

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	800MHz
Co-Processors/DSP	Signal Processing; SPE, Security; SEC
RAM Controllers	DDR, DDR2, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	-
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	783-BBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8544ecvtang

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MPC8544E Overview

- Two key (K1, K2, K1) or three key (K1, K2, K3)
- ECB and CBC modes for both DES and 3DES
- AESU—Advanced Encryption Standard unit
 - Implements the Rijndael symmetric key cipher
 - ECB, CBC, CTR, and CCM modes
 - 128-, 192-, and 256-bit key lengths
- AFEU—ARC four execution unit
 - Implements a stream cipher compatible with the RC4 algorithm
 - 40- to 128-bit programmable key
- MDEU—message digest execution unit
 - SHA with 160- or 256-bit message digest
 - MD5 with 128-bit message digest
 - HMAC with either algorithm
- KEU-Kasumi execution unit
 - Implements F8 algorithm for encryption and F9 algorithm for integrity checking
 - Also supports A5/3 and GEA-3 algorithms
- RNG—random number generator
- XOR engine for parity checking in RAID storage applications
- Dual I²C controllers
 - Two-wire interface
 - Multiple master support
 - Master or slave I²C mode support
 - On-chip digital filtering rejects spikes on the bus
- Boot sequencer
 - Optionally loads configuration data from serial ROM at reset via the I²C interface
 - Can be used to initialize configuration registers and/or memory
 - Supports extended I^2C addressing mode
 - Data integrity checked with preamble signature and CRC
- DUART
 - Two 4-wire interfaces (SIN, SOUT, $\overline{\text{RTS}}$, $\overline{\text{CTS}}$)
 - Programming model compatible with the original 16450 UART and the PC16550D
- Local bus controller (LBC)
 - Multiplexed 32-bit address and data bus operating at up to 133 MHz
 - Eight chip selects support eight external slaves
 - Up to eight-beat burst transfers
 - The 32-, 16-, and 8-bit port sizes are controlled by an on-chip memory controller.
 - Two protocol engines available on a per chip select basis:

DDR and DDR2 SDRAM

6.2.2 DDR SDRAM Output AC Timing Specifications

Table 18 provides the output AC timing specifications for the DDR SDRAM interface.

Table 18. DDR SDRAM Output AC Timing Specifications

At recommended operating conditions.

Parameter	Symbol ¹	Min	Мах	Unit	Notes
MCK[n] cycle time, MCK[n]/MCK[n] crossing	t _{MCK}	3.75	6	ns	2
ADDR/CMD output setup with respect to MCK	t _{DDKHAS}			ns	3
533 MHz 400 MHz 333 MHz		1.48 1.95 2.40			7
ADDR/CMD output hold with respect to MCK	t _{DDKHAX}			ns	3
533 MHz 400 MHz 333 MHz		1.48 1.95 2.40			7
MCS[n] output setup with respect to MCK	t _{DDKHCS}			ns	3
533 MHz 400 MHz 333 MHz		1.48 1.95 2.40			7
MCS[n] output hold with respect to MCK	t _{DDKHCX}			ns	3
533 MHz 400 MHz 333 MHz		1.48 1.95 2.40			7
MCK to MDQS Skew	t _{DDKHMH}	-0.6	0.6	ns	4
MDQ/MECC/MDM output setup with respect to MDQS	^t DDKHDS, t _{DDKLDS}			ps	5
533 MHz 400 MHz 333 MHz		538 700 900			7
MDQ/MECC/MDM output hold with respect to MDQS	t _{DDKHDX,} t _{DDKLDX}			ps	5
533 MHz 400 MHz 333 MHz		538 700 900			7 — —
MDQS preamble	t _{DDKHMP}	0.75 x tMCK	—	ns	6

Enhanced Three-Speed Ethernet (eTSEC), MII Management

Figure 10 provides the AC test load for SGMII.

Figure 10. SGMII AC Test/Measurement Load

8.5 FIFO, GMII,MII, TBI, RGMII, RMII, and RTBI AC Timing Specifications

The AC timing specifications for FIFO, GMII, MII, TBI, RGMII, RMII, and RTBI are presented in this section.

