Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	800MHz
Co-Processors/DSP	Signal Processing; SPE, Security; SEC
RAM Controllers	DDR, DDR2, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	-
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	783-BBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8544eavtang

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NP

MPC8544E Overview

- Double-precision floating-point APU. Provides an instruction set for double-precision (64-bit) floating-point instructions that use the 64-bit GPRs.
- 36-bit real addressing
- Embedded vector and scalar single-precision floating-point APUs. Provide an instruction set for single-precision (32-bit) floating-point instructions.
- Memory management unit (MMU). Especially designed for embedded applications. Supports 4-Kbyte–4-Gbyte page sizes.
- Enhanced hardware and software debug support
- Performance monitor facility that is similar to, but separate from, the device performance monitor

The e500 defines features that are not implemented on this device. It also generally defines some features that this device implements more specifically. An understanding of these differences can be critical to ensure proper operations.

- 256-Kbyte L2 cache/SRAM
 - Flexible configuration
 - Full ECC support on 64-bit boundary in both cache and SRAM modes
 - Cache mode supports instruction caching, data caching, or both.
 - External masters can force data to be allocated into the cache through programmed memory ranges or special transaction types (stashing).
 - 1, 2, or 4 ways can be configured for stashing only.
 - Eight-way set-associative cache organization (32-byte cache lines)
 - Supports locking entire cache or selected lines. Individual line locks are set and cleared through Book E instructions or by externally mastered transactions.
 - Global locking and flash clearing done through writes to L2 configuration registers
 - Instruction and data locks can be flash cleared separately.
 - SRAM features include the following:
 - I/O devices access SRAM regions by marking transactions as snoopable (global).
 - Regions can reside at any aligned location in the memory map.
 - Byte-accessible ECC is protected using read-modify-write transaction accesses for smaller-than-cache-line accesses.
- Address translation and mapping unit (ATMU)
 - Eight local access windows define mapping within local 36-bit address space.
 - Inbound and outbound ATMUs map to larger external address spaces.
 - Three inbound windows plus a configuration window on PCI and PCI Express
 - Four outbound windows plus default translation for PCI and PCI Express
- DDR/DDR2 memory controller
 - Programmable timing supporting DDR and DDR2 SDRAM
 - 64-bit data interface

MPC8544E Overview

- Two key (K1, K2, K1) or three key (K1, K2, K3)
- ECB and CBC modes for both DES and 3DES
- AESU—Advanced Encryption Standard unit
 - Implements the Rijndael symmetric key cipher
 - ECB, CBC, CTR, and CCM modes
 - 128-, 192-, and 256-bit key lengths
- AFEU—ARC four execution unit
 - Implements a stream cipher compatible with the RC4 algorithm
 - 40- to 128-bit programmable key
- MDEU—message digest execution unit
 - SHA with 160- or 256-bit message digest
 - MD5 with 128-bit message digest
 - HMAC with either algorithm
- KEU-Kasumi execution unit
 - Implements F8 algorithm for encryption and F9 algorithm for integrity checking
 - Also supports A5/3 and GEA-3 algorithms
- RNG—random number generator
- XOR engine for parity checking in RAID storage applications
- Dual I²C controllers
 - Two-wire interface
 - Multiple master support
 - Master or slave I²C mode support
 - On-chip digital filtering rejects spikes on the bus
- Boot sequencer
 - Optionally loads configuration data from serial ROM at reset via the I²C interface
 - Can be used to initialize configuration registers and/or memory
 - Supports extended I^2C addressing mode
 - Data integrity checked with preamble signature and CRC
- DUART
 - Two 4-wire interfaces (SIN, SOUT, $\overline{\text{RTS}}$, $\overline{\text{CTS}}$)
 - Programming model compatible with the original 16450 UART and the PC16550D
- Local bus controller (LBC)
 - Multiplexed 32-bit address and data bus operating at up to 133 MHz
 - Eight chip selects support eight external slaves
 - Up to eight-beat burst transfers
 - The 32-, 16-, and 8-bit port sizes are controlled by an on-chip memory controller.
 - Two protocol engines available on a per chip select basis:

