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Electrical Characteristics

Figure 2 shows the undershoot and overshoot voltages at the interfaces of the MPC8544E.

Figure 2. Overshoot/Undershoot Voltage for GVDD/OVDD/LVDD/BVDD/TVDD

The core voltage must always be provided at nominal 1.0 V (see Table 2 for actual recommended core 
voltage). Voltage to the processor interface I/Os are provided through separate sets of supply pins and must 
be provided at the voltages shown in Table 2. The input voltage threshold scales with respect to the 
associated I/O supply voltage. OVDD and LVDD based receivers are simple CMOS I/O circuits and satisfy 
appropriate LVCMOS type specifications. The DDR2 SDRAM interface uses a single-ended differential 
receiver referenced the externally supplied MVREF signal (nominally set to GVDD/2) as is appropriate for 
the SSTL2 electrical signaling standard.

GND
GND – 0.3 V

GND – 0.7 V
Not to Exceed 10%

B/G/L/OVDD + 20%

B/G/L/OVDD

B/G/L/OVDD + 5%

of tCLOCK
1

1. tCLOCK refers to the clock period associated with the respective interface:

VIH

VIL

Notes:

2. Please note that with the PCI overshoot allowed (as specified above), the device
does not fully comply with the maximum AC ratings and device protection
guideline outlined in Section 4.2.2.3 of the PCI 2.2 Local Bus Specifications.

For I2C and JTAG, tCLOCK references SYSCLK.
For DDR, tCLOCK references MCLK.
For eTSEC, tCLOCK references EC_GTX_CLK125.
For LBIU, tCLOCK references LCLK.
For PCI, tCLOCK references PCI_CLK or SYSCLK.
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Input Clocks

4.1 System Clock Timing
Table 5 provides the system clock (SYSCLK) AC timing specifications for the MPC8544E.

4.1.1 SYSCLK and Spread Spectrum Sources
Spread spectrum clock sources are an increasingly popular way to control electromagnetic interference 
emissions (EMI) by spreading the emitted noise to a wider spectrum and reducing the peak noise 
magnitude in order to meet industry and government requirements. These clock sources intentionally add 
long-term jitter in order to diffuse the EMI spectral content. The jitter specification given in Table 5 
considers short-term (cycle-to-cycle) jitter only and the clock generator’s cycle-to-cycle output jitter 
should meet the MPC8544E input cycle-to-cycle jitter requirement. Frequency modulation and spread are 
separate concerns, and the MPC8544E is compatible with spread spectrum sources if the recommendations 
listed in Table 6 are observed.

It is imperative to note that the processor’s minimum and maximum SYSCLK, core, and VCO frequencies 
must not be exceeded regardless of the type of clock source. Therefore, systems in which the processor is 
operated at its maximum rated e500 core frequency should avoid violating the stated limits by using 
down-spreading only.

Table 5. SYSCLK AC Timing Specifications
At recommended operating conditions (see Table 2) with OVDD = 3.3 V ± 165 mV.

Parameter/Condition Symbol Min Typical Max Unit Notes

SYSCLK frequency fSYSCLK 33 — 133 MHz 1

SYSCLK cycle time tSYSCLK 7.5 — 30.3 ns —

SYSCLK rise and fall time tKH, tKL 0.6 1.0 2.1 ns 2

SYSCLK duty cycle tKHK/tSYSCLK 40 — 60 % —

SYSCLK jitter — — — ±150 ps 3, 4

Notes:
1. Caution: The CCB clock to SYSCLK ratio and e500 core to CCB clock ratio settings must be chosen such that the resulting 

SYSCLK frequency, e500 (core) frequency, and CCB clock frequency do not exceed their respective maximum or minimum 
operating frequencies. Refer to Section 19.2, “CCB/SYSCLK PLL Ratio,” and Section 19.3, “e500 Core PLL Ratio,” for ratio 
settings.

2. Rise and fall times for SYSCLK are measured at 0.6 and 2.7 V.
3. This represents the total input jitter—short- and long-term.
4. The SYSCLK driver’s closed loop jitter bandwidth should be <500 kHz at –20 dB. The bandwidth must be set low to allow 

cascade-connected PLL-based devices to track SYSCLK drivers with the specified jitter.

Table 6. Spread Spectrum Clock Source Recommendations
At recommended operating conditions. See Table 2.

Parameter Min Max Unit Notes

Frequency modulation 20 60 kHz —

Frequency spread 0 1.0 % 1

Note: 
1. SYSCLK frequencies resulting from frequency spreading, and the resulting core and VCO frequencies, must meet the 

minimum and maximum specifications given in Table 5.
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Enhanced Three-Speed Ethernet (eTSEC), MII Management

8.4 SGMII AC Timing Specifications
This section describes the SGMII transmit and receive AC timing specifications. Transmitter and receiver 
characteristics are measured at the transmitter outputs (SD2_TX[n] and SD2_TX[n]) or at the receiver 
inputs (SD2_RX[n] and SD2_RX[n]) as depicted in Figure 10, respectively.

8.4.1 SGMII Transmit AC Timing Specifications
Table 26 provides the SGMII transmit AC timing targets. A source synchronous clock is not provided.

Input differential voltage LSTS = 0 Vrx_diffpp 100 — 1200 mV 2, 4

LSTS = 1 175 —

Loss of signal threshold LSTS = 0 Vlos 30 — 100 mV 3, 4

LSTS = 1 65 — 175

Input AC common mode voltage Vcm_acpp — — 100 mV 5.