8.5.1 FIFO AC Specifications

The basis for the AC specifications for the eTSEC FIFO modes is the double data rate RGMII and RTBI specifications, since they have similar performance and are described in a source-synchronous fashion like FIFO modes. However, the FIFO interface provides deliberate skew between the transmitted data and source clock in GMII fashion.

When the eTSEC is configured for FIFO modes, all clocks are supplied from external sources to the relevant eTSEC interface. That is, the transmit clock must be applied to the eTSEC*n* TSEC*n*_TX_CLK, while the receive clock must be applied to pin TSEC*n*_RX_CLK. The eTSEC internally uses the transmit clock to synchronously generate transmit data and outputs an echoed copy of the transmit clock back out onto the TSEC*n*_GTX_CLK pin (while transmit data appears on TSEC*n*_TXD[7:0], for example). It is intended that external receivers capture eTSEC transmit data using the clock on TSEC*n*_GTX_CLK as a source-synchronous timing reference. Typically, the clock edge that launched the data can be used, since the clock is delayed by the eTSEC to allow acceptable set-up margin at the receiver.

A summary of the FIFO AC specifications appears in Table 28 and Table 29.

Table 28. FIFO Mode Transmit AC Timing Specification

At recommended operating conditions with L/TVDD of 3.3 V \pm 5% or 2.5 V \pm 5%

Parameter/Condition	Symbol	Min	Тур	Max	Unit	Notes
TX_CLK, GTX_CLK clock period	t _{FIT}	—	8.0	—	ns	—
TX_CLK, GTX_CLK duty cycle	t _{FITH}	45	50	55	%	—
TX_CLK, GTX_CLK peak-to-peak jitter	t _{FITJ}	—	—	250	ps	—
Rise time TX_CLK (20%-80%)	t _{FITR}	—	—	0.75	ns	_

Enhanced Three-Speed Ethernet (eTSEC), MII Management

8.6.1 MII Transmit AC Timing Specifications

Table 32 provides the MII transmit AC timing specifications.

Table 32. MII Transmit AC Timing Specifications

At recommended operating conditions with L/TV_{DD} of 3.3 V \pm 5% or 2.5 V \pm 5%

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit	Notes
TX_CLK clock period 10 Mbps	t _{MTX}	—	400	—	ns	—
TX_CLK clock period 100 Mbps	t _{MTX}	—	40	—	ns	—
TX_CLK duty cycle	t _{MTXH} /t _{MTX}	35	—	65	%	_
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay	t _{MTKHDX}	1	5	15	ns	—
TX_CLK data clock rise (20%-80%)	t _{MTXR}	1.0	—	4.0	ns	—
TX_CLK data clock fall (80%-20%)	t _{MTXF}	1.0	—	4.0	ns	—

Note:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MTKHDX} symbolizes MII transmit timing (MT) for the time t_{MTX} clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t_{MTX} represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub></sub>

Figure 16 shows the MII transmit AC timing diagram.

Figure 16. MII Transmit AC Timing Diagram

8.6.2 MII Receive AC Timing Specifications

Table 33 provides the MII receive AC timing specifications.

Table 33. MII Receive AC Timing Specifications

At recommended operating conditions with L/TVDD of 3.3 V \pm 5%.or 2.5 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit	Notes
RX_CLK clock period 10 Mbps	t _{MRX}		400	_	ns	_
RX_CLK clock period 100 Mbps	t _{MRX}		40	_	ns	_
RX_CLK duty cycle	t _{MRXH} /t _{MRX}	35	_	65	%	_

Table 35. TBI Receive AC Timing Specifications (continued)

At recommended operating conditions with L/TVDD of 3.3 V \pm 5% or 2.5 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit	Notes
PMA_RX_CLK[0:1] duty cycle	t _{TRXH} /t _{TRX}	40	—	60	%	—
RCG[9:0] setup time to rising PMA_RX_CLK	t _{TRDVKH}	2.5	_	_	ns	—
PMA_RX_CLK to RCG[9:0] hold time	t _{TRDXKH}	1.5	_	_	ns	—
PMA_RX_CLK[0:1] clock rise time (20%-80%)	t _{TRXR}	0.7	—	2.4	ns	—
PMA_RX_CLK[0:1] clock fall time (80%-20%)	t _{TRXF}	0.7	_	2.4	ns	_