MPC8544E Overview

- Broadcast address (accept/reject)
- Hash table match on up to 512 multicast addresses
- Promiscuous mode
- Buffer descriptors backward compatible with MPC8260 and MPC860T 10/100 Ethernet programming models
- RMON statistics support
- 10-Kbyte internal transmit and 2-Kbyte receive FIFOs
- MII management interface for control and status
- Ability to force allocation of header information and buffer descriptors into L2 cache
- OCeaN switch fabric
 - Full crossbar packet switch
 - Reorders packets from a source based on priorities
 - Reorders packets to bypass blocked packets
 - Implements starvation avoidance algorithms
 - Supports packets with payloads of up to 256 bytes
- Integrated DMA controller
 - Four-channel controller
 - All channels accessible by both the local and remote masters
 - Extended DMA functions (advanced chaining and striding capability)
 - Support for scatter and gather transfers
 - Misaligned transfer capability
 - Interrupt on completed segment, link, list, and error
 - Supports transfers to or from any local memory or I/O port
 - Selectable hardware-enforced coherency (snoop/no snoop)
 - Ability to start and flow control each DMA channel from external 3-pin interface
 - Ability to launch DMA from single write transaction
- PCI controller
 - PCI 2.2 compatible
 - One 32-bit PCI port with support for speeds from 16 to 66 MHz
 - Host and agent mode support
 - 64-bit dual address cycle (DAC) support
 - Supports PCI-to-memory and memory-to-PCI streaming
 - Memory prefetching of PCI read accesses
 - Supports posting of processor-to-PCI and PCI-to-memory writes
 - PCI 3.3-V compatible
 - Selectable hardware-enforced coherency

- Three PCI Express interfaces
 - Two \times 4 link width interfaces and one \times 1 link width interface
 - PCI Express 1.0a compatible
 - Auto-detection of number of connected lanes
 - Selectable operation as root complex or endpoint
 - Both 32- and 64-bit addressing
 - 256-byte maximum payload size
 - Virtual channel 0 only
 - Traffic class 0 only
 - Full 64-bit decode with 32-bit wide windows
- Power management
 - Supports power saving modes: doze, nap, and sleep
 - Employs dynamic power management, which automatically minimizes power consumption of blocks when they are idle
- System performance monitor
 - Supports eight 32-bit counters that count the occurrence of selected events
 - Ability to count up to 512 counter-specific events
 - Supports 64 reference events that can be counted on any of the 8 counters
 - Supports duration and quantity threshold counting
 - Burstiness feature that permits counting of burst events with a programmable time between bursts
 - Triggering and chaining capability
 - Ability to generate an interrupt on overflow
- System access port
 - Uses JTAG interface and a TAP controller to access entire system memory map
 - Supports 32-bit accesses to configuration registers
 - Supports cache-line burst accesses to main memory
 - Supports large block (4-Kbyte) uploads and downloads
 - Supports continuous bit streaming of entire block for fast upload and download
- IEEE Std 1149.1[™]-compliant, JTAG boundary scan
- 783 FC-PBGA package

Enhanced Three-Speed Ethernet (eTSEC), MII Management

Table 28. FIFO Mode Transmit AC Timing Specification (continued)

(continued)At recommended operating conditions with L/TVDD of 3.3 V \pm 5% or 2.5 V \pm 5%

Parameter/Condition	Symbol	Min	Тур	Мах	Unit	Notes
Fall time TX_CLK (80%–20%)	t _{FITF}	_	—	0.75	ns	—
GTX_CLK to FIFO data TXD[7:0], TX_ER, TX_EN hold time	t _{FITDX}	0.5	—	3.0	ns	1

Note:

1. Data valid $t_{\ensuremath{\mathsf{FITDV}}}$ to GTX_CLK Min setup time is a function of clock period and max hold time.

(Min setup = Cycle time - Max hold).

