e., when the
first stop bit of the next character in the receive buffer is zero. This bit is valid until the receive buffer
(UDRn) is read. The FEn bit is zero when the stop bit of received data is one. Always set this bit to zero
when writing to UCSRnA.

This bit is reserved in Master SPI Mode (MSPIM).

Bit 3 – DOR: Data OverRun
This bit is set if a Data OverRun condition is detected. A Data OverRun occurs when the receive buffer is
full (two characters), it is a new character waiting in the Receive Shift Register, and a new start bit is
detected. This bit is valid until the receive buffer (UDRn) is read. Always set this bit to zero when writing
to UCSRnA.

This bit is reserved in Master SPI Mode (MSPIM).

Bit 2 – UPE: USART Parity Error
This bit is set if the next character in the receive buffer had a Parity Error when received and the Parity
Checking was enabled at that point (UCSRnC.UPM1 = 1). This bit is valid until the receive buffer (UDRn)
is read. Always set this bit to zero when writing to UCSRnA.

This bit is reserved in Master SPI Mode (MSPIM).

Atmel ATmega644P/V [DATASHEET]
Atmel-42744B-ATmega644P/V_Datasheet_Complete-08/2016

245

Table 23-1. TWI Terminology

Term Description

Master The device that initiates and terminates a transmission. The Master also generates the
SCL clock.

Slave The device addressed by a Master.

Transmitter The device placing data on the bus.

Receiver The device reading data from the bus.

This device has one instance of TWI. For this reason, the instance index n is omitted.

The Power Reduction TWI bit in the Power Reduction Register (PRRn.PRTWI) must be written to '0' to
enable the two-wire Serial Interface.

TWI0 is in 0.

Related Links
Power Management and Sleep Modes on page 57

23.2.2. Electrical Interconnection
As depicted in the TWI Bus Definition, both bus lines are connected to the positive supply voltage through
pull-up resistors. The bus drivers of all TWI-compliant devices are open-drain or open-collector. This
implements a wired-AND function which is essential to the operation of the interface. A low level on a TWI
bus line is generated when one or more TWI devices output a zero. A high level is output when all TWI
devices tri-state their outputs, allowing the pull-up resistors to pull the line high. Note that all AVR devices
connected to the TWI bus must be powered in order to allow any bus operation.

The number of devices that can be connected to the bus is only limited by the bus capacitance limit of
400pF and the 7-bit slave address space. Two different sets of specifications are presented there, one
relevant for bus speeds below 100kHz, and one valid for bus speeds up to 400kHz.

23.3. Data Transfer and Frame Format

23.3.1. Transferring Bits
Each data bit transferred on the TWI bus is accompanied by a pulse on the clock line. The level of the
data line must be stable when the clock line is high. The only exception to this rule is for generating start
and stop conditions.

Figure 23-2. Data Validity

SD A

SCL

Data Stable Data Stable

Data Change

Atmel ATmega644P/V [DATASHEET]
Atmel-42744B-ATmega644P/V_Datasheet_Complete-08/2016

260

Figure 23-7. SCL Synchronization Between Multiple Masters
T Alow T Ahigh

SCL from
Master A

SCL from
Master B

SCL Bus
Line

TBlow TBhigh

Masters Start
Counting Low Period

Masters Start
Counting High Period

Arbitration is carried out by all masters continuously monitoring the SDA line after outputting data. If the
value read from the SDA line does not match the value the Master had output, it has lost the arbitration.
Note that a Master can only lose arbitration when it outputs a high SDA value while another Master
outputs a low value. The losing Master should immediately go to Slave mode, checking if it is being
addressed by the winning Master. The SDA line should be left high, but losing masters are allowed to
generate a clock signal until the end of the current data or address packet. Arbitration will continue until
only one Master remains, and this may take many bits. If several masters are trying to address the same
Slave, arbitration will continue into the data packet.

