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MPC8544E Overview

– Broadcast address (accept/reject)
– Hash table match on up to 512 multicast addresses
– Promiscuous mode

— Buffer descriptors backward compatible with MPC8260 and MPC860T 10/100 Ethernet 
programming models

— RMON statistics support
— 10-Kbyte internal transmit and 2-Kbyte receive FIFOs
— MII management interface for control and status
— Ability to force allocation of header information and buffer descriptors into L2 cache

• OCeaN switch fabric
— Full crossbar packet switch
— Reorders packets from a source based on priorities
— Reorders packets to bypass blocked packets
— Implements starvation avoidance algorithms
— Supports packets with payloads of up to 256 bytes

• Integrated DMA controller
— Four-channel controller
— All channels accessible by both the local and remote masters
— Extended DMA functions (advanced chaining and striding capability)
— Support for scatter and gather transfers
— Misaligned transfer capability
— Interrupt on completed segment, link, list, and error
— Supports transfers to or from any local memory or I/O port
— Selectable hardware-enforced coherency (snoop/no snoop)
— Ability to start and flow control each DMA channel from external 3-pin interface
— Ability to launch DMA from single write transaction

• PCI controller
— PCI 2.2 compatible 
— One 32-bit PCI port with support for speeds from 16 to 66 MHz
— Host and agent mode support
— 64-bit dual address cycle (DAC) support
— Supports PCI-to-memory and memory-to-PCI streaming
— Memory prefetching of PCI read accesses
— Supports posting of processor-to-PCI and PCI-to-memory writes
— PCI 3.3-V compatible
— Selectable hardware-enforced coherency
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Electrical Characteristics

Figure 1 shows the MPC8544E block diagram.

Figure 1. MPC8544E Block Diagram

2 Electrical Characteristics
This section provides the AC and DC electrical specifications and thermal characteristics for the 
MPC8544E. This device is currently targeted to these specifications. Some of these specifications are 
independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer 
design specifications.

2.1 Overall DC Electrical Characteristics
This section covers the ratings, conditions, and other characteristics.

2.1.1 Absolute Maximum Ratings
Table 1 provides the absolute maximum ratings.

Table 1. Absolute Maximum Ratings1

Characteristic Symbol Max Value Unit Notes

Core supply voltage VDD –0.3 to 1.1 V —

PLL supply voltage AVDD –0.3 to 1.1 V —

Core power supply for SerDes transceivers SVDD –0.3 to 1.1 V —

Pad power supply for SerDes transceivers XVDD –0.3 to 1.1 V —
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2.1.3 Output Driver Characteristics

Table 3 provides information on the characteristics of the output driver strengths.

2.2 Power Sequencing
The device requires its power rails to be applied in specific sequence in order to ensure proper device 
operation. These requirements are as follows for power up:

1. VDD, AVDD_n, BVDD, LVDD, SVDD, OVDD, TVDD, XVDD
2. GVDD

Note that all supplies must be at their stable values within 50 ms.

Items on the same line have no ordering requirement with respect to one another. Items on separate lines 
must be ordered sequentially such that voltage rails on a previous step must reach 90% of their value before 
the voltage rails on the current step reach 10% of theirs.

In order to guarantee MCKE low during power-up, the above sequencing for GVDD is required. If there is 
no concern about any of the DDR signals being in an indeterminate state during power up, then the 
sequencing for GVDD is not required.

From a system standpoint, if any of the I/O power supplies ramp prior to the VDD core supply, the I/Os 
associated with that I/O supply may drive a logic one or zero during power-up, and extra current may be 
drawn by the device.

Table 3. Output Drive Capability

Driver Type
Programmable

Output Impedance
(Ω)

Supply
Voltage

Notes

Local bus interface utilities signals 25
35

BVDD = 3.3 V
BVDD = 2.5 V

1

45 (default)
45 (default)

125

BVDD = 3.3 V
BVDD = 2.5 V
BVDD = 1.8 V

PCI signals 25 OVDD = 3.3 V 2

42 (default)

DDR signal 20 GVDD = 2.5 V —

DDR2 signal 16 
32 (half strength mode)

GVDD = 1.8 V —

TSEC signals 42 LVDD = 2.5/3.3 V —

DUART, system control, JTAG 42 OVDD = 3.3 V —

I2C 150 OVDD = 3.3 V —

Notes:
1. The drive strength of the local bus interface is determined by the configuration of the appropriate bits in PORIMPSCR.
2. The drive strength of the PCI interface is determined by the setting of the PCI_GNT1 signal at reset.
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Input Clocks

4.2 Real-Time Clock Timing
The RTC input is sampled by the platform clock (CCB clock). The output of the sampling latch is then 
used as an input to the counters of the PIC and the TimeBase unit of the e500. There is no jitter 
specification. The minimum pulse width of the RTC signal should be greater than 2 × the period of the 
CCB clock. That is, minimum clock high time is 2 × tCCB, and minimum clock low time is 2 × tCCB. There 
is no minimum RTC frequency; RTC may be grounded if not needed.