Table 29. FIFO Mode Receive AC Timing Specification

At recommended operating conditions with L/TVDD of 3.3 V \pm 5% or 2.5 V \pm 5%

Parameter/Condition	Symbol	Min	Тур	Мах	Unit	Notes
RX_CLK clock period	t _{FIR}	—	8.0	—	ns	—
RX_CLK duty cycle	t _{FIRH} /t _{FIRH}	45	50	55	%	—
RX_CLK peak-to-peak jitter	t _{FIRJ}	—	—	250	ps	—
Rise time RX_CLK (20%–80%)	t _{FIRR}	—	—	0.75	ns	—
Fall time RX_CLK (80%-20%)	t _{FIRF}	—	—	0.75	ns	—
RXD[7:0], RX_DV, RX_ER setup time to RX_CLK	t _{FIRDV}	1.5	—	—	ns	—
RX_CLK to RXD[7:0], RX_DV, RX_ER hold time	t _{FIRDX}	0.5	—	—	ns	—

Timing diagrams for FIFO appear in Figure 11 and Figure 12.

Figure 12. FIFO Receive AC Timing Diagram

Enhanced Three-Speed Ethernet (eTSEC), MII Management

8.5.2 GMII AC Timing Specifications

This section describes the GMII transmit and receive AC timing specifications.

8.5.2.1 GMII Transmit AC Timing Specifications

Table 30 provides the GMII transmit AC timing specifications.

Table 30. GMII Transmit AC Timing Specifications

At recommended operating conditions with L/TVDD of 3.3 V \pm 5% or 2.5 V \pm 5%

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit	Notes
GTX_CLK clock period	t _{GTX}	—	8.0	—	ns	—
GTX_CLK to GMII data TXD[7:0], TX_ER, TX_EN delay	t _{GTKHDX}	0.2	—	5.0	ns	2
GTX_CLK data clock rise time (20%-80%)	t _{GTXR}	—	—	1.0	ns	—
GTX_CLK data clock fall time (80%-20%)	t _{GTXF}	—	—	1.0	ns	—

Notes:

1. The symbols used for timing specifications follow the pattern t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{GTKHDV} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the high state (H) relative to the time date input signals (D) reaching the valid state (V) to state or setup time. Also, t_{GTKHDX} symbolizes GMII transmit timing (GT) with respect to the high state (H) relative to the time date input signals (D) reaching the valid state (V) to state or setup time. Also, t_{GTKHDX} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the high state (H) relative to the time date input signals (D) going invalid (X) or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{GTX} represents the GMII(G) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}}

2. Data valid t_{GTKHDV} to GTX_CLK Min setup time is a function of clock period and max hold time (Min setup = cycle time – Max delay).

Figure 13 shows the GMII transmit AC timing diagram.

Figure 13. GMII Transmit AC Timing Diagram

Local Bus

10 Local Bus

This section describes the DC and AC electrical specifications for the local bus interface of the MPC8544E.

10.1 Local Bus DC Electrical Characteristics

Table 42 provides the DC electrical characteristics for the local bus interface operating at $BV_{DD} = 3.3 \text{ V DC}$.

Parameter	Symbol	Min	Мах	Unit	Notes
High-level input voltage	V _{IH}	2	BV _{DD} + 0.3	V	—
Low-level input voltage	V _{IL}	-0.3	0.8	V	—
Input current (BV _{IN} = 0 V or BV _{IN} = BOV _{DD})	I _{IN}	—	±5	μA	1
High-level output voltage ($BV_{DD} = min$, $I_{OH} = -2 mA$)	V _{OH}	2.4	—	V	—
Low-level output voltage ($BV_{DD} = min, I_{OL} = 2 mA$)	V _{OL}	—	0.4	V	—

Table 42. Local Bus DC Electrical Characteristics (3.3 V DC)

Note:

1. The symbol $\mathsf{BV}_{\mathsf{IN}}$ in this case, represents the $\mathsf{BV}_{\mathsf{IN}}$ symbol referenced in Table 1 and Table 2.

Table 43 provides the DC electrical characteristics for the local bus interface operating at $BV_{DD} = 2.5 \text{ V DC}$.