Figure 23-8. Arbitration Between Two Masters

SD A from
Master A

SD A from
Master B

SD A Line

Synchroniz ed
SCL Line

START Master A Loses
Arbitration, SD AA SD A

Note that arbitration is not allowed between:

• A REPEATED START condition and a data bit
• A STOP condition and a data bit
• A REPEATED START and a STOP condition

It is the user software’s responsibility to ensure that these illegal arbitration conditions never occur. This
implies that in multi-master systems, all data transfers must use the same composition of SLA+R/W and

Atmel ATmega644P/V [DATASHEET]
Atmel-42744B-ATmega644P/V_Datasheet_Complete-08/2016

264

TWINT bit in TWCRn is set. Immediately after the application has cleared TWINT, the TWI n will
initiate transmission of the START condition.

2. When the START condition has been transmitted, the TWINT Flag in TWCRn is set, and TWSRn is
updated with a status code indicating that the START condition has successfully been sent.

3. The application software should now examine the value of TWSRn, to make sure that the START
condition was successfully transmitted. If TWSRn indicates otherwise, the application software
might take some special action, like calling an error routine. Assuming that the status code is as
expected, the application must load SLA+W into TWDR. Remember that TWDRn is used both for
address and data. After TWDRn has been loaded with the desired SLA+W, a specific value must be
written to TWCRn, instructing the TWI n hardware to transmit the SLA+W present in TWDRn.
Which value to write is described later on. However, it is important that the TWINT bit is set in the
value written. Writing a one to TWINT clears the flag. The TWI will not start any operation as long
as the TWINT bit in TWCRn is set. Immediately after the application has cleared TWINT, the TWI
will initiate transmission of the address packet.

4. When the address packet has been transmitted, the TWINT Flag in TWCRn is set, and TWSRn is
updated with a status code indicating that the address packet has successfully been sent. The
status code will also reflect whether a Slave acknowledged the packet or not.

5. The application software should now examine the value of TWSRn, to make sure that the address
packet was successfully transmitted, and that the value of the ACK bit was as expected. If TWSRn
indicates otherwise, the application software might take some special action, like calling an error
routine. Assuming that the status code is as expected, the application must load a data packet into
TWDRn. Subsequently, a specific value must be written to TWCRn, instructing the TWI n hardware
to transmit the data packet present in TWDRn. Which value to write is described later on. However,
it is important that the TWINT bit is set in the value written. Writing a one to TWINT clears the flag.
The TWI n will not start any operation as long as the TWINT bit in TWCRn is set. Immediately after
the application has cleared TWINT, the TWI will initiate transmission of the data packet.

6. When the data packet has been transmitted, the TWINT Flag in TWCRn is set, and TWSRn is
updated with a status code indicating that the data packet has successfully been sent. The status
code will also reflect whether a Slave acknowledged the packet or not.

7. The application software should now examine the value of TWSRn, to make sure that the data
packet was successfully transmitted, and that the value of the ACK bit was as expected. If TWSR
indicates otherwise, the application software might take some special action, like calling an error
routine. Assuming that the status code is as expected, the application must write a specific value to
TWCRn, instructing the TWI n hardware to transmit a STOP condition. Which value to write is
described later on. However, it is important that the TWINT bit is set in the value written. Writing a
one to TWINT clears the flag. The TWI n will not start any operation as long as the TWINT bit in
TWCRn is set. Immediately after the application has cleared TWINT, the TWI will initiate
transmission of the STOP condition. Note that TWINT is not set after a STOP condition has been
sent.

Even though this example is simple, it shows the principles involved in all TWI transmissions. These can
be summarized as follows:

• When the TWI has finished an operation and expects application response, the TWINT Flag is set.
The SCL line is pulled low until TWINT is cleared.

• When the TWINT Flag is set, the user must update all TWI n Registers with the value relevant for
the next TWI n bus cycle. As an example, TWDRn must be loaded with the value to be transmitted
in the next bus cycle.