4.3 eTSEC Gigabit Reference Clock Timing
Table 7 provides the eTSEC gigabit reference clocks (EC_GTX_CLK125) AC timing specifications for 
the MPC8544E.

4.4 Platform to FIFO Restrictions
Please note the following FIFO maximum speed restrictions based on platform speed.

For FIFO GMII mode: 
FIFO TX/RX clock frequency ≤ platform clock frequency ÷ 4.2

For example, if the platform frequency is 533 MHz, the FIFO Tx/Rx clock frequency should be no more 
than 127 MHz.

For FIFO encoded mode: 
FIFO TX/RX clock frequency ≤ platform clock frequency ÷ 3.2

For example, if the platform frequency is 533 MHz, the FIFO Tx/Rx clock frequency should be no more 
than 167 MHz.

Table 7. EC_GTX_CLK125 AC Timing Specifications

Parameter/Condition Symbol Min Typ Max Unit Notes

EC_GTX_CLK125 frequency fG125 — 125 — MHz —

EC_GTX_CLK125 cycle time tG125 — 8 — ns —

EC_GTX_CLK rise and fall time 
LVDD, TVDD = 2.5 V
LVDD, TVDD = 3.3 V

tG125R/tG125F — —
0.75
1.0

ns 1

EC_GTX_CLK125 duty cycle
GMII, TBI

1000Base-T for RGMII, RTBI

tG125H/tG125
45
47

—
55
53

% 2

Notes:
1. Rise and fall times for EC_GTX_CLK125 are measured from 0.5 and 2.0 V for L/TVDD = 2.5 V, and from 0.6 and 2.7 V for 

L/TVDD = 3.3 V.
2. EC_GTX_CLK125 is used to generate the GTX clock for the eTSEC transmitter with 2% degradation. EC_GTX_CLK125 duty 

cycle can be loosened from 47%/53% as long as the PHY device can tolerate the duty cycle generated by the eTSEC 
GTX_CLK. See Section 8.7.4, “RGMII and RTBI AC Timing Specifications,” for duty cycle for 10Base-T and 100Base-T 
reference clock.
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Enhanced Three-Speed Ethernet (eTSEC), MII Management

8.3 SGMII Interface Electrical Characteristics
Each SGMII port features a 4-wire AC-coupled serial link from the dedicated SerDes 2 interface of 
MPC8544E as shown in Figure 7, where CTX is the external (on board) AC-coupled capacitor. Each output 
pin of the SerDes transmitter differential pair features 50-Ω output impedance. Each input of the SerDes 
receiver differential pair features 50-Ω on-die termination to SGND_SRDS2 (xcorevss). The reference 
circuit of the SerDes transmitter and receiver is shown in Figure 7.

When an eTSEC port is configured to operate in SGMII mode, the parallel interface’s output signals of 
this eTSEC port can be left floating. The input signals should be terminated based on the guidelines 
described in Section 21.5, “Connection Recommendations,” as long as such termination does not violate 
the desired POR configuration requirement on these pins, if applicable.

When operating in SGMII mode, the eTSEC EC_GTX_CLK125 clock is not required for this port. 
Instead, SerDes reference clock is required on SD2_REF_CLK and SD2_REF_CLK pins.

8.3.1 AC Requirements for SGMII SD2_REF_CLK and SD2_REF_CLK

Table 23 lists the SGMII SerDes reference clock AC requirements. Please note that SD2_REF_CLK and 
SD2_REF_CLK are not intended to be used with, and should not be clocked by, a spread spectrum clock 
source.

8.3.2 SGMII Transmitter and Receiver DC Electrical Characteristics

Table 24 and Table 25 describe the SGMII SerDes transmitter and receiver AC-coupled DC electrical 
characteristics. Transmitter DC characteristics are measured at the transmitter outputs (SD2_TX[n] and 
SD2_TX[n]) as depicted in Figure 8.

Table 23. SD2_REF_CLK and SD2_REF_CLK AC Requirements

Symbol Parameter Description Min Typical Max Units Notes

tREF REFCLK cycle time — 10 (8) — ns 1

tREFCJ REFCLK cycle-to-cycle jitter. Difference in the period of any 
two adjacent REFCLK cycles

— — 100 ps —

tREFPJ Phase jitter. Deviation in edge location with respect to 
mean edge location

–50 — 50 ps —

Note:
1. 8 ns applies only when 125 MHz SerDes2 reference clock frequency is selected via cfg_srds_sgmii_refclk during POR.