Table 43. Local Bus DC Electrical Characteristics (2.5 V DC)

Parameter	Symbol	Min	Мах	Unit	Notes
High-level input voltage	V _{IH}	1.70	BV _{DD} + 0.3	V	—
Low-level input voltage	V _{IL}	-0.3	0.7	V	—
Input current ($BV_{IN} = 0 V \text{ or } BV_{IN} = BV_{DD}$)	I _{IN}	—	±15	μA	1
High-level output voltage ($BV_{DD} = min, I_{OH} = -1 mA$)	V _{OH}	2.0	—	V	—
Low-level output voltage ($BV_{DD} = min, I_{OL} = 1 mA$)	V _{OL}	—	0.4	V	—

Note:

1. The symbol BV_{IN} , in this case, represents the BV_{IN} symbol referenced in Table 1 and Table 2.

Table 44 provides the DC electrical characteristics for the local bus interface operating at $BV_{DD} = 1.8 \text{ V DC}$.

Table 44. Local Bus DC Electrical Characteristics (1.8 V DC)

Parameter	Symbol	Min	Мах	Unit	Notes
High-level input voltage	V _{IH}	1.3	BV _{DD} + 0.3	V	—
Low-level input voltage	V _{IL}	-0.3	0.6	V	—
Input current ($BV_{IN} = 0 V \text{ or } BV_{IN} = BV_{DD}$)	I _{IN}	—	±15	μA	1

Table 46. Local Bus General Timing Parameters (BV_{DD} = 2.5 V)—PLL Enabled (continued)

Parameter	Symbol ¹	Min	Max	Unit	Notes
Local bus clock to output high impedance for LAD/LDP	t _{LBKHOZ2}	_	2.6	ns	5

Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(First two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one (1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the t_{LBK} clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.
</sub>

2. All timings are in reference to LSYNC_IN for PLL enabled and internal local bus clock for PLL bypass mode.

3. All signals are measured from $BV_{DD}/2$ of the rising edge of LSYNC_IN for PLL enabled or internal local bus clock for PLL bypass mode to 0.4 × BV_{DD} of the signal in question for 2.5-V signaling levels.

4. Input timings are measured at the pin.

5. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

- 6. t_{LBOTOT} is a measurement of the minimum time between the negation of LALE and any change in LAD. t_{LBOTOT} is programmed with the LBCR[AHD] parameter.
- 7. Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between complementary signals at BV_{DD}/2.

Table 47	describes the	general timing	parameters of the	local bus inter	face at $BV_{DD} =$	1.8 V DC.
					1717	

Parameter	Symbol ¹	Min	Мах	Unit	Notes
Local bus cycle time	t _{LBK}	7.5	12	ns	2
Local bus duty cycle	t _{LBKH/} t _{LBK}	43	57	%	—
LCLK[n] skew to LCLK[m] or LSYNC_OUT	t _{lbkskew}	—	150	ps	7
Input setup to local bus clock (except LUPWAIT)	t _{LBIVKH1}	2.6	—	ns	3, 4
LUPWAIT input setup to local bus clock	t _{LBIVKH2}	1.9	—	ns	3, 4
Input hold from local bus clock (except LUPWAIT)	t _{LBIXKH1}	1.1	—	ns	3, 4
LUPWAIT input hold from local bus clock	t _{LBIXKH2}	1.1	—	ns	3, 4
LALE output transition to LAD/LDP output transition (LATCH setup and hold time)	t _{lbotot}	1.2	—	ns	6
Local bus clock to output valid (except LAD/LDP and LALE)	t _{LBKHOV1}	—	3.2	ns	_
Local bus clock to data valid for LAD/LDP	t _{LBKHOV2}	—	3.2	ns	3
Local bus clock to address valid for LAD	t _{LBKHOV3}	—	3.2	ns	3
Local bus clock to LALE assertion	t _{LBKHOV4}	—	3.2	ns	3
Output hold from local bus clock (except LAD/LDP and LALE)	t _{LBKHOX1}	0.9	—	ns	3
Output hold from local bus clock for LAD/LDP	t _{LBKHOX2}	0.9	—	ns	3
Local bus clock to output high Impedance (except LAD/LDP and LALE)	t _{LBKHOZ1}	_	2.6	ns	5

Table 47. Local Bus General Timing Parameters (BV_{DD} = 1.8 V DC)

Local Bus

Figure 29. Local Bus Signals (PLL Bypass Mode)

NOTE

In PLL bypass mode, LCLK[n] is the inverted version of the internal clock with the delay of t_{LBKHKT} . In this mode, signals are launched at the rising edge of the internal clock and are captured at falling edge of the internal clock withe the exception of LGTA/LUPWAIT (which is captured on the rising edge of the internal clock).