Receiver differential input impedance Zrx_diff 80 — 120 Ω —

Receiver common mode input impedance Zrx_cm 20 — 35 Ω —

Common mode input voltage Vcm xcorevss — xcorevss V 6

Notes:
1. Input must be externally AC-coupled.
2. VRX_DIFFp-p is also referred to as peak-to-peak input differential voltage
3. The concept of this parameter is equivalent to the electrical idle detect threshold parameter in PCI Express. Refer to 

Section 17.4.3, “Differential Receiver (RX) Input Specifications,” for further explanation.
4. The LSTS shown in this table refers to the LSTSCD bit field of MPC8544E SerDes 2 control register 1.
5. VCM_ACp-p is also referred to as peak-to-peak AC common mode voltage.
6. On-chip termination to SGND_SRDS2 (xcorevss).

Table 26. SGMII Transmit AC Timing Specifications
At recommended operating conditions with XVDD_SRDS2 = 1.0 V ± 5%.

Parameter Symbol Min Typ Max Unit Notes

Deterministic jitter JD — — 0.17 UI p-p —

Total jitter JT — — 0.35 UI p-p —

Unit interval UI 799.92 800 800.08 ps 2

VOD fall time (80%–20%) tfall 50 — 120 ps —

VOD rise time (20%–80%) trise 50 — 120 ps —

Notes;
1. Source synchronous clock is not supported.
2. Each UI value is 800 ps ± 100 ppm.

Table 25. DC Receiver Electrical Characteristics (continued)

Parameter Symbol Min Typ Max Unit Notes



MPC8544E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 8

34 Freescale Semiconductor
 

Enhanced Three-Speed Ethernet (eTSEC), MII Management

8.6.1 MII Transmit AC Timing Specifications

Table 32 provides the MII transmit AC timing specifications.

Figure 16 shows the MII transmit AC timing diagram.

Figure 16. MII Transmit AC Timing Diagram

8.6.2 MII Receive AC Timing Specifications

Table 33 provides the MII receive AC timing specifications.
 

Table 32. MII Transmit AC Timing Specifications
At recommended operating conditions with L/TVDD of 3.3 V ± 5% or 2.5 V ± 5%

Parameter/Condition Symbol1 Min Typ Max Unit Notes

TX_CLK clock period 10 Mbps tMTX — 400 — ns —

TX_CLK clock period 100 Mbps tMTX — 40 — ns —

TX_CLK duty cycle tMTXH/tMTX 35 — 65 % —

TX_CLK to MII data TXD[3:0], TX_ER, TX_EN 
delay 

tMTKHDX 1 5 15 ns —

TX_CLK data clock rise (20%–80%) tMTXR 1.0 — 4.0 ns —

TX_CLK data clock fall (80%–20%) tMTXF 1.0 — 4.0 ns —

Note:
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for 

inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMTKHDX symbolizes MII transmit 
timing (MT) for the time tMTX clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, 
the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. 
For example, the subscript of tMTX represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is 
used with the appropriate letter: R (rise) or F (fall).

Table 33. MII Receive AC Timing Specifications
At recommended operating conditions with L/TVDD of 3.3 V ± 5%.or 2.5 V ± 5%.

Parameter/Condition Symbol1 Min Typ Max Unit Notes

RX_CLK clock period 10 Mbps tMRX — 400 — ns —

RX_CLK clock period 100 Mbps tMRX — 40 — ns —

RX_CLK duty cycle tMRXH/tMRX 35 — 65 % —

TX_CLK

TXD[3:0]

tMTKHDX

tMTX

tMTXH

tMTXR

tMTXF

TX_EN
TX_ER
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Ethernet Management Interface Electrical Characteristics

9 Ethernet Management Interface Electrical 
Characteristics

The electrical characteristics specified here apply to MII management interface signals MDIO 
(management data input/output) and MDC (management data clock). The electrical characteristics for 
GMII, RGMII, RMII, TBI, and RTBI are specified in “Section 8, “Enhanced Three-Speed Ethernet 
(eTSEC), MII Management.”

9.1 MII Management DC Electrical Characteristics
The MDC and MDIO are defined to operate at a supply voltage of 3.3 V. The DC electrical characteristics 
for MDIO and MDC are provided in Table 40.

9.2 MII Management AC Electrical Specifications
Table 41 provides the MII management AC timing specifications.

Table 40. MII Management DC Electrical Characteristics

Parameter Symbol Min Max Unit Notes

Supply voltage (3.3 V) OVDD 3.135 3.465 V —

Output high voltage (OVDD = Min, IOH = –1.0 mA) VOH 2.10 3.60 V —

Output low voltage (OVDD = Min, IOL = 1.0 mA) VOL GND 0.50 V —

Input high voltage VIH 1.95 — V —

Input low voltage VIL — 0.90 V —

Input high current (OVDD = Max, VIN = 2.1 V) IIH — 40 μA 1

Input low current (OVDD = Max, VIN = 0.5 V) IIL –600 — μA —

Note:
1. The symbol VIN, in this case, represents the OVIN symbol referenced in Table 1 and Table 2.

Table 41. MII Management AC Timing Specifications
At recommended operating conditions with OVDD is 3.3 V ± 5%.