Table 24. DC Transmitter Electrical Characteristics

Parameter Symbol Min Typ Max Unit Notes

Supply Voltage VDD_SRDS2 0.95 1.0 1.05 V —

Output high voltage VOH — — VOS-max + |VOD|–max/2 mV
1

Output low voltage VOL VOS-min –|VOD|-max/2 — — mV

Output ringing VRING — — 10 % —
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Output differential voltage2,3,5 |VOD| 323 500 725 mV Equalization 
setting: 1.0x

296 459 665 Equalization 
setting: 1.09x

269 417 604 Equalization 
setting: 1.2x

243 376 545 Equalization 
setting: 1.33x

215 333 483 Equalization 
setting: 1.5x

189 292 424 Equalization 
setting: 1.71x

162 250 362 Equalization 
setting: 2.0x

Output offset voltage VOS 425 500 577.5 mV 1, 4

Output impedance (single 
ended)

RO 40 — 60  Ω —

Mismatch in a pair ΔRO — — 10 % —

Change in VOD between 0 and 1 Δ|VOD| — — 25 mV —

Change in VOS between 0 and 1 ΔVOS — — 25 mV —

Output current on short to GND ISA, ISB — — 40 mA —

Notes:
1. This will not align to DC-coupled SGMII.
2. |VOD| = |VSD2_TXn – VSD2_TXn|. |VOD| is also referred as output differential peak voltage. VTX-DIFFp-p = 2*|VOD|.
3. The |VOD| value shown in the table assumes the following transmit equalization setting in the XMITEQCD (for SerDes 2 lane 

2 and 3) bit field of MPC8544E SerDes 2 control register 1:
 •The MSbit (bit 0) of the above bit field is set to zero (selecting the full VDD-DIFF-p-p amplitude—power up default);
 •The LSbits (bit [1:3]) of the above bit field is set based on the equalization setting shown in this table.

4. VOS is also referred to as output common mode voltage.
5. The |VOD| value shown in the Typ column is based on the condition of XVDD_SRDS2-Typ = 1.0 V, no common mode offset 

variation (VOS = 500 mV), SerDes2 transmitter is terminated with 100-Ω differential load between SD2_TX[n] and SD2_TX[n].

Table 24. DC Transmitter Electrical Characteristics (continued)

Parameter Symbol Min Typ Max Unit Notes
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Enhanced Three-Speed Ethernet (eTSEC), MII Management

8.4 SGMII AC Timing Specifications
This section describes the SGMII transmit and receive AC timing specifications. Transmitter and receiver 
characteristics are measured at the transmitter outputs (SD2_TX[n] and SD2_TX[n]) or at the receiver 
inputs (SD2_RX[n] and SD2_RX[n]) as depicted in Figure 10, respectively.

8.4.1 SGMII Transmit AC Timing Specifications
Table 26 provides the SGMII transmit AC timing targets. A source synchronous clock is not provided.

Input differential voltage LSTS = 0 Vrx_diffpp 100 — 1200 mV 2, 4

LSTS = 1 175 —

Loss of signal threshold LSTS = 0 Vlos 30 — 100 mV 3, 4

LSTS = 1 65 — 175

Input AC common mode voltage Vcm_acpp — — 100 mV 5.

Receiver differential input impedance Zrx_diff 80 — 120 Ω —

Receiver common mode input impedance Zrx_cm 20 — 35 Ω —

Common mode input voltage Vcm xcorevss — xcorevss V 6

Notes:
1. Input must be externally AC-coupled.
2. VRX_DIFFp-p is also referred to as peak-to-peak input differential voltage
3. The concept of this parameter is equivalent to the electrical idle detect threshold parameter in PCI Express. Refer to 

Section 17.4.3, “Differential Receiver (RX) Input Specifications,” for further explanation.
4. The LSTS shown in this table refers to the LSTSCD bit field of MPC8544E SerDes 2 control register 1.
5. VCM_ACp-p is also referred to as peak-to-peak AC common mode voltage.
6. On-chip termination to SGND_SRDS2 (xcorevss).

Table 26. SGMII Transmit AC Timing Specifications
At recommended operating conditions with XVDD_SRDS2 = 1.0 V ± 5%.

Parameter Symbol Min Typ Max Unit Notes

Deterministic jitter JD — — 0.17 UI p-p —

Total jitter JT — — 0.35 UI p-p —

Unit interval UI 799.92 800 800.08 ps 2

VOD fall time (80%–20%) tfall 50 — 120 ps —

VOD rise time (20%–80%) trise 50 — 120 ps —

Notes;
1. Source synchronous clock is not supported.
2. Each UI value is 800 ps ± 100 ppm.