Note:

1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state)} for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{TRDVKH} symbolizes TBI receive timing (TR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{TRX} clock reference (K) going to the high (H) state or setup time. Also, t_{TRDXKH} symbolizes TBI receive timing (TR) with respect to the time data input signals (D) went invalid (X) relative to the t_{TRX} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{TRX} represents the TBI (T) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall). For symbols representing skews, the subscript is skew (SK) followed by the clock that is being skewed (TRX).

Figure 20 shows the TBI receive AC timing diagram.

Figure 20. TBI Receive AC Timing Diagram

8.7.3 TBI Single-Clock Mode AC Specifications

When the eTSEC is configured for TBI modes, all clocks are supplied from external sources to the relevant eTSEC interface. In single-clock TBI mode, when TBICON[CLKSEL] = 1, a 125-MHz TBI receive clock is supplied on the TSEC n_RX_CLK pin (no receive clock is used on TSEC n_TX_CLK in this mode, whereas for the dual-clock mode this is the PMA1 receive clock). The 125-MHz transmit clock is applied on the TSEC_GTX_CLK125 pin in all TBI modes.

Table 41. MII Management AC Timing Specifications (continued)

At recommended operating conditions with OV_{DD} is 3.3 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit	Notes
MDC fall time	t _{MDHF}	_	_	10	ns	

Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MDKHDX} symbolizes management data timing (MD) for the time t_{MDC} from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also, t_{MDDVKH} symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MDC} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub>

- 2. This parameter is dependent on the platform clock frequency (MIIMCFG [MgmtClk] field determines the clock frequency of the MgmtClk Clock EC_MDC).
- 3. This parameter is dependent on the platform clock frequency. The delay is equal to 16 platform clock periods ±3 ns. For example, with a platform clock of 333 MHz, the min/max delay is 48 ns ± 3 ns. Similarly, if the platform clock is 400 MHz, the min/max delay is 40 ns ± 3 ns).
- 4. t_{plb clk} is the platform (CCB) clock.

Figure 26 shows the MII management AC timing diagram.

Figure 26. MII Management Interface Timing Diagram

Table 45. Local Bus General Timing Parameters (BV_{DD} = 3.3 V)—PLL Enabled (continued)

Parameter	Symbol ¹	Min	Мах	Unit	Notes
Local bus clock to output high impedance for LAD/LDP	t _{LBKHOZ2}	_	2.5	ns	5

Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one (1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the t_{LBK} clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.
</sub>

2. All timings are in reference to LSYNC_IN for PLL enabled and internal local bus clock for PLL bypass mode.

3. All signals are measured from $BV_{DD}/2$ of the rising edge of LSYNC_IN for PLL enabled or internal local bus clock for PLL bypass mode to $0.4 \times BV_{DD}$ of the signal in question for 3.3-V signaling levels.

4. Input timings are measured at the pin.

5. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

- 6. t_{LBOTOT} is a measurement of the minimum time between the negation of LALE and any change in LAD. t_{LBOTOT} is programmed with the LBCR[AHD] parameter.
- 7. Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between complementary signals at BV_{DD}/2.

Table 46 describes the general timing parameters of the local bus interface at $BV_{DD} = 2.5$ V.