Parameter/Condition Symbol1 Min Typ Max Unit Notes

MDC frequency fMDC — 2.5 — MHz 2

MDC period tMDC — 400 — ns —

MDC clock pulse width high tMDCH 32 — — ns —

MDC to MDIO delay tMDKHDX (16 × tplb_clk) – 3 — (16 × tplb_clk) + 3 ns 3, 4

MDIO to MDC setup time tMDDVKH 5 — — ns —

MDIO to MDC hold time tMDDXKH 0 — — ns —

MDC rise time tMDCR — — 10 ns —
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Local Bus

Table 46 describes the general timing parameters of the local bus interface at BVDD = 2.5 V.

Local bus clock to output high impedance for LAD/LDP tLBKHOZ2 — 2.5 ns 5

Notes:
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for 

inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tLBIXKH1 symbolizes local bus 
timing (LB) for the input (I) to go invalid (X) with respect to the time the tLBK clock reference (K) goes high (H), in this case for 
clock one (1). Also, tLBKHOX symbolizes local bus timing (LB) for the tLBK clock reference (K) to go high (H), with respect to 
the output (O) going invalid (X) or output hold time. 

2. All timings are in reference to LSYNC_IN for PLL enabled and internal local bus clock for PLL bypass mode.
3. All signals are measured from BVDD/2 of the rising edge of LSYNC_IN for PLL enabled or internal local bus clock for PLL 

bypass mode to 0.4 × BVDD of the signal in question for 3.3-V signaling levels.
4. Input timings are measured at the pin.
5. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered 

through the component pin is less than or equal to the leakage current specification.
6. tLBOTOT is a measurement of the minimum time between the negation of LALE and any change in LAD. tLBOTOT is 

programmed with the LBCR[AHD] parameter.
7. Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between 

complementary signals at BVDD/2.

Table 46. Local Bus General Timing Parameters (BVDD = 2.5 V)—PLL Enabled

Parameter Symbol1 Min Max Unit Notes

Local bus cycle time tLBK 7.5 12 ns 2

Local bus duty cycle tLBKH/tLBK 43 57 % —

LCLK[n] skew to LCLK[m] or LSYNC_OUT tLBKSKEW — 150 ps 7

Input setup to local bus clock (except LUPWAIT) tLBIVKH1 2.4 — ns 3, 4

LUPWAIT input setup to local bus clock tLBIVKH2 1.8 — ns 3, 4

Input hold from local bus clock (except LUPWAIT) tLBIXKH1 1.1 — ns 3, 4

LUPWAIT input hold from local bus clock tLBIXKH2 1.1 — ns 3, 4

LALE output transition to LAD/LDP output transition 
(LATCH setup and hold time)

tLBOTOT 1.5 — ns 6

Local bus clock to output valid (except LAD/LDP and LALE) tLBKHOV1 — 2.8 ns —

Local bus clock to data valid for LAD/LDP tLBKHOV2 — 2.8 ns 3

Local bus clock to address valid for LAD tLBKHOV3 — 2.8 ns 3

Local bus clock to LALE assertion tLBKHOV4 — 2.8 ns 3

Output hold from local bus clock (except LAD/LDP and 
LALE)

tLBKHOX1 0.8 — ns 3

Output hold from local bus clock for LAD/LDP tLBKHOX2 0.8 — ns 3

Local bus clock to output high Impedance (except 
LAD/LDP and LALE)

tLBKHOZ1 — 2.6 ns 5

Table 45. Local Bus General Timing Parameters (BVDD = 3.3 V)—PLL Enabled (continued)

Parameter Symbol1 Min Max Unit Notes
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Local Bus

Table 47 describes the general timing parameters of the local bus interface at BVDD = 1.8 V DC.

Local bus clock to output high impedance for LAD/LDP tLBKHOZ2 — 2.6 ns 5

Notes:
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for 

inputs and t(First two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tLBIXKH1 symbolizes local bus 
timing (LB) for the input (I) to go invalid (X) with respect to the time the tLBK clock reference (K) goes high (H), in this case 
for clock one (1). Also, tLBKHOX symbolizes local bus timing (LB) for the tLBK clock reference (K) to go high (H), with respect 
to the output (O) going invalid (X) or output hold time. 

2. All timings are in reference to LSYNC_IN for PLL enabled and internal local bus clock for PLL bypass mode.
3. All signals are measured from BVDD/2 of the rising edge of LSYNC_IN for PLL enabled or internal local bus clock for PLL 

bypass mode to 0.4 × BVDD of the signal in question for 2.5-V signaling levels.
4. Input timings are measured at the pin.
5. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered 

through the component pin is less than or equal to the leakage current specification.
6. tLBOTOT is a measurement of the minimum time between the negation of LALE and any change in LAD. tLBOTOT is 

programmed with the LBCR[AHD] parameter.
7. Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between 

complementary signals at BVDD/2.

Table 47. Local Bus General Timing Parameters (BVDD = 1.8 V DC)