Table 25. DC Receiver Electrical Characteristics (continued)

Parameter Symbol Min Typ Max Unit Notes
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Ethernet Management Interface Electrical Characteristics

9 Ethernet Management Interface Electrical 
Characteristics

The electrical characteristics specified here apply to MII management interface signals MDIO 
(management data input/output) and MDC (management data clock). The electrical characteristics for 
GMII, RGMII, RMII, TBI, and RTBI are specified in “Section 8, “Enhanced Three-Speed Ethernet 
(eTSEC), MII Management.”

9.1 MII Management DC Electrical Characteristics
The MDC and MDIO are defined to operate at a supply voltage of 3.3 V. The DC electrical characteristics 
for MDIO and MDC are provided in Table 40.

9.2 MII Management AC Electrical Specifications
Table 41 provides the MII management AC timing specifications.

Table 40. MII Management DC Electrical Characteristics

Parameter Symbol Min Max Unit Notes

Supply voltage (3.3 V) OVDD 3.135 3.465 V —

Output high voltage (OVDD = Min, IOH = –1.0 mA) VOH 2.10 3.60 V —

Output low voltage (OVDD = Min, IOL = 1.0 mA) VOL GND 0.50 V —

Input high voltage VIH 1.95 — V —

Input low voltage VIL — 0.90 V —

Input high current (OVDD = Max, VIN = 2.1 V) IIH — 40 μA 1

Input low current (OVDD = Max, VIN = 0.5 V) IIL –600 — μA —

Note:
1. The symbol VIN, in this case, represents the OVIN symbol referenced in Table 1 and Table 2.

Table 41. MII Management AC Timing Specifications
At recommended operating conditions with OVDD is 3.3 V ± 5%.

Parameter/Condition Symbol1 Min Typ Max Unit Notes

MDC frequency fMDC — 2.5 — MHz 2

MDC period tMDC — 400 — ns —

MDC clock pulse width high tMDCH 32 — — ns —

MDC to MDIO delay tMDKHDX (16 × tplb_clk) – 3 — (16 × tplb_clk) + 3 ns 3, 4

MDIO to MDC setup time tMDDVKH 5 — — ns —

MDIO to MDC hold time tMDDXKH 0 — — ns —

MDC rise time tMDCR — — 10 ns —
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Local bus clock to data valid for LAD/LDP tLBKLOV2 —  1.6 ns 4

Local bus clock to address valid for LAD, and LALE tLBKLOV3 —  1.6 ns 4

Output hold from local bus clock (except LAD/LDP and 
LALE)

tLBKLOX1  –4.1 — ns 4

Output hold from local bus clock for LAD/LDP tLBKLOX2  –4.1 — ns 4

Local bus clock to output high Impedance (except 
LAD/LDP and LALE)

tLBKLOZ1 —  1.4 ns 7

Local bus clock to output high impedance for LAD/LDP tLBKLOZ2 —  1.4 ns 7

Notes:
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for 

inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tLBIXKH1 symbolizes local bus 
timing (LB) for the input (I) to go invalid (X) with respect to the time the tLBK clock reference (K) goes high (H), in this case 
for clock one (1). Also, tLBKHOX symbolizes local bus timing (LB) for the tLBK clock reference (K) to go high (H), with respect 
to the output (O) going invalid (X) or output hold time. 

2. All timings are in reference to local bus clock for PLL bypass mode. Timings may be negative with respect to the local bus 
clock because the actual launch and capture of signals is done with the internal launch/capture clock, which proceeds LCLK 
by tLBKHKT.

3. Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between 
complementary signals at BVDD/2.

4. All signals are measured from BVDD/2 of the rising edge of local bus clock for PLL bypass mode to 0.4 × BVDD of the signal 
in question for 3.3-V signaling levels.

5. Input timings are measured at the pin.
6. The value of tLBOTOT is the measurement of the minimum time between the negation of LALE and any change in LAD.
7. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered 

through the component pin is less than or equal to the leakage current specification.

Table 48. Local Bus General Timing Parameters—PLL Bypassed (continued)

Parameter Symbol1 Min Max Unit Notes
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Figure 30. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 (PLL Enabled)
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Figure 32. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 8 or 16 (PLL Enabled)
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14.2 GPIO AC Electrical Specifications
Table 54 provides the GPIO input and output AC timing specifications.

Figure 40 provides the AC test load for the GPIO.

Figure 40. GPIO AC Test Load

15 PCI
This section describes the DC and AC electrical specifications for the PCI bus of the MPC8544E.

15.1 PCI DC Electrical Characteristics
Table 55 provides the DC electrical characteristics for the PCI interface.

Table 54. GPIO Input AC Timing Specifications

Parameter Symbol Typ Unit Notes

GPIO inputs—minimum pulse width tPIWID 20 ns 1

Note:
1. GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by any 

external synchronous logic. GPIO inputs are required to be valid for at least tPIWID ns to ensure proper operation.