Table 46. Local Bus General Timing Parameters (BV_{DD} = 2.5 V)—PLL Enabled

Parameter	Symbol ¹	Min	Мах	Unit	Notes
Local bus cycle time	t _{LBK}	7.5	12	ns	2
Local bus duty cycle	t _{LBKH/} t _{LBK}	43	57	%	—
LCLK[n] skew to LCLK[m] or LSYNC_OUT	t _{lbkskew}	—	150	ps	7
Input setup to local bus clock (except LUPWAIT)	t _{LBIVKH1}	2.4	—	ns	3, 4
LUPWAIT input setup to local bus clock	t _{LBIVKH2}	1.8	—	ns	3, 4
Input hold from local bus clock (except LUPWAIT)	t _{LBIXKH1}	1.1	—	ns	3, 4
LUPWAIT input hold from local bus clock	t _{LBIXKH2}	1.1	—	ns	3, 4
LALE output transition to LAD/LDP output transition (LATCH setup and hold time)	t _{lbotot}	1.5	—	ns	6
Local bus clock to output valid (except LAD/LDP and LALE)	t _{LBKHOV1}	_	2.8	ns	_
Local bus clock to data valid for LAD/LDP	t _{LBKHOV2}	—	2.8	ns	3
Local bus clock to address valid for LAD	t _{LBKHOV3}	—	2.8	ns	3
Local bus clock to LALE assertion	t _{LBKHOV4}	—	2.8	ns	3
Output hold from local bus clock (except LAD/LDP and LALE)	t _{LBKHOX1}	0.8	—	ns	3
Output hold from local bus clock for LAD/LDP	t _{LBKHOX2}	0.8	—	ns	3
Local bus clock to output high Impedance (except LAD/LDP and LALE)	t _{LBKHOZ1}	—	2.6	ns	5

Local Bus

Figure 32. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 8 or 16 (PLL Enabled)

Figure 38 provides the AC test load for the I^2C .

Figure 38. I²C AC Test Load

Figure 39 shows the AC timing diagram for the I^2C bus.

Figure 39. I²C Bus AC Timing Diagram

14 GPIO

This section describes the DC and AC electrical specifications for the GPIO interface of the MPC8544E.

14.1 GPIO DC Electrical Characteristics

Table 53 provides the DC electrical characteristics for the GPIO interface.

Table 53. GPIO DO	Electrical	Characteristics
-------------------	------------	-----------------

Parameter	Symbol	Min	Мах	Unit	Notes
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V	—
Low-level input voltage	V _{IL}	-0.3	0.8	V	—
Input current ($V_{IN} = 0 V \text{ or } V_{IN} = V_{DD}$)	I _{IN}	—	±5	μA	1
High-level output voltage ($OV_{DD} = mn, I_{OH} = -2 mA$)	V _{OH}	2.4	—	V	—
Low-level output voltage ($OV_{DD} = min, I_{OL} = 2 mA$)	V _{OL}	—	0.4	V	

Note:

1. Note that the symbol V_{IN} , in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

High-Speed Serial Interfaces (HSSI)

assumes that the LVPECL clock driver's output impedance is 50 Ω . R1 is used to DC-bias the LVPECL outputs prior to AC-coupling. Its value could be ranged from 140 to 240 Ω depending on clock driver vendor's requirement. R2 is used together with the SerDes reference clock receiver's 50- Ω termination resistor to attenuate the LVPECL output's differential peak level such that it meets the MPC8544E SerDes reference clock's differential input amplitude requirement (between 200 and 800 mV differential peak). For example, if the LVPECL output's differential peak is 900 mV and the desired SerDes reference clock input amplitude is selected as 600 mV, the attenuation factor is 0.67, which requires R2 = 25 Ω . Please consult clock driver chip manufacturer to verify whether this connection scheme is compatible with a particular clock driver chip.

Figure 51. AC-Coupled Differential Connection with LVPECL Clock Driver (Reference Only)

Figure 52 shows the SerDes reference clock connection reference circuits for a single-ended clock driver. It assumes the DC levels of the clock driver are compatible with MPC8544E SerDes reference clock input's DC requirement.

Figure 52. Single-Ended Connection (Reference Only)

17 PCI Express

This section describes the DC and AC electrical specifications for the PCI Express bus of the MPC8544.

17.1 DC Requirements for PCI Express SD_REF_CLK and SD_REF_CLK

For more information, see Section 16.2, "SerDes Reference Clocks."

17.2 AC Requirements for PCI Express SerDes Clocks

Table 58 provides the AC requirements for the PCI Express SerDes clocks.