Parameter Symbol1 Min Max Unit Notes

Local bus cycle time tLBK 7.5 12 ns 2

Local bus duty cycle tLBKH/tLBK 43 57 % —

LCLK[n] skew to LCLK[m] or LSYNC_OUT tLBKSKEW — 150 ps 7

Input setup to local bus clock (except LUPWAIT) tLBIVKH1 2.6 — ns 3, 4

LUPWAIT input setup to local bus clock tLBIVKH2 1.9 — ns 3, 4

Input hold from local bus clock (except LUPWAIT) tLBIXKH1 1.1 — ns 3, 4

LUPWAIT input hold from local bus clock tLBIXKH2 1.1 — ns 3, 4

LALE output transition to LAD/LDP output transition 
(LATCH setup and hold time)

tLBOTOT 1.2 — ns 6

Local bus clock to output valid (except LAD/LDP and LALE) tLBKHOV1 — 3.2 ns —

Local bus clock to data valid for LAD/LDP tLBKHOV2 — 3.2 ns 3

Local bus clock to address valid for LAD tLBKHOV3 — 3.2 ns 3

Local bus clock to LALE assertion tLBKHOV4 — 3.2 ns 3

Output hold from local bus clock (except LAD/LDP and 
LALE)

tLBKHOX1 0.9 — ns 3

Output hold from local bus clock for LAD/LDP tLBKHOX2 0.9 — ns 3

Local bus clock to output high Impedance (except 
LAD/LDP and LALE)

tLBKHOZ1 — 2.6 ns 5

Table 46. Local Bus General Timing Parameters (BVDD = 2.5 V)—PLL Enabled (continued)

Parameter Symbol1 Min Max Unit Notes
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Local Bus

Figure 30. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 (PLL Enabled)

LSYNC_IN

UPM Mode Input Signal:
LUPWAIT

tLBIXKH2

tLBIVKH2

tLBIVKH1

tLBIXKH1

tLBKHOZ1

T1

T3

Input Signals:
LAD[0:31]/LDP[0:3]

UPM Mode Output Signals:
LCS[0:7]/LBS[0:3]/LGPL[0:5]

GPCM Mode Output Signals:
LCS[0:7]/LWE

tLBKHOV1

tLBKHOV1 tLBKHOZ1

GPCM Mode Input Signal:
LGTA
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12 JTAG
This section describes the AC electrical specifications for the IEEE 1149.1 (JTAG) interface of the 
MPC8544E.

12.1 JTAG DC Electrical Characteristics
Table 49 provides the DC electrical characteristics for the JTAG interface.

12.2 JTAG AC Electrical Specifications
Table 50 provides the JTAG AC timing specifications as defined in Figure 34 through Figure 37.

Table 49. JTAG DC Electrical Characteristics

Parameter Symbol Min Max Unit Notes

High-level input voltage VIH 2 OVDD + 0.3 V —

Low-level input voltage VIL –0.3 0.8 V —

Input current (OVIN = 0 V or OVIN = OVDD) IIN — ±5 μA 1

High-level output voltage (OVDD = min, IOH = –2 mA) VOH 2.4 — V —

Low-level output voltage (OVDD = min, IOL = 2 mA) VOL — 0.4 V —

Note:
1. Note that the symbol VIN, in this case, represents the OVIN.

Table 50. JTAG AC Timing Specifications (Independent of SYSCLK)1
At recommended operating conditions (see Table 3).

Parameter Symbol2 Min Max Unit Notes

JTAG external clock frequency of operation fJTG 0 33.3 MHz —

JTAG external clock cycle time tJTG 30 — ns —

JTAG external clock pulse width measured at 1.4 V tJTKHKL 15 — ns —

JTAG external clock rise and fall times tJTGR & tJTGF 0 2 ns —

TRST assert time tTRST 25 — ns 3

Input setup times:
Boundary-scan data

TMS, TDI
tJTDVKH
tJTIVKH

4
0

—
—

ns 4

Input hold times:
Boundary-scan data

TMS, TDI
tJTDXKH
tJTIXKH

20
25

—
—

ns 4

Valid times:
Boundary-scan data

TDO
tJTKLDV
tJTKLOV

4
4

20
25

ns 5

Output hold times:
Boundary-scan data

TDO
tJTKLDX
tJTKLOX

2.5
4

—
—

ns 5
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High-Speed Serial Interfaces (HSSI)

Using this waveform, the definitions are as follows. To simplify illustration, the following definitions 
assume that the SerDes transmitter and receiver operate in a fully symmetrical differential signaling 
environment.

1. Single-Ended Swing
The transmitter output signals and the receiver input signals SDn_TX, SDn_TX, SDn_RX and 
SDn_RX each have a peak-to-peak swing of A - B Volts. This is also referred as each signal wire’s 
Single-Ended Swing.

2. Differential Output Voltage, VOD (or Differential Output Swing):
The Differential Output Voltage (or Swing) of the transmitter, VOD, is defined as the difference of 
the two complimentary output voltages: VSDn_TX – VSDn_TX. The VOD value can be either positive 
or negative.

3. Differential Input Voltage, VID (or Differential Input Swing):
The Differential Input Voltage (or Swing) of the receiver, VID, is defined as the difference of the 
two complimentary input voltages: VSDn_RX – VSDn_RX. The VID value can be either positive or 
negative.

4. Differential Peak Voltage, VDIFFp
The peak value of the differential transmitter output signal or the differential receiver input signal 
is defined as Differential Peak Voltage, VDIFFp = |A – B| Volts.

5. Differential Peak-to-Peak, VDIFFp-p
Since the differential output signal of the transmitter and the differential input signal of the receiver 
each range from A – B to –(A – B) Volts, the peak-to-peak value of the differential transmitter 
output signal or the differential receiver input signal is defined as Differential Peak-to-Peak 
Voltage, VDIFFp-p = 2*VDIFFp = 2 * |(A – B)| Volts, which is twice of differential swing in 
amplitude, or twice of the differential peak. For example, the output differential peak-peak voltage 
can also be calculated as VTX-DIFFp-p = 2*|VOD|.