Table 55. PCI DC Electrical Characteristics 1

Parameter Symbol Min Max Unit Notes

High-level input voltage VIH 2 OVDD + 0.3 V —

Low-level input voltage VIL –0.3 0.8 V —

Input current (VIN = 0 V or VIN = VDD) IIN — ±5 μA 2

High-level output voltage (OVDD = min, IOH = –2mA) VOH 2.4 — V —

Low-level output voltage (OVDD = min, IOL = 2 mA) VOL — 0.4 V —

Notes:
1. Ranges listed do not meet the full range of the DC specifications of the PCI 2.2 Local Bus Specifications.
2. Note that the symbol VIN, in this case, represents the OVIN symbol referenced in Table 1 and Table 2.

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω
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17 PCI Express
This section describes the DC and AC electrical specifications for the PCI Express bus of the MPC8544.

17.1 DC Requirements for PCI Express SD_REF_CLK and 
SD_REF_CLK

For more information, see Section 16.2, “SerDes Reference Clocks.”

17.2 AC Requirements for PCI Express SerDes Clocks
Table 58 provides the AC requirements for the PCI Express SerDes clocks.

17.3 Clocking Dependencies
The ports on the two ends of a link must transmit data at a rate that is within 600 parts per million (ppm) 
of each other at all times. This is specified to allow bit rate clock sources with a ±300 ppm tolerance.

17.4 Physical Layer Specifications
The following is a summary of the specifications for the physical layer of PCI Express on this device. For 
further details as well as the specifications of the transport and data link layer please refer to the 
PCI Express Base Specification. Rev. 1.0a.

Table 58. SD_REF_CLK and SD_REF_CLK AC Requirements

Symbol2 Parameter Description Min Typ Max Units Notes

tREF REFCLK cycle time — 10 — ns 1

tREFCJ REFCLK cycle-to-cycle jitter. Difference in the period of any 
two adjacent REFCLK cycles

— — 100 ps —

tREFPJ Phase jitter. Deviation in edge location with respect to 
mean edge location

–50 — 50 ps —

Notes:
1. Typical based on PCI Express Specification 2.0.
2. Guaranteed by characterization.
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17.4.1 Differential Transmitter (TX) Output 

Table 59 defines the specifications for the differential output at all transmitters. The parameters are 
specified at the component pins.

Table 59. Differential Transmitter (TX) Output Specifications

Symbol Parameter Min Nom Max Unit Comments

UI Unit interval 399.88 400 400.12 ps Each UI is 400 ps ± 300 ppm. UI does not 
account for Spread Spectrum Clock 
dictated variations. See Note 1.

VTX-DIFFp-p Differential peak-to-
peak output voltage

0.8 — 1.2 V VTX-DIFFp-p = 2*|VTX-D+ – VTX-D–|. 
See Note 2.

VTX-DE-RATIO De- emphasized 
differential output 
voltage (ratio)

–3.0 –3.5 –4.0 dB Ratio of the VTX-DIFFp-p of the second and 
following bits after a transition divided by 
the VTX-DIFFp-p of the first bit after a 
transition. See Note 2.

TTX-EYE Minimum TX eye width 0.70 — — UI The maximum transmitter jitter can be 
derived as TTX-MAX-JITTER = 1 – TTX-EYE 
= 0.3 UI. See Notes 2 and 3.

TTX-EYE-MEDIAN-to-

MAX-JITTER

Maximum time 
between the jitter 
median and maximum 
deviation from the 
median.

— — 0.15 UI Jitter is defined as the measurement 
variation of the crossing points (VTX-DIFFp-p 
= 0 V) in relation to a recovered TX UI. A 
recovered TX UI is calculated over 3500 
consecutive unit intervals of sample data. 
Jitter is measured using all edges of the 
250 consecutive UI in the center of the 
3500 UI used for calculating the TX UI. See 
Notes 2 and 3.

TTX-RISE, TTX-FALL D+/D– TX output 
rise/fall time

0.125 — — UI See Notes 2 and 5.

VTX-CM-ACp RMS AC peak 
common mode output 
voltage

— — 20 mV VTX-CM-ACp = RMS(|VTXD+ – 
VTXD–|/2 – VTX-CM-DC)
VTX-CM-DC = DC(avg) of |VTX-D+ – 
VTX-D–|/2
See Note 2.

VTX-CM-DC-ACTIVE-

IDLE-DELTA

Absolute delta of DC 
common mode voltage 
during LO and 
electrical idle

0 — 100 mV |VTX-CM-DC (during LO) – VTX-CM-Idle-DC 

(During Electrical Idle)|<= 100 mV
VTX-CM-DC = DC(avg) of |VTX-D+ – 
VTX-D–|/2 [LO]
VTX-CM-Idle-DC = DC(avg) of |VTX-D+ – 
VTX-D–|/2 [Electrical Idle] 
See Note 2.