Symbol ²	Parameter Description	Min	Тур	Max	Units	Notes
t _{REF}	REFCLK cycle time	_	10	_	ns	1
t _{REFCJ}	REFCLK cycle-to-cycle jitter. Difference in the period of any two adjacent REFCLK cycles			100	ps	
t _{REFPJ}	Phase jitter. Deviation in edge location with respect to mean edge location	-50	—	50	ps	—

Table 58. SD_REF_CLK and SD_REF_CLK AC Requirements

Notes:

1. Typical based on PCI Express Specification 2.0.

2. Guaranteed by characterization.

17.3 Clocking Dependencies

The ports on the two ends of a link must transmit data at a rate that is within 600 parts per million (ppm) of each other at all times. This is specified to allow bit rate clock sources with a ± 300 ppm tolerance.

17.4 Physical Layer Specifications

The following is a summary of the specifications for the physical layer of PCI Express on this device. For further details as well as the specifications of the transport and data link layer please refer to the *PCI Express Base Specification. Rev. 1.0a.*

17.4.1 Differential Transmitter (TX) Output

Table 59 defines the specifications for the differential output at all transmitters. The parameters are specified at the component pins.

Symbol	Parameter	Min	Nom	Max	Unit	Comments
UI	Unit interval	399.88	400	400.12	ps	Each UI is 400 ps ± 300 ppm. UI does not account for Spread Spectrum Clock dictated variations. See Note 1.
V _{TX-DIFFp-p}	Differential peak-to- peak output voltage	0.8	_	1.2	V	$V_{TX-DIFFp-p} = 2^{*} V_{TX-D+} - V_{TX-D-} .$ See Note 2.
V _{TX-DE-RATIO}	De- emphasized differential output voltage (ratio)	-3.0	-3.5	-4.0	dB	Ratio of the $V_{TX-DIFF_{p-p}}$ of the second and following bits after a transition divided by the $V_{TX-DIFF_{p-p}}$ of the first bit after a transition. See Note 2.
T _{TX-EYE}	Minimum TX eye width	0.70		—	UI	The maximum transmitter jitter can be derived as $T_{TX-MAX-JITTER} = 1 - T_{TX-EYE} = 0.3$ UI. See Notes 2 and 3.
T _{TX-EYE-MEDIAN-to-} MAX-JITTER	Maximum time between the jitter median and maximum deviation from the median.	_	_	0.15	UI	Jitter is defined as the measurement variation of the crossing points ($V_{TX-DIFFp-p}$ = 0 V) in relation to a recovered TX UI. A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. Jitter is measured using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the TX UI. See Notes 2 and 3.
T _{TX-RISE} , T _{TX-FALL}	D+/D- TX output rise/fall time	0.125		_	UI	See Notes 2 and 5.
V _{TX-CM-ACp}	RMS AC peak common mode output voltage			20	mV	$\begin{split} & V_{TX-CM-ACp} = RMS(IV_{TXD+} - \\ & V_{TXD-}I/2 - V_{TX-CM-DC}) \\ & V_{TX-CM-DC} = DC_{(avg)} \text{ of } IV_{TX-D+} - \\ & V_{TX-D-}I/2 \\ & See Note 2. \end{split}$
V _{TX-CM-DC-ACTIVE-} IDLE-DELTA	Absolute delta of DC common mode voltage during LO and electrical idle	0	_	100	mV	$\begin{split} & V_{TX-CM-DC (during LO)} - V_{TX-CM-Idle-DC} \\ &(During Electrical Idle) <= 100 mV \\ &V_{TX-CM-DC} = DC_{(avg)} \text{ of } V_{TX-D+} - \\ &V_{TX-D-} /2 \text{ [LO]} \\ &V_{TX-CM-Idle-DC} = DC_{(avg)} \text{ of } V_{TX-D+} - \\ &V_{TX-D-} /2 \text{ [Electrical Idle]} \\ &See Note 2. \end{split}$
VTX-CM-DC-LINE-DELTA	Absolute delta of DC common mode between D+ and D–	0	_	25	mV	$\begin{split} & V_{TX-CM-DC-D+} - V_{TX-CM-DC-D-} <= 25 \text{ mV} \\ &V_{TX-CM-DC-D+} = DC_{(avg)} \text{ of } V_{TX-D+} \\ &V_{TX-CM-DC-D-} = DC_{(avg)} \text{ of } V_{TX-D-} \\ &\text{See Note } 2. \end{split}$
V _{TX-IDLE} -DIFFp	Electrical idle differential peak output voltage	0		20	mV	$V_{TX-IDLE-DIFF_p} = IV_{TX-IDLE-D_+} - V_{TX-IDLE-D}I$ <= 20 mV See Note 2.