• After all TWI n Register updates and other pending application software tasks have been
completed, TWCRn is written. When writing TWCRn, the TWINT bit should be set. Writing a one to

Atmel ATmega644P/V [DATASHEET]
Atmel-42744B-ATmega644P/V_Datasheet_Complete-08/2016

268

25. ADC - Analog to Digital Converter

25.1. Features
• 10-bit Resolution
• 0.5 LSB Integral Non-Linearity
• ±2 LSB Absolute Accuracy
• 13 - 260μs Conversion Time
• Up to 15kSPS at Maximum Resolution
• 8 Multiplexed Single Ended Input Channels
• Differential mode with selectable gain at 1x, 10x or 200x(1)

• Optional Left Adjustment for ADC Result Readout
• 0 - VCC ADC Input Voltage Range
• 2.7V - VCC Differential ADC Voltage Range
• Selectable 2.56V or 1.1V ADC Reference Voltage
• Free Running or Single Conversion Mode
• Interrupt on ADC Conversion Complete
• Sleep Mode Noise Canceler

Note: 
1. The differential input channels are not tested for devices in PDIP Package. This feature is only

guaranteed to work for devices in TQFP and VQFN/QFN/MLF Packages.

25.2. Overview
The device features a 10-bit successive approximation ADC. The ADC is connected to an 8-channel
Analog Multiplexer which allows 8 single-ended voltage inputs constructed from the pins of Port A. The
single-ended voltage inputs refer to 0V (GND).

The device also supports 16 differential voltage input combinations. Two of the differential inputs (ADC1,
ADC0 and ADC3, ADC2) are equipped with a programmable gain stage. This provides amplification steps
of 0 dB (1x), 20 dB (10x), or 46 dB (200x) on the differential input voltage before the A/D conversion.
Seven differential analog input channels share a common negative terminal (ADC1), while any other ADC
input can be selected as the positive input terminal. If 1x or 10x gain is used, 8-bit resolution can be
expected. If 200x gain is used, 6- bit resolution can be expected. Note that internal references of 1.1V
should not be used on 10x and 200x gain.

The ADC contains a Sample and Hold circuit which ensures that the input voltage to the ADC is held at a
constant level during conversion. A block diagram of the ADC is shown below.

The ADC has a separate analog supply voltage pin, AVCC. AVCC must not differ more than ±0.3V from
VCC. See section ADC Noise Canceler on how to connect this pin.

The Power Reduction ADC bit in the Power Reduction Register (PRR.PRADC) must be written to '0' in
order to be enable the ADC.

The ADC converts an analog input voltage to a 10-bit digital value through successive approximation. The
minimum value represents GND and the maximum value represents the voltage on the AREF pin minus 1
LSB. Optionally, AVCC or an internal 2.56V reference voltage may be connected to the AREF pin by

Atmel ATmega644P/V [DATASHEET]
Atmel-42744B-ATmega644P/V_Datasheet_Complete-08/2016

304

25.8.5. ADC Control and Status Register B

Name:  ADCSRB
Offset:  0x7B
Reset:  0x00
Property:
 

-

Bit 7 6 5 4 3 2 1 0
 ACME ADTS2 ADTS1 ADTS0

Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 6 – ACME: Analog Comparator Multiplexer Enable
When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is zero), the ADC
multiplexer selects the negative input to the Analog Comparator. When this bit is written logic zero, AIN1
is applied to the negative input of the Analog Comparator. For a detailed description of this bit, see
Analog Comparator Multiplexed Input..

Bits 2:0 – ADTSn: ADC Auto Trigger Source [n = 2:0]
If ADATE in ADCSRA is written to one, the value of these bits selects which source will trigger an ADC
conversion. If ADATE is cleared, the ADTS[2:0] settings will have no effect. A conversion will be triggered
by the rising edge of the selected Interrupt Flag. Note that switching from a trigger source that is cleared
to a trigger source that is set, will generate a positive edge on the trigger signal. If ADEN in ADCSRA is
set, this will start a conversion. Switching to Free Running mode (ADTS[2:0]=0) will not cause a trigger
event, even if the ADC Interrupt Flag is set.

Table 25-6. ADC Auto Trigger Source Selection

ADTS[2:0] Trigger Source

000 Free Running mode

001 Analog Comparator

010 External Interrupt Request 0

011 Timer/Counter0 Compare Match A

100 Timer/Counter0 Overflow

101 Timer/Counter1 Compare Match B

110 Timer/Counter1 Overflow

111 Timer/Counter1 Capture Event

Atmel ATmega644P/V [DATASHEET]
Atmel-42744B-ATmega644P/V_Datasheet_Complete-08/2016

326

1. Write the Interrupt Vector Change Enable (IVCE) bit to one.
2. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.

Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled in the
cycle IVCE is set, and they remain disabled until after the instruction following the write to IVSEL. If
IVSEL is not written, interrupts remain disabled for four cycles. The I-bit in the Status Register is
unaffected by the automatic disabling.