VTX-CM-DC-LINE-DELTA Absolute delta of DC 
common mode 
between D+ and D–

0 — 25 mV |VTX-CM-DC-D+ – VTX-CM-DC-D–| <= 25 mV
VTX-CM-DC-D+ = DC(avg) of |VTX-D+|
VTX-CM-DC-D– = DC(avg) of |VTX-D–|
See Note 2.

VTX-IDLE-DIFFp Electrical idle 
differential peak output 
voltage

0 — 20 mV VTX-IDLE-DIFFp = |VTX-IDLE-D+ – VTX-IDLE-D–| 
<= 20 mV
See Note 2.
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VTX-RCV-DETECT Amount of voltage 
change allowed during 
receiver detection

— — 600 mV The total amount of voltage change that a 
transmitter can apply to sense whether a 
low impedance receiver is present. See 
Note 6.

VTX-DC-CM TX DC common mode 
voltage

0 — 3.6 V The allowed DC common mode voltage 
under any conditions. See Note 6.

ITX-SHORT TX short circuit current 
limit

— — 90 mA The total current the transmitter can 
provide when shorted to its ground.

TTX-IDLE-MIN Minimum time spent in 
electrical idle

50 — — UI Minimum time a transmitter must be in 
electrical idle utilized by the receiver to 
start looking for an electrical idle exit after 
successfully receiving an electrical idle 
ordered set.

TTX-IDLE-SET-TO-IDLE Maximum time to 
transition to a valid 
electrical idle after 
sending an electrical 
Idle ordered set

— — 20 UI After sending an electrical idle ordered set, 
the transmitter must meet all electrical idle 
specifications within this time. This is 
considered a debounce time for the 
transmitter to meet electrical idle after 
transitioning from LO.

TTX-IDLE-TO-DIFF-DATA Maximum time to 
transition to valid TX 
specifications after 
leaving an electrical 
idle condition

— — 20 UI Maximum time to meet all TX 
specifications when transitioning from 
electrical idle to sending differential data. 
This is considered a debounce time for the 
TX to meet all TX specifications after 
leaving electrical idle.

RLTX-DIFF Differential return loss 12 — — dB Measured over 50 MHz to 1.25 GHz. See 
Note 4.

RLTX-CM Common mode return 
loss

6 — — dB Measured over 50 MHz to 1.25 GHz. See 
Note 4.

ZTX-DIFF-DC DC differential TX 
impedance

80 100 120 Ω TX DC differential mode low impedance.

ZTX-DC Transmitter DC 
impedance

40 — — Ω Required TX D+ as well as D– DC 
Impedance during all states.

LTX-SKEW Lane-to-lane output 
skew

— — 500 + 
2 UI

ps Static skew between any two transmitter 
lanes within a single link.

CTX AC coupling capacitor 75 — 200 nF All transmitters shall be AC coupled. The 
AC coupling is required either within the 
media or within the transmitting component 
itself.

Table 59. Differential Transmitter (TX) Output Specifications (continued)

Symbol Parameter Min Nom Max Unit Comments
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17.5 Receiver Compliance Eye Diagrams
The RX eye diagram in Figure 57 is specified using the passive compliance/test measurement load (see 
Figure 58) in place of any real PCI Express RX component.

In general, the minimum receiver eye diagram measured with the compliance/test measurement load (see 
Figure 58) will be larger than the minimum receiver eye diagram measured over a range of systems at the 
input receiver of any real PCI Express component. The degraded eye diagram at the input receiver is due 
to traces internal to the package as well as silicon parasitic characteristics which cause the real PCI Express 
component to vary in impedance from the compliance/test measurement load. The input receiver eye 
diagram is implementation specific and is not specified. RX component designer should provide additional 
margin to adequately compensate for the degraded minimum receiver eye diagram (shown in Figure 57) 
expected at the input receiver based on some adequate combination of system simulations and the return 
loss measured looking into the RX package and silicon. The RX eye diagram must be aligned in time using 
the jitter median to locate the center of the eye diagram. 

LTX-SKEW Total skew — — 20 ns Skew across all lanes on a link. This includes 
variation in the length of SKP ordered set (for 
example, COM and one to five symbols) at 
the RX as well as any delay differences 
arising from the interconnect itself.

Notes:
1. No test load is necessarily associated with this value.
2. Specified at the measurement point and measured over any 250 consecutive UIs. The test load in Figure 58 should be used 

as the RX device when taking measurements (also refer to the receiver compliance eye diagram shown in Figure 57). If the 
clocks to the RX and TX are not derived from the same reference clock, the TX UI recovered from 3500 consecutive UI must 
be used as a reference for the eye diagram.