Table 59. Differential Transmitter (TX) Output Specifications

Table 59. Differential Transmitter (TX) Output Specifications (continued)

Symbol	Parameter	Min	Nom	Max	Unit	Comments
T _{crosslink}	Crosslink random timeout	0		1	ms	This random timeout helps resolve conflicts in crosslink configuration by eventually resulting in only one downstream and one upstream port. See Note 7.

Notes:

- 1. No test load is necessarily associated with this value.
- 2. Specified at the measurement point into a timing and voltage compliance test load as shown in Figure 58 and measured over any 250 consecutive TX UIs. (Also refer to the transmitter compliance eye diagram shown in Figure 56.)
- 3. A T_{TX-EYE} = 0.70 UI provides for a total sum of deterministic and random jitter budget of T_{TX-JITTER-MAX} = 0.30 UI for the transmitter collected over any 250 consecutive TX UIs. The T_{TX-EYE-MEDIAN-to-MAX-JITTER} median is less than half of the total TX jitter budget collected over any 250 consecutive TX UIs. It should be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value.
- 4. The transmitter input impedance shall result in a differential return loss greater than or equal to 12 dB and a common mode return loss greater than or equal to 6 dB over a frequency range of 50 MHz to 1.25 GHz. This input impedance requirement applies to all valid input levels. The reference impedance for return loss measurements is 50 Ω to ground for both the D+ and D- line (that is, as measured by a vector network analyzer with 50-Ω probes—see Figure 58.) Note that the series capacitors C_{TX} is optional for the return loss measurement.
- 5. Measured between 20%–80% at transmitter package pins into a test load as shown in Figure 58 for both V_{TX-D+} and V_{TX-D-} .
- 6. See Section 4.3.1.8 of the PCI Express Base Specifications, Rev 1.0a.
- 7. See Section 4.2.6.3 of the PCI Express Base Specifications, Rev 1.0a.

17.4.2 Transmitter Compliance Eye Diagrams

The TX eye diagram in Figure 56 is specified using the passive compliance/test measurement load (see Figure 58) in place of any real PCI Express interconnect +RX component.

There are two eye diagrams that must be met for the transmitter. Both eye diagrams must be aligned in time using the jitter median to locate the center of the eye diagram. The different eye diagrams will differ in voltage depending whether it is a transition bit or a de-emphasized bit. The exact reduced voltage level of the de-emphasized bit will always be relative to the transition bit.

The eye diagram must be valid for any 250 consecutive UIs.

A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. The eye diagram is created using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the TX UI.

NOTE

It is recommended that the recovered TX UI is calculated using all edges in the 3500 consecutive UI interval with a fit algorithm using a minimization merit function (that is, least squares and median deviation fits).

PCI Express

The eye diagram must be valid for any 250 consecutive UIs.

A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. The eye diagram is created using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the TX UI.

NOTE

The reference impedance for return loss measurements is 50 Ω to ground for both the D+ and D– line (that is, as measured by a vector network analyzer with 50- Ω probes, see Figure 57). Note that the series capacitors, CTX, are optional for the return loss measurement.

Figure 57. Minimum Receiver Eye Timing and Voltage Compliance Specification

17.5.1 Compliance Test and Measurement Load

The AC timing and voltage parameters must be verified at the measurement point, as specified within 0.2 inches of the package pins, into a test/measurement load shown in Figure 58.

NOTE

The allowance of the measurement point to be within 0.2 inches of the package pins is meant to acknowledge that package/board routing may benefit from D+ and D- not being exactly matched in length at the package pin boundary.