Figure 31. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 (PLL Bypass Mode)

Figure 37 provides the boundary-scan timing diagram.

Figure 37. Boundary-Scan Timing Diagram

13 l²C

This section describes the DC and AC electrical characteristics for the I²C interfaces of the MPC8544E.

13.1 I²C DC Electrical Characteristics

Table 51 provides the DC electrical characteristics for the I²C interfaces.

Table 51. I²C DC Electrical Characteristics

At recommended operating conditions with OV_{DD} of 3.3 V ± 5%.

Parameter	Symbol	Min	Мах	Unit	Notes
Input high voltage level	V _{IH}	$0.7\times \text{OV}_{\text{DD}}$	OV _{DD} + 0.3	V	_
Input low voltage level	V _{IL}	-0.3	$0.3\times\text{OV}_{\text{DD}}$	V	_
Low level output voltage	V _{OL}	0	$0.2\times\text{OV}_{\text{DD}}$	V	1
Pulse width of spikes which must be suppressed by the input filter	t _{I2KHKL}	0	50	ns	2
Input current each I/O pin (input voltage is between $0.1 \times OV_{DD}$ and $0.9 \times OV_{DD}$ (max)	Ι _Ι	-10	10	μA	3
Capacitance for each I/O pin	CI	_	10	pF	_

Notes:

1. Output voltage (open drain or open collector) condition = 3 mA sink current.

2. Refer to the MPC8544EPowerQUICC III Integrated Communications Host Processor Reference Manual for information on the digital filter used.

3. I/O pins will obstruct the SDA and SCL lines if $\ensuremath{\mathsf{OV}_{\text{DD}}}$ is switched off.

Figure 49 shows the SerDes reference clock connection reference circuits for HCSL type clock driver. It assumes that the DC levels of the clock driver chip is compatible with MPC8544E SerDes reference clock input's DC requirement.

Figure 49. DC-Coupled Differential Connection with HCSL Clock Driver (Reference Only)

Figure 50 shows the SerDes reference clock connection reference circuits for LVDS type clock driver. Since LVDS clock driver's common mode voltage is higher than the MPC8544E SerDes reference clock input's allowed range (100 to 400mV), AC-coupled connection scheme must be used. It assumes the LVDS output driver features $50-\Omega$ termination resistor. It also assumes that the LVDS transmitter establishes its own common mode level without relying on the receiver or other external component.

Figure 50. AC-Coupled Differential Connection with LVDS Clock Driver (Reference Only)

Figure 51 shows the SerDes reference clock connection reference circuits for LVPECL type clock driver. Since LVPECL driver's DC levels (both common mode voltages and output swing) are incompatible with MPC8544E SerDes reference clock input's DC requirement, AC-coupling has to be used. Figure 51

17 PCI Express

This section describes the DC and AC electrical specifications for the PCI Express bus of the MPC8544.

17.1 DC Requirements for PCI Express SD_REF_CLK and SD_REF_CLK

For more information, see Section 16.2, "SerDes Reference Clocks."

17.2 AC Requirements for PCI Express SerDes Clocks

Table 58 provides the AC requirements for the PCI Express SerDes clocks.

Symbol ²	Parameter Description	Min	Тур	Max	Units	Notes
t _{REF}	REFCLK cycle time	_	10	_	ns	1
t _{REFCJ}	REFCLK cycle-to-cycle jitter. Difference in the period of any two adjacent REFCLK cycles			100	ps	
t _{REFPJ}	Phase jitter. Deviation in edge location with respect to mean edge location	-50	—	50	ps	—

Table 58. SD_REF_CLK and SD_REF_CLK AC Requirements

Notes:

1. Typical based on PCI Express Specification 2.0.

2. Guaranteed by characterization.

17.3 Clocking Dependencies

The ports on the two ends of a link must transmit data at a rate that is within 600 parts per million (ppm) of each other at all times. This is specified to allow bit rate clock sources with a ± 300 ppm tolerance.