6. Differential Waveform
The differential waveform is constructed by subtracting the inverting signal (SDn_TX, for 
example) from the non-inverting signal (SDn_TX, for example) within a differential pair. There is 
only one signal trace curve in a differential waveform. The voltage represented in the differential 
waveform is not referenced to ground. Refer to Figure 44 as an example for differential waveform.

7. Common Mode Voltage, Vcm
The Common Mode Voltage is equal to one half of the sum of the voltages between each conductor 
of a balanced interchange circuit and ground. In this example, for SerDes output, Vcm_out = 
VSDn_TX + VSDn_TX = (A + B) / 2, which is the arithmetic mean of the two complimentary output 
voltages within a differential pair. In a system, the common mode voltage may often differ from 
one component’s output to the other’s input. Sometimes, it may be even different between the 
receiver input and driver output circuits within the same component. It is also referred as the DC 
offset in some occasions.
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17.5 Receiver Compliance Eye Diagrams
The RX eye diagram in Figure 57 is specified using the passive compliance/test measurement load (see 
Figure 58) in place of any real PCI Express RX component.

In general, the minimum receiver eye diagram measured with the compliance/test measurement load (see 
Figure 58) will be larger than the minimum receiver eye diagram measured over a range of systems at the 
input receiver of any real PCI Express component. The degraded eye diagram at the input receiver is due 
to traces internal to the package as well as silicon parasitic characteristics which cause the real PCI Express 
component to vary in impedance from the compliance/test measurement load. The input receiver eye 
diagram is implementation specific and is not specified. RX component designer should provide additional 
margin to adequately compensate for the degraded minimum receiver eye diagram (shown in Figure 57) 
expected at the input receiver based on some adequate combination of system simulations and the return 
loss measured looking into the RX package and silicon. The RX eye diagram must be aligned in time using 
the jitter median to locate the center of the eye diagram. 

LTX-SKEW Total skew — — 20 ns Skew across all lanes on a link. This includes 
variation in the length of SKP ordered set (for 
example, COM and one to five symbols) at 
the RX as well as any delay differences 
arising from the interconnect itself.

Notes:
1. No test load is necessarily associated with this value.
2. Specified at the measurement point and measured over any 250 consecutive UIs. The test load in Figure 58 should be used 

as the RX device when taking measurements (also refer to the receiver compliance eye diagram shown in Figure 57). If the 
clocks to the RX and TX are not derived from the same reference clock, the TX UI recovered from 3500 consecutive UI must 
be used as a reference for the eye diagram.

3. A TRX-EYE = 0.40 UI provides for a total sum of 0.60 UI deterministic and random jitter budget for the transmitter and 
interconnect collected any 250 consecutive UIs. The TRX-EYE-MEDIAN-to-MAX-JITTER specification ensures a jitter 
distribution in which the median and the maximum deviation from the median is less than half of the total. UI jitter budget 
collected over any 250 consecutive TX UIs. It should be noted that the median is not the same as the mean. The jitter median 
describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged 
time value. If the clocks to the RX and TX are not derived from the same reference clock, the TX UI recovered from 3500 
consecutive UI must be used as the reference for the eye diagram. 

4. The receiver input impedance shall result in a differential return loss greater than or equal to 15 dB with the D+ line biased to 
300 mV and the D– line biased to –300 mV and a common mode return loss greater than or equal to 6 dB (no bias required) 
over a frequency range of 50 MHz to 1.25 GHz. This input impedance requirement applies to all valid input levels. The 
reference impedance for return loss measurements for is 50 Ω to ground for both the D+ and D– line (that is, as measured 
by a vector network analyzer with 50-Ω probes, see Figure 58). Note that the series capacitors CTX is optional for the return 
loss measurement.

5. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM) 
there is a 5-ms transition time before receiver termination values must be met on all unconfigured lanes of a port.

6. The RX DC common mode impedance that exists when no power is present or fundamental reset is asserted. This helps 
ensure that the receiver detect circuit will not falsely assume a receiver is powered on when it is not. This term must be 
measured at 300 mV above the RX ground.

7. It is recommended that the recovered TX UI is calculated using all edges in the 3500 consecutive UI interval with a fit algorithm 
using a minimization merit function. Least squares and median deviation fits have worked well with experimental and 
simulated data.

Table 60. Differential Receiver (RX) Input Specifications (continued)

Symbol Parameter Min Nom Max Units Comments
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Ethernet Management Interface

EC_MDC AC7 O OVDD 4, 8, 14

EC_MDIO Y9 I/O OVDD —

Gigabit Reference Clock

EC_GTX_CLK125 T2 I LVDD —

Three-Speed Ethernet Controller (Gigabit Ethernet 1)

TSEC1_RXD[7:0] U10, U9, T10, T9, U8, T8, T7, T6 I LVDD —

TSEC1_TXD[7:0] T5, U5, V5, V3, V2, V1, U2, U1 O LVDD 4, 8, 14

TSEC1_COL R5 I LVDD —

TSEC1_CRS T4 I/O LVDD 16

TSEC1_GTX_CLK T1 O LVDD —

TSEC1_RX_CLK V7 I LVDD —

TSEC1_RX_DV U7 I LVDD —

TSEC1_RX_ER R9 I LVDD 4, 8

TSEC1_TX_CLK V6 I LVDD —

TSEC1_TX_EN U4 O LVDD 22

TSEC1_TX_ER T3 O LVDD —

Three-Speed Ethernet Controller (Gigabit Ethernet 3)