Note:  If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLB02 is
programmed, interrupts are disabled while executing from the Application section. If Interrupt Vectors are
placed in the Application section and Boot Lock bit BLB12 is programed, interrupts are disabled while
executing from the Boot Loader section.

Bit 0 – IVCE: Interrupt Vector Change Enable
The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared by hardware
four cycles after it is written or when IVSEL is written. Setting the IVCE bit will disable interrupts, as
explained in the IVSEL description above. See Code Example below.

Assembly Code Example

Move_interrupts:
; Get MCUCR
in r16, MCUCR
mov r17, r16
; Enable change of Interrupt Vectors
ori r16, (1<<IVCE)
out MCUCR, r16
; Move interrupts to Boot Flash section
ori r17, (1<<IVSEL)
out MCUCR, r17
ret

C Code Example

void Move_interrupts(void)
{
uchar temp;
/* GET MCUCR*/
temp = MCUCR;
/* Enable change of Interrupt Vectors */
MCUCR = temp|(1<<IVCE);
/* Move interrupts to Boot Flash section */
MCUCR = temp|(1<<IVSEL);
}

Atmel ATmega644P/V [DATASHEET]
Atmel-42744B-ATmega644P/V_Datasheet_Complete-08/2016

345

Figure 27-1. Read-While-Write vs. No Read-While-Write

Read-While-Write
(RWW) Section

No Read-While-Write
(NRWW) Section

Z-pointer
Addresses RWW
Section

Z-pointer
Addresses NRWW
Section

CPU is Halted
During the Operation

Code Located in
NRWW Section
Can be Read During
the Operation

Atmel ATmega644P/V [DATASHEET]
Atmel-42744B-ATmega644P/V_Datasheet_Complete-08/2016

349

Bit 7 6 5 4 3 2 1 0
Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0

When reading the Extended Fuse byte (EFB), load 0x0002 in the Z-pointer. When an LPM instruction is
executed within three cycles after the SPMCSR.BLBSET and SPMCSR.SPMEN are set, the value of the
Extended Fuse byte (EFB) will be loaded in the destination register as shown below.

Bit 7 6 5 4 3 2 1 0
Rd – – – – – EFB2 EFB1 EFB0

Fuse and Lock bits that are programmed read as '0'. Fuse and Lock bits that are unprogrammed, will read
as '1'.

Related Links
Fuse Bits on page 365

27.8.10. Reading the Signature Row from Software
To read the Signature Row from software, load the Z-pointer with the signature byte address given in the
following table and set the SIGRD and SPMEN bits in SPMCSR (SPMCSR.SIGRD and
SPMCSR.SPMEN). When an LPM instruction is executed within three CPU cycles after the
SPMCSR.SIGRD and SPMCSR.SPMEN are set, the signature byte value will be loaded in the destination
register. The SPMCSR.SIGRD and SPMCSR.SPMEN will auto-clear upon completion of reading the
Signature Row Lock bits or if no LPM instruction is executed within three CPU cycles. When
SPMCSR.SIGRD and SPMCSR.SPMEN are cleared, LPM will work as described in the Instruction set
Manual.

Table 27-5. Signature Row Addressing

Signature Byte Z-pointer Address

Device Signature Byte 1 0x0000

Device Signature Byte 2 0x0002

Device Signature Byte 3 0x0004

RC Oscillator Calibration Byte 0x0001

Serial Number Byte 1 0x000E

Serial Number Byte 0 0x000F

Serial Number Byte 3 0x0010

Serial Number Byte 2 0x0011

Serial Number Byte 5 0x0012

Serial Number Byte 4 0x0013

Serial Number Byte 6 0x0015

Serial Number Byte 7 0x0016

Serial Number Byte 8 0x0017

Note:  All other addresses are reserved for future use.