17.4 Physical Layer Specifications

The following is a summary of the specifications for the physical layer of PCI Express on this device. For further details as well as the specifications of the transport and data link layer please refer to the *PCI Express Base Specification. Rev. 1.0a.*

Symbol	Parameter	Min	Nom	Мах	Unit	Comments
V _{TX-RCV-DETECT}	Amount of voltage change allowed during receiver detection	_	_	600	mV	The total amount of voltage change that a transmitter can apply to sense whether a low impedance receiver is present. See Note 6.
V _{TX-DC-CM}	TX DC common mode voltage	0	—	3.6	V	The allowed DC common mode voltage under any conditions. See Note 6.
I _{TX-SHORT}	TX short circuit current limit	—	—	90	mA	The total current the transmitter can provide when shorted to its ground.
T _{TX-IDLE-MIN}	Minimum time spent in electrical idle	50	_	_	UI	Minimum time a transmitter must be in electrical idle utilized by the receiver to start looking for an electrical idle exit after successfully receiving an electrical idle ordered set.
T _{TX-IDLE-SET-TO-IDLE}	Maximum time to transition to a valid electrical idle after sending an electrical Idle ordered set	_	_	20	UI	After sending an electrical idle ordered set, the transmitter must meet all electrical idle specifications within this time. This is considered a debounce time for the transmitter to meet electrical idle after transitioning from LO.
T _{TX} -IDLE-TO-DIFF-DATA	Maximum time to transition to valid TX specifications after leaving an electrical idle condition	_	_	20	UI	Maximum time to meet all TX specifications when transitioning from electrical idle to sending differential data. This is considered a debounce time for the TX to meet all TX specifications after leaving electrical idle.
RL _{TX-DIFF}	Differential return loss	12	_	_	dB	Measured over 50 MHz to 1.25 GHz. See Note 4.
RL _{TX-CM}	Common mode return loss	6	_	_	dB	Measured over 50 MHz to 1.25 GHz. See Note 4.
Z _{TX-DIFF-DC}	DC differential TX impedance	80	100	120	Ω	TX DC differential mode low impedance.
Z _{TX-DC}	Transmitter DC impedance	40	—	—	Ω	Required TX D+ as well as D– DC Impedance during all states.
L _{TX-SKEW}	Lane-to-lane output skew	_	—	500 + 2 UI	ps	Static skew between any two transmitter lanes within a single link.
C _{TX}	AC coupling capacitor	75	_	200	nF	All transmitters shall be AC coupled. The AC coupling is required either within the media or within the transmitting component itself.

Package Description

Signal	Package Pin Number	Pin Type	Power Supply	Notes
V _{DD}	L16, L14, M13, M15, M17, N12, N14, N16, N18, P13, P15, P17, R12, R14, R16, R18, T13, T15, T17, U12, U14, U16, U18,	Power for core (1.0 V)	V _{DD}	_
SVDD_SRDS	M27, N25, P28, R24, R26, T24, T27, U25, W24, W26, Y24, Y27, AA25, AB28, AD27	Core power for SerDes 1 transceivers (1.0 V)	SV _{DD}	_
SVDD_SRDS2	AB1, AC26, AD2, AE26, AG2	Core power for SerDes 2 transceivers (1.0 V)	SV _{DD}	_
XVDD_SRDS	M21, N23, P20, R22, T20, U23, V21, W22, Y20	Pad power for SerDes 1 transceivers (1.0 V)	XV _{DD}	_
XVDD_SRDS2	Y6, AA6, AA23, AF5, AG5	Pad power for SerDes 2 transceivers (1.0 V)	XV _{DD}	_
XGND_SRDS	M20, M24, N22, P21, R23, T21, U22, V20, W23, Y21	_	_	—
XGND_SRDS2	Y4, AA4, AA22, AD4, AE4, AH4	—	_	_
SGND_SRDS	M28, N26, P24, P27, R25, T28, U24, U26, V24, W25, Y28, AA24, AA26, AB24, AB27, AC24, AD28		_	_
AGND_SRDS	V27	SerDes PLL GND	_	
SGND_SRDS2	Y2, AA1, AB3, AC2, AC3, AC25, AD3, AD24, AE3, AE1, AE25, AF3, AH2	_	_	_
AGND_SRDS2	AF1	SerDes PLL GND	_	_
AVDD_LBIU	C28	Power for local bus PLL (1.0 V)	_	19
AVDD_PCI1	AH20	Power for PCI PLL (1.0 V)		19
AVDD_CORE	AH14	Power for e500 PLL (1.0 V)	_	19
AVDD_PLAT	AH18	Power for CCB PLL (1.0 V)	_	19