TSEC3_RXD[7:0] P11, N11, M11, L11, R8, N10, N9, P10 I LVDD —

TSEC3_TXD[7:0] M7, N7, P7, M8, L7, R6, P6, M6 O LVDD 4, 8, 14

TSEC3_COL M9 I LVDD —

TSEC3_CRS L9 I/O LVDD 16

TSEC3_GTX_CLK R7 O LVDD —

TSEC3_RX_CLK P9 I LVDD —

TSEC3_RX_DV P8 I LVDD —

TSEC3_RX_ER R11 I LVDD —

TSEC3_TX_CLK L10 I LVDD —

TSEC3_TX_EN N6 O LVDD 22

TSEC3_TX_ER L8 O LVDD 4, 8

DUART

UART_CTS[0:1] AH8, AF6 I OVDD —

UART_RTS[0:1] AG8, AG9 O OVDD —

Table 62. MPC8544E Pinout Listing (continued)

Signal Package Pin Number Pin Type
Power
Supply

Notes
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UART_SIN[0:1] AG7, AH6 I OVDD —

UART_SOUT[0:1] AH7, AF7 O OVDD —

I2C interface

IIC1_SCL AG21 I/O OVDD 20

IIC1_SDA AH21 I/O OVDD 20

IIC2_SCL AG13 I/O OVDD 20

IIC2_SDA AG14 I/O OVDD 20

SerDes 1

SD1_RX[0:7] N28, P26, R28, T26, Y26, AA28, AB26, AC28 I XVDD —

SD1_RX[0:7] N27, P25, R27, T25, Y25, AA27, AB25, AC27 I XVDD —

SD1_TX[0:7] M23, N21, P23, R21, U21, V23, W21, Y23 O XVDD —

SD1_TX[0:7] M22, N20, P22, R20, U20, V22, W20, Y22 O XVDD —

SD1_PLL_TPD V28 O XVDD 17

SD1_REF_CLK U28 I XVDD —

SD1_REF_CLK U27 I XVDD —

SD1_TST_CLK T22 — —

SD1_TST_CLK T23 — —

SerDes 2

SD2_RX[0] AD25 I XVDD —

SD2_RX[2] AD1 I XVDD 26

SD2_RX[3] AB2 I XVDD 26

SD2_RX[0] AD26 I XVDD —

SD2_RX[2] AC1 I XVDD 26

SD2_RX[3] AA2 I XVDD 26

SD2_TX[0] AA21 O XVDD —

SD2_TX[2] AC4 O XVDD 26

SD2_TX[3] AA5 O XVDD 26

SD2_TX[0] AA20 O XVDD —

SD2_TX[2] AB4 O XVDD 26

SD2_TX[3] Y5 O XVDD 26

SD2_PLL_TPD AG3 O XVDD 17

SD2_REF_CLK AE2 I XVDD —

Table 62. MPC8544E Pinout Listing (continued)

Signal Package Pin Number Pin Type
Power
Supply

Notes
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VDD L16, L14, M13, M15, M17, N12, N14, N16, N18, 
P13, P15, P17, R12, R14, R16, R18, T13, T15, 
T17, U12, U14, U16, U18,

Power for core 
(1.0 V)

VDD —

SVDD_SRDS M27, N25, P28, R24, R26, T24, T27, U25, W24, 
W26, Y24, Y27, AA25, AB28, AD27

Core power for 
SerDes 1 

transceivers
(1.0 V)

SVDD —

SVDD_SRDS2 AB1, AC26, AD2, AE26, AG2 Core power for 
SerDes 2 

transceivers
(1.0 V)

SVDD —

XVDD_SRDS M21, N23, P20, R22, T20, U23, V21, W22, Y20 Pad power for 
SerDes 1 

transceivers
(1.0 V)

XVDD —

XVDD_SRDS2 Y6, AA6, AA23, AF5, AG5 Pad power for 
SerDes 2 

transceivers
(1.0 V)

XVDD —

XGND_SRDS M20, M24, N22, P21, R23, T21, U22, V20, W23, 
Y21

— — —

XGND_SRDS2 Y4, AA4, AA22, AD4, AE4, AH4 — — —

SGND_SRDS M28, N26, P24, P27, R25, T28, U24, U26, V24, 
W25, Y28, AA24, AA26, AB24, AB27, AC24, 
AD28

— — —

AGND_SRDS V27 SerDes PLL 
GND

— —

SGND_SRDS2 Y2, AA1, AB3, AC2, AC3, AC25, AD3, AD24, 
AE3, AE1, AE25, AF3, AH2

— — —

AGND_SRDS2 AF1 SerDes PLL 
GND

— —

AVDD_LBIU C28 Power for local 
bus PLL
(1.0 V)

— 19

AVDD_PCI1 AH20 Power for PCI 
PLL

(1.0 V)

— 19

AVDD_CORE AH14 Power for e500 
PLL (1.0 V)

— 19

AVDD_PLAT AH18 Power for CCB 
PLL (1.0 V)

— 19

Table 62. MPC8544E Pinout Listing (continued)

Signal Package Pin Number Pin Type
Power
Supply

Notes
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Heat sinks are attached to the package by means of a spring clip to holes in the printed-circuit board (see 
Figure 61). Therefore, the synthetic grease offers the best thermal performance, especially at the low 
interface pressure. 