Atmel ATmega644P/V [DATASHEET]
Atmel-42744B-ATmega644P/V_Datasheet_Complete-08/2016

356

28. MEMPROG- Memory Programming

28.1. Program And Data Memory Lock Bits
The devices provides Lock bits. These can be left unprogrammed ('1') or can be programmed ('0') to
obtain the additional features listed in Table. Lock Bit Protection Modes in this section. The Lock bits can
only be erased to “1” with the Chip Erase command.

Table 28-1. Lock Bit Byte(1)

Lock Bit Byte Bit No. Description Default Value

7 – 1 (unprogrammed)

6 – 1 (unprogrammed)

BLB12 5 Boot Lock bit 1 (unprogrammed)

BLB11 4 Boot Lock bit 1 (unprogrammed)

BLB02 3 Boot Lock bit 1 (unprogrammed)

BLB01 2 Boot Lock bit 1 (unprogrammed)

LB2 1 Lock bit 1 (unprogrammed)

LB1 0 Lock bit 1 (unprogrammed)

Note: 
1. '1' means unprogrammed, '0' means programmed.

Table 28-2. Lock Bit Protection Modes(1)(2)

Memory Lock Bits Protection Type

LB Mode LB2 LB1

1 1 1 No memory lock features enabled.

2 1 0 Further programming of the Flash and EEPROM is disabled in Parallel and Serial
Programming mode. The Fuse bits are locked in both Serial and Parallel
Programming mode.(1)

3 0 0 Further programming and verification of the Flash and EEPROM is disabled in
Parallel and Serial Programming mode. The Boot Lock bits and Fuse bits are
locked in both Serial and Parallel Programming mode.(1)

Note: 
1. Program the Fuse bits and Boot Lock bits before programming the LB1 and LB2.
2. '1' means unprogrammed, '0' means programmed.

Atmel ATmega644P/V [DATASHEET]
Atmel-42744B-ATmega644P/V_Datasheet_Complete-08/2016

364

Figure 28-5. Mapping Between BS1, BS2 and the Fuse and Lock Bits During Read

Lock Bits 0

1

BS2

Fuse High Byte

0

1

BS1

DATA

Fuse Low Byte 0

1

BS2

Extended Fuse Byte

28.8.13. Reading the Signature Bytes
The algorithm for reading the Signature bytes is as follows (Please refer to Programming the Flash for
details on Command and Address loading):

1. Step A: Load Command “0000 1000”.
2. Step B: Load Address Low Byte (0x00 - 0x02).
3. Set OE to “0”, and BS1 to “0”. The selected Signature byte can now be read at DATA.
4. Set OE to “1”.

28.8.14. Reading the Calibration Byte
The algorithm for reading the Calibration byte is as follows (Please refer to Programming the Flash for
details on Command and Address loading):

1. Step A: Load Command “0000 1000”.
2. Step B: Load Address Low Byte, 0x00.
3. Set OE to “0”, and BS1 to “1”. The Calibration byte can now be read at DATA.
4. Set OE to “1”.

28.8.15. Parallel Programming Characteristics
For characteristics of the Parallel Programming, please refer to Parallel Programming Characteristics.

28.9. Serial Downloading
Both the Flash and EEPROM memory arrays can be programmed using the serial SPI bus while RESET
is pulled to GND. The serial interface consists of pins SCK, MOSI (input) and MISO (output). After
RESET is set low, the Programming Enable instruction needs to be executed first before program/erase
operations can be executed.

Atmel ATmega644P/V [DATASHEET]
Atmel-42744B-ATmega644P/V_Datasheet_Complete-08/2016

378

Figure 30-16. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 2.7V)

105 °C
85 °C
25 °C

-40 °C0

10

20

30

40

50

60

70

80

90

0 0.5 1 1.5 2 2.5 3

VOP (V)

I O
P
 (u

A
)

Figure 30-17. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 5V)

105 °C

85 °C
25 °C

-40 °C

0

20

40

60

80

100

120

140

160

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

VOP (V)

I O
P
 (u

A
)

Figure 30-18. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 1.8V)

105 °C
85 °C
25 °C

-40 °C

0

8

16

24

32

40

0 0.4 0.8 1.2 1.6 2

VRESET (V)

I R
ES

ET
(u

A
)

Atmel ATmega644P/V [DATASHEET]
Atmel-42744B-ATmega644P/V_Datasheet_Complete-08/2016

419