Table 62. MPC8544E Pinout Listing (continued)

19 Clocking

This section describes the PLL configuration of the MPC8544E. Note that the platform clock is identical to the core complex bus (CCB) clock.

19.1 Clock Ranges

Table 63 provides the clocking specifications for the processor cores and Table 64 provides the clocking specifications for the memory bus.

	Maximum Processor Core Frequency									
Characteristic	667 MHz		800 MHz		1000 MHz		1067 MHz		Unit	Notes
	Min	Мах	Min	Мах	Min	Мах	Min	Мах		
e500 core processor frequency	667	667	667	800	667	1000	667	1067	MHz	1, 2

Table 63. Processor Core Clocking Specifications

Notes:

1. **Caution:** The CCB to SYSCLK ratio and e500 core to CCB ratio settings must be chosen such that the resulting SYSCLK frequency, e500 (core) frequency, and CCB frequency do not exceed their respective maximum or minimum operating frequencies. Refer to Section 19.2, "CCB/SYSCLK PLL Ratio," and Section 19.3, "e500 Core PLL Ratio," for ratio settings.

2. The minimum e500 core frequency is based on the minimum platform frequency of 333 MHz.

Table 64. Memory Bus Clocking Specifications

Characteristic	Maximum Pro Frequ 667, 800, 100	Unit	Notes	
	Min	Min Max		
Memory bus clock speed	166	266	MHz	1, 2

Notes:

- 1. **Caution:** The CCB clock to SYSCLK ratio and e500 core to CCB clock ratio settings must be chosen such that the resulting SYSCLK frequency, e500 (core) frequency, and CCB clock frequency do not exceed their respective maximum or minimum operating frequencies. Refer to Section 19.2, "CCB/SYSCLK PLL Ratio," and Section 19.3, "e500 Core PLL Ratio," for ratio settings.
- 2. The memory bus speed is half of the DDR/DDR2 data rate, hence, half of the platform clock frequency.

19.2 CCB/SYSCLK PLL Ratio

The CCB clock is the clock that drives the e500 core complex bus (CCB), and is also called the platform clock. The frequency of the CCB is set using the following reset signals (see Table 65):

- SYSCLK input signal
- Binary value on LA[28:31] at power up

Clocking

Note that there is no default for this PLL ratio; these signals must be pulled to the desired values. Also note that the DDR data rate is the determining factor in selecting the CCB bus frequency, since the CCB frequency must equal the DDR data rate.

Binary Value of LA[28:31] Signals	CCB:SYSCLK Ratio	Binary Value of LA[28:31] Signals	CCB:SYSCLK Ratio
0000	16:1	1000	8:1
0001	Reserved	1001	9:1
0010	Reserved	1010	10:1
0011	3:1	1011	Reserved
0100	4:1	1100	12:1
0101	5:1	1101	Reserved
0110	6:1	1110	Reserved
0111	Reserved	1111	Reserved

Table	65.	ССВ	Clock	Ratio
Table	00.	000	Olock	nauo

19.3 e500 Core PLL Ratio

Table 66 describes the clock ratio between the e500 core complex bus (CCB) and the e500 core clock. This ratio is determined by the binary value of LBCTL, LALE, and LGPL2 at power up, as shown in Table 66.

Table 6	6. e500	Core to	ССВ	Clock Ratio
	0.0000			

Binary Value of LBCTL, LALE, LGPL2 Signals	e500 core:CCB Clock Ratio	Binary Value of LBCTL, LALE, LGPL2 Signals	e500 core:CCB Clock Ratio
000	4:1	100	2:1
001	Reserved	101	5:2
010	Reserved	110	3:1
011	3:2	111	7:2

19.4 PCI Clocks

For specifications on the PCI_CLK, refer to the PCI 2.2 Local Bus Specifications.