Figure 63. Thermal Performance of Select Thermal Interface Materials

The system board designer can choose between several types of thermal interface. There are several 
commercially-available thermal interfaces provided by the following vendors:

Chomerics, Inc. 781-935-4850
77 Dragon Ct.
Woburn, MA 01801
Internet: www.chomerics.com
Dow-Corning Corporation800-248-2481
Corporate Center
P.O.Box 999
Midland, MI 48686-0997
Internet: www.dow.com
Shin-Etsu MicroSi, Inc.888-642-7674
10028 S. 51st St.
Phoenix, AZ 85044
Internet: www.microsi.com
The Bergquist Company800-347-4572
18930 West 78th St.
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Chanhassen, MN 55317
Internet: www.bergquistcompany.com
Thermagon Inc. 888-246-9050
4707 Detroit Ave.
Cleveland, OH 44102
Internet: www.thermagon.com

20.3.3 Heat Sink Selection Examples
The following section provides a heat sink selection example using one of the commercially available heat 
sinks.

For preliminary heat sink sizing, the die-junction temperature can be expressed as follows:
TJ = TI + TR + (θJC + θINT + θSA) × PD

where
TJ is the die-junction temperature
TI is the inlet cabinet ambient temperature
TR is the air temperature rise within the computer cabinet
θJC is the junction-to-case thermal resistance
θINT is the adhesive or interface material thermal resistance
θSA is the heat sink base-to-ambient thermal resistance
PD is the power dissipated by the device

During operation the die-junction temperatures (TJ) should be maintained within the range specified in 
Table 2. The temperature of air cooling the component greatly depends on the ambient inlet air temperature 
and the air temperature rise within the electronic cabinet. An electronic cabinet inlet-air temperature (TI) 
may range from 30° to 40°C. The air temperature rise within a cabinet (TR) may be in the range of 5° to 
10°C. The thermal resistance of the thermal interface material (θINT) may be about 1°C/W. Assuming a TI 
of 30°C, a TR of 5°C, a FC-PBGA package θJC = 0.1, and a power consumption (PD) of 5, the following 
expression for TJ is obtained:

Die-junction temperature: TJ = 30°C + 5°C + (0.1°C/W + 1.0°C/W + θSA) × PD 

The heat sink-to-ambient thermal resistance (θSA) versus airflow velocity for a Thermalloy heat sink 
#2328B is shown in Figure 64.

Assuming an air velocity of 1 m/s, we have an effective θSA+ of about 5°C/W, thus 
TJ = 30° + 5°C + (0.1°C/W + 1.0°C/W + 5°C/W) × 5

resulting in a die-junction temperature of approximately 66, which is well within the maximum operating 
temperature of the component.



MPC8544E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 8

106 Freescale Semiconductor
 

System Design Information

21.2 PLL Power Supply Filtering
Each of the PLLs listed above is provided with power through independent power supply pins 
(AVDD_PLAT, AVDD_CORE, AVDD_PCI, AVDD_LBIU, and AVDD_SRDS, respectively). The AVDD 
level should always be equivalent to VDD, and preferably these voltages will be derived directly from VDD 
through a low frequency filter scheme such as the following.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to 
provide independent filter circuits per PLL power supply as illustrated in Figure 65, one to each of the 
AVDD pins. By providing independent filters to each PLL the opportunity to cause noise injection from 
one PLL to the other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz 
range. It should be built with surface mount capacitors with minimum Effective Series Inductance (ESL). 
Consistent with the recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook 
of Black Magic (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a 
single large value capacitor.

Each circuit should be placed as close as possible to the specific AVDD pin being supplied to minimize 
noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AVDD 
pin, which is on the periphery of 783 FC-PBGA the footprint, without the inductance of vias.

Figure 65 shows the PLL power supply filter circuit.

Figure 65. MPC8544E PLL Power Supply Filter Circuit

The AVDD_SRDSn signals provide power for the analog portions of the SerDes PLL. To ensure stability 
of the internal clock, the power supplied to the PLL is filtered using a circuit similar to the one shown in 
Figure 66. For maximum effectiveness, the filter circuit is placed as closely as possible to the 
AVDD_SRDSn balls to ensure it filters out as much noise as possible. The ground connection should be 
near the AVDD_SRDSn balls. The 0.003-µF capacitor is closest to the balls, followed by the 1-µF 
capacitor, and finally the 1-Ω resistor to the board supply plane. The capacitors are connected from 
AVDD_SRDSn to the ground plane. Use ceramic chip capacitors with the highest possible self-resonant 
frequency. All traces should be kept short, wide, and direct.

Figure 66. SerDes PLL Power Supply Filter Circuit

 VDD AVDD

 2.2 µF  2.2 µF

 GND
Low ESL Surface Mount Capacitors

10 Ω

 

 2.2 µF1 0.003 µF

 GND

1.0 Ω
AVDD_SRDS

Note:  
1. An 0805 sized capacitor is recommended for system initial bring-up.

SVDD

 2.2 µF1
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21.5 Connection Recommendations
To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal 
level. All unused active low inputs should be tied to VDD, TVDD, BVDD, OVDD, GVDD, and LVDD as 
required. All unused active high inputs should be connected to GND. All NC (no connect) signals must 
remain unconnected. Power and ground connections must be made to all external VDD, TVDD, BVDD, 
OVDD, GVDD, and LVDD, and GND pins of the device.

21.6 Pull-Up and Pull-Down Resistor Requirements
The MPC8544E requires weak pull-up resistors (2–10 kΩ is recommended) on open drain type pins 
including I2C pins and MPIC interrupt pins. 