3. A TRX-EYE = 0.40 UI provides for a total sum of 0.60 UI deterministic and random jitter budget for the transmitter and 
interconnect collected any 250 consecutive UIs. The TRX-EYE-MEDIAN-to-MAX-JITTER specification ensures a jitter 
distribution in which the median and the maximum deviation from the median is less than half of the total. UI jitter budget 
collected over any 250 consecutive TX UIs. It should be noted that the median is not the same as the mean. The jitter median 
describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged 
time value. If the clocks to the RX and TX are not derived from the same reference clock, the TX UI recovered from 3500 
consecutive UI must be used as the reference for the eye diagram. 

4. The receiver input impedance shall result in a differential return loss greater than or equal to 15 dB with the D+ line biased to 
300 mV and the D– line biased to –300 mV and a common mode return loss greater than or equal to 6 dB (no bias required) 
over a frequency range of 50 MHz to 1.25 GHz. This input impedance requirement applies to all valid input levels. The 
reference impedance for return loss measurements for is 50 Ω to ground for both the D+ and D– line (that is, as measured 
by a vector network analyzer with 50-Ω probes, see Figure 58). Note that the series capacitors CTX is optional for the return 
loss measurement.

5. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM) 
there is a 5-ms transition time before receiver termination values must be met on all unconfigured lanes of a port.

6. The RX DC common mode impedance that exists when no power is present or fundamental reset is asserted. This helps 
ensure that the receiver detect circuit will not falsely assume a receiver is powered on when it is not. This term must be 
measured at 300 mV above the RX ground.

7. It is recommended that the recovered TX UI is calculated using all edges in the 3500 consecutive UI interval with a fit algorithm 
using a minimization merit function. Least squares and median deviation fits have worked well with experimental and 
simulated data.

Table 60. Differential Receiver (RX) Input Specifications (continued)

Symbol Parameter Min Nom Max Units Comments
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Figure 60. System Level Thermal Model for MPC8544E (Not to Scale)

The Flotherm library files of the parts have a dense grid to accurately capture the laminar boundary layer 
for flow over the part in standard JEDEC environments, as well as the heat spreading in the board under 
the package. In a real system, however, the part will require a heat sink to be mounted on it. In this case, 
the predominant heat flow path will be from the die to the heat sink. Grid density lower than currently in 
the package library file will suffice for these simulations. The user will need to determine the optimal grid 
for their specific case. 

Solder and Air (29 × 29 × 0.58 mm)

Kx 0.034 W/m•K

Ky 0.034

Kz 12.1

Table 72. MPC8544EThermal Model (continued)

Conductivity Value Units

Bump Underfill

Section A-A

AA

Top View

Die

Substrate

Solder/Air
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Chanhassen, MN 55317
Internet: www.bergquistcompany.com
Thermagon Inc. 888-246-9050
4707 Detroit Ave.
Cleveland, OH 44102
Internet: www.thermagon.com

20.3.3 Heat Sink Selection Examples
The following section provides a heat sink selection example using one of the commercially available heat 
sinks.

For preliminary heat sink sizing, the die-junction temperature can be expressed as follows:
TJ = TI + TR + (θJC + θINT + θSA) × PD

where
TJ is the die-junction temperature
TI is the inlet cabinet ambient temperature
TR is the air temperature rise within the computer cabinet
θJC is the junction-to-case thermal resistance
θINT is the adhesive or interface material thermal resistance
θSA is the heat sink base-to-ambient thermal resistance
PD is the power dissipated by the device

During operation the die-junction temperatures (TJ) should be maintained within the range specified in 
Table 2. The temperature of air cooling the component greatly depends on the ambient inlet air temperature 
and the air temperature rise within the electronic cabinet. An electronic cabinet inlet-air temperature (TI) 
may range from 30° to 40°C. The air temperature rise within a cabinet (TR) may be in the range of 5° to 
10°C. The thermal resistance of the thermal interface material (θINT) may be about 1°C/W. Assuming a TI 
of 30°C, a TR of 5°C, a FC-PBGA package θJC = 0.1, and a power consumption (PD) of 5, the following 
expression for TJ is obtained:

Die-junction temperature: TJ = 30°C + 5°C + (0.1°C/W + 1.0°C/W + θSA) × PD 

The heat sink-to-ambient thermal resistance (θSA) versus airflow velocity for a Thermalloy heat sink 
#2328B is shown in Figure 64.

Assuming an air velocity of 1 m/s, we have an effective θSA+ of about 5°C/W, thus 
TJ = 30° + 5°C + (0.1°C/W + 1.0°C/W + 5°C/W) × 5

resulting in a die-junction temperature of approximately 66, which is well within the maximum operating 
temperature of the component.