The use of PCI_CLK is optional if SYSCLK is in the range of 33–66 MHz. If SYSCLK is outside this range then use of PCI_CLK is required as a separate PCI clock source, asynchronous with respect to SYSCLK.

Device Nomenclature

Option 2

- If PCI arbiter is disabled during POR,
- All AD pins will be in the input state. Therefore, all ADs pins need to be grouped together and tied to OV_{DD} through a single (or multiple) 10-k Ω resistor(s).
- All PCI control pins can be grouped together and tied to OV_{DD} through a single 10-k Ω resistor.

21.12 Guideline for LBIU Termination

If the LBIU parity pins are not used, the following list shows the termination recommendation:

- For LDP[0:3]: tie them to ground or the power supply rail via a 4.7-k Ω resistor.
- For LPBSE: tie it to the power supply rail via a 4.7-k Ω resistor (pull-up resistor).

22 Device Nomenclature

Ordering information for the parts fully covered by this hardware specifications document is provided in Section 22.3, "Part Marking." Contact your local Freescale sales office or regional marketing team for order information.

22.1 Industrial and Commercial Tier Qualification

The MPC8544E device has been tested to meet the industrial tier qualification. Table 74 provides a description for commercial and industrial qualifications.

Tier ¹	Typical Application Use Time	Power-On Hours	Example of Typical Applications
Commercial	5 years	Part-time/ Full-Time	PC's, consumer electronics, office automation, SOHO networking, portable telecom products, PDAs, etc.
Industrial	10 years	Typically Full-Time	Installed telecom equipment, work stations, servers, warehouse equipment, etc.

Table 74. Commercial and Industrial Description

Note:

1. Refer to Table 2 for operating temperature ranges. Temperature is independent of tier and varies per product.

Document Revision History

23 Document Revision History

This table provides a revision history for the MPC8544E hardware specification.

Revision Date Substantive Change(s) 8 09/2015 • In Table 10 and Table 12, removed the output leakage current rows and removed table note 4. 7 06/2014 • In Table 75, "Device Nomenclature," added full Pb-free part code. • In Table 75, "Device Nomenclature," added footnotes 3 and 4. 05/2011 6 Updated the value of t_{JTKLDX} to 2.5 ns from 4ns in Table 50. 5 01/2011 • Updated Table 75. 4 09/2010 • Modified local bus information in Section 1.1, "Key Features," to show max local bus frequency as 133 MHz. Added footnote 28 to Table 62. • Updated solder-ball parameter in Table 61. 11/2009 • Update Section 20.3.4, "Temperature Diode," 3 • Update Table 61 Package Parameters from 95.5%sn to 96.5%sn 2 01/2009 • Update power number table to include 1067 MHz/533 MHz power numbers. Remove Part number tables from Hardware spec. The part numbers are available on Freescale web site product page. Removed I/O power numbers from the Hardware spec. and added the table to bring-up guide application note. • Update t_{DDKHMP}, t_{DDKHME} in Table 18. • Updated RX_CLK duty cycle min, and max value to meet the industry standard GMII duty cycle.

• Update paragraph Section 21.3, "Decoupling Recommendations."

• Update Section 22, "Device Nomenclature," with regards to Commercial Tier.

Update in Table 48 Local Bus General Timing Parameters—PLL Bypassed

Update in Table 18 DDR SDRAM Output AC Timing Specifications tMCK Max value

• In Table 40, removed note 1 and renumbered remaining note.

Improvement to Section 16, "High-Speed Serial Interfaces (HSSI)

• Update Figure 5 DDR Output Timing Diagram.

Update Figure 59 Mechanical Dimensions

Table 76. MPC8544E Document Revision History

1

0

06/2008

04/2008

Initial release.

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and PowerQUICC are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2008-2011, 2014-2015 Freescale Semiconductor, Inc.

Document Number: MPC8544EEC Rev. 8 09/2015