Correct operation of the JTAG interface requires configuration of a group of system control pins as 
demonstrated in Figure 69. Care must be taken to ensure that these pins are maintained at a valid deasserted 
state under normal operating conditions as most have asynchronous behavior and spurious assertion will 
give unpredictable results.

The following pins must NOT be pulled down during power-on reset: TSEC3_TXD[3], HRESET_REQ, 
TRIG_OUT/READY/QUIESCE, MSRCID[2:4], ASLEEP. The DMA_DACK[0:1] and TEST_SEL pins 
must be set to a proper state during POR configuration. Refer to the pinout listing table (Table 62) for more 
details. Refer to the PCI 2.2 Local Bus Specifications, for all pullups required for PCI.

21.7 Output Buffer DC Impedance
The MPC8544E drivers are characterized over process, voltage, and temperature. For all buses, the driver 
is a push-pull single-ended driver type (open drain for I2C). To measure Z0 for the single-ended drivers, 
an external resistor is connected from the chip pad to OVDD or GND. Then, the value of each resistor is 
varied until the pad voltage is OVDD/2 (see Figure 67). The output impedance is the average of two 
components, the resistances of the pull-up and pull-down devices. When data is held high, SW1 is closed 
(SW2 is open) and RP is trimmed until the voltage at the pad equals OVDD/2. RP then becomes the 
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been encoded such that a high voltage level puts the device into the default state and external resistors are 
needed only when non-default settings are required by the user.

Careful board layout with stubless connections to these pull-down resistors coupled with the large value 
of the pull-down resistor should minimize the disruption of signal quality or speed for output pins thus 
configured.

The platform PLL ratio and e500 PLL ratio configuration pins are not equipped with these default pull-up 
devices.

21.9 JTAG Configuration Signals
Correct operation of the JTAG interface requires configuration of a group of system control pins as 
demonstrated in Figure 69. Care must be taken to ensure that these pins are maintained at a valid deasserted 
state under normal operating conditions as most have asynchronous behavior and spurious assertion will 
give unpredictable results.

Boundary-scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the 
IEEE 1149.1 specification, but is provided on all processors built on Power Architecture™ technology. 
The device requires TRST to be asserted during reset conditions to ensure the JTAG boundary logic does 
not interfere with normal chip operation. While it is possible to force the TAP controller to the reset state 
using only the TCK and TMS signals, generally systems will assert TRST during the power-on reset flow. 
Simply tying TRST to HRESET is not practical because the JTAG interface is also used for accessing the 
common on-chip processor (COP) function.

The COP function of these processors allow a remote computer system (typically, a PC with dedicated 
hardware and debugging software) to access and control the internal operations of the processor. The COP 
interface connects primarily through the JTAG port of the processor, with some additional status 
monitoring signals. The COP port requires the ability to independently assert HRESET or TRST in order 
to fully control the processor. If the target system has independent reset sources, such as voltage monitors, 
watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be 
merged into these signals with logic. The arrangement shown in Figure 69 allows the COP port to 
independently assert HRESET or TRST, while ensuring that the target can drive HRESET as well. 

The COP interface has a standard header, shown in Figure 68, for connection to the target system, and is 
based on the 0.025" square-post, 0.100" centered header assembly (often called a Berg header). The 
connector typically has pin 14 removed as a connector key.

The COP header adds many benefits such as breakpoints, watchpoints, register and memory 
examination/modification, and other standard debugger features. An inexpensive option can be to leave 
the COP header unpopulated until needed.

There is no standardized way to number the COP header; consequently, many different pin numbers have 
been observed from emulator vendors. Some are numbered top-to-bottom then left-to-right, while others 
use left-to-right then top-to-bottom, while still others number the pins counter clockwise from pin 1 (as 
with an IC). Regardless of the numbering, the signal placement recommended in Figure 68 is common to 
all known emulators.
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22.2 Nomenclature of Parts Fully Addressed by this Document
Table 75 provides the Freescale part numbering nomenclature for the MPC8544E.

22.3 Part Marking
Parts are marked as in the example shown in Figure 70.

Figure 70. Part Marking for FC-PBGA Device

Table 75. Device Nomenclature

MPC nnnn E C HX AA X B

Product 
Code

Part 
Identifier

Encryption 
Acceleration

Temperature Range Package1 Processor 
Frequency2

Platform 
Frequency

Revision 
Level

MPC 8544 Blank = not 
included
E = included

B or Blank = 
Industrial Tier 
standard temp 
range(0° to 105°C)

C = Industrial Tier 
Extended temp 
range(–40° to 105°C)

VT = FC-PBGA
(lead-free)
VJ = lead-free 
FC-PBGA

AL = 667 MHz
AN = 800 MHz
AQ = 1000 MHz
AR = 1067 MHz

F = 333 MHz
G = 400 MHz
J = 533 MHz

Blank = Rev. 
1.1 1.1.1
A = Rev. 2.1

Notes: 
1. See Section 18, “Package Description,” for more information on available package types.
2. Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this 

specification support all core frequencies. Additionally, parts addressed by part number specifications may support other 
maximum core frequencies.

3. The VT part number is ROHS-compliant, with the permitted exception of the C4 die bumps.
4. The VJ part number is entirely lead-free. This includes the C4 die bumps.

MMMMM CCCCC
ATWLYYWW

Notes:

CCCCC is the country of assembly. This space is left blank if parts are assembled in the United States.

MMMMM is the 5-digit mask number.
ATWLYYWW is the traceability code.

FC-PBGA

MPCnnnnCHXAAXB