MPC8544E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 8

106 Freescale Semiconductor
 

System Design Information

21.2 PLL Power Supply Filtering
Each of the PLLs listed above is provided with power through independent power supply pins 
(AVDD_PLAT, AVDD_CORE, AVDD_PCI, AVDD_LBIU, and AVDD_SRDS, respectively). The AVDD 
level should always be equivalent to VDD, and preferably these voltages will be derived directly from VDD 
through a low frequency filter scheme such as the following.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to 
provide independent filter circuits per PLL power supply as illustrated in Figure 65, one to each of the 
AVDD pins. By providing independent filters to each PLL the opportunity to cause noise injection from 
one PLL to the other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz 
range. It should be built with surface mount capacitors with minimum Effective Series Inductance (ESL). 
Consistent with the recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook 
of Black Magic (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a 
single large value capacitor.

Each circuit should be placed as close as possible to the specific AVDD pin being supplied to minimize 
noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AVDD 
pin, which is on the periphery of 783 FC-PBGA the footprint, without the inductance of vias.

Figure 65 shows the PLL power supply filter circuit.

Figure 65. MPC8544E PLL Power Supply Filter Circuit

The AVDD_SRDSn signals provide power for the analog portions of the SerDes PLL. To ensure stability 
of the internal clock, the power supplied to the PLL is filtered using a circuit similar to the one shown in 
Figure 66. For maximum effectiveness, the filter circuit is placed as closely as possible to the 
AVDD_SRDSn balls to ensure it filters out as much noise as possible. The ground connection should be 
near the AVDD_SRDSn balls. The 0.003-µF capacitor is closest to the balls, followed by the 1-µF 
capacitor, and finally the 1-Ω resistor to the board supply plane. The capacitors are connected from 
AVDD_SRDSn to the ground plane. Use ceramic chip capacitors with the highest possible self-resonant 
frequency. All traces should be kept short, wide, and direct.

Figure 66. SerDes PLL Power Supply Filter Circuit

 VDD AVDD

 2.2 µF  2.2 µF

 GND
Low ESL Surface Mount Capacitors

10 Ω

 

 2.2 µF1 0.003 µF

 GND

1.0 Ω
AVDD_SRDS

Note:  
1. An 0805 sized capacitor is recommended for system initial bring-up.

SVDD

 2.2 µF1
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been encoded such that a high voltage level puts the device into the default state and external resistors are 
needed only when non-default settings are required by the user.

Careful board layout with stubless connections to these pull-down resistors coupled with the large value 
of the pull-down resistor should minimize the disruption of signal quality or speed for output pins thus 
configured.

The platform PLL ratio and e500 PLL ratio configuration pins are not equipped with these default pull-up 
devices.

21.9 JTAG Configuration Signals
Correct operation of the JTAG interface requires configuration of a group of system control pins as 
demonstrated in Figure 69. Care must be taken to ensure that these pins are maintained at a valid deasserted 
state under normal operating conditions as most have asynchronous behavior and spurious assertion will 
give unpredictable results.

Boundary-scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the 
IEEE 1149.1 specification, but is provided on all processors built on Power Architecture™ technology. 
The device requires TRST to be asserted during reset conditions to ensure the JTAG boundary logic does 
not interfere with normal chip operation. While it is possible to force the TAP controller to the reset state 
using only the TCK and TMS signals, generally systems will assert TRST during the power-on reset flow. 
Simply tying TRST to HRESET is not practical because the JTAG interface is also used for accessing the 
common on-chip processor (COP) function.

The COP function of these processors allow a remote computer system (typically, a PC with dedicated 
hardware and debugging software) to access and control the internal operations of the processor. The COP 
interface connects primarily through the JTAG port of the processor, with some additional status 
monitoring signals. The COP port requires the ability to independently assert HRESET or TRST in order 
to fully control the processor. If the target system has independent reset sources, such as voltage monitors, 
watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be 
merged into these signals with logic. The arrangement shown in Figure 69 allows the COP port to 
independently assert HRESET or TRST, while ensuring that the target can drive HRESET as well. 

The COP interface has a standard header, shown in Figure 68, for connection to the target system, and is 
based on the 0.025" square-post, 0.100" centered header assembly (often called a Berg header). The 
connector typically has pin 14 removed as a connector key.

The COP header adds many benefits such as breakpoints, watchpoints, register and memory 
examination/modification, and other standard debugger features. An inexpensive option can be to leave 
the COP header unpopulated until needed.

There is no standardized way to number the COP header; consequently, many different pin numbers have 
been observed from emulator vendors. Some are numbered top-to-bottom then left-to-right, while others 
use left-to-right then top-to-bottom, while still others number the pins counter clockwise from pin 1 (as 
with an IC). Regardless of the numbering, the signal placement recommended in Figure 68 is common to 
all known emulators.