Figure 58. Compliance Test/Measurement Load

Table 62. MPC8544E Pinout Listing (continued	Table 62	. MPC8544E	Pinout	Listing	(continued
--	----------	------------	--------	---------	------------

Signal	Package Pin Number	Pin Type	Power Supply	Notes		
UART_SIN[0:1]	AG7, AH6	I	OV _{DD}	—		
UART_SOUT[0:1]	AH7, AF7	0	OV _{DD}	—		
	I ² C interface			•		
IIC1_SCL	AG21	I/O	OV _{DD}	20		
IIC1_SDA	AH21	I/O	OV _{DD}	20		
IIC2_SCL	AG13	I/O	OV _{DD}	20		
IIC2_SDA	AG14	I/O	OV _{DD}	20		
	SerDes 1					
SD1_RX[0:7]	N28, P26, R28, T26, Y26, AA28, AB26, AC28	I	XV _{DD}	—		
SD1_RX[0:7]	N27, P25, R27, T25, Y25, AA27, AB25, AC27	I	XV _{DD}	—		
SD1_TX[0:7]	M23, N21, P23, R21, U21, V23, W21, Y23	0	XV _{DD}	—		
SD1_TX[0:7]	M22, N20, P22, R20, U20, V22, W20, Y22	0	XV _{DD}	—		
SD1_PLL_TPD	V28	0	XV _{DD}	17		
SD1_REF_CLK	U28	I	XV _{DD}	—		
SD1_REF_CLK	U27	I	XV _{DD}	—		
SD1_TST_CLK	T22		—	—		
SD1_TST_CLK	Т23		—	—		
SerDes 2						
SD2_RX[0]	AD25	I	xv _{DD}	—		
SD2_RX[2]	AD1	I	XV _{DD}	26		
SD2_RX[3]	AB2	I	XV _{DD}	26		
SD2_RX[0]	AD26	I	XV _{DD}	—		
SD2_RX[2]	AC1	I	XV _{DD}	26		
SD2_RX[3]	AA2	I	XV _{DD}	26		
SD2_TX[0]	AA21	0	XV _{DD}	—		
SD2_TX[2]	AC4	0	xv _{DD}	26		
SD2_TX[3]	AA5	0	XV _{DD}	26		
SD2_TX[0]	AA20	0	XV _{DD}	—		
SD2_TX[2]	AB4	0	XV _{DD}	26		
SD2_TX[3]	Y5	0	XV _{DD}	26		
SD2_PLL_TPD	AG3	0	XV _{DD}	17		
SD2_REF_CLK	AE2	I	XV _{DD}	—		

Package Description

Table 62. MPC8544E Pinout Listing (continued)

		(,		
Signal	Package Pin Number	Pin Type	Power Supply	Notes
6.The value of LA[28:31] du resistors. See Section 1	ring reset sets the CCB clock to SYSCLK PLL ration 9.2. "CCB/SYSCLK PLL Ratio."	o. These pins requ	ire 4.7-k Ω pull-up (or pull-down

- 7.The value of LALE, LGPL2, and LBCTL at reset set the e500 core clock to CCB clock PLL ratio. These pins require 4.7-kΩ pull-up or pull-down resistors. See Section 19.3, "e500 Core PLL Ratio."
- 8. Functionally, this pin is an output, but structurally it is an I/O because it either samples configuration input during reset or because it has other manufacturing test functions. Therefore, this pin will be described as an I/O for boundary scan.
- 9. For proper state of these signals during reset, DMA_DACK[1] must be pulled down to GND through a resistor. DMA_DACK[0] can be pulled up or left without a resistor. However, if there is any device on the net which might pull down the value of the net at reset, then a pullup is needed on DMA_DACK[0].
- 10. This output is actively driven during reset rather than being three-stated during reset.
- 11. These JTAG pins have weak internal pull-up P-FETs that are always enabled.
- 12. These pins are connected to the V_{DD}/GND planes internally and may be used by the core power supply to improve tracking and regulation.
- 13. Anode and cathode of internal thermal diode.
- 14.Treat pins AC7, T5, V2, and M7 as spare configuration pins cfg_spare[0:3]. The spare pins are unused POR config pins. It is highly recommended that the customer provide the capability of setting these pins low (that is, pull-down resistor which is not currently stuffed) in order to support new config options should they arise between revisions.
- 15.If this pin is connected to a device that pulls down during reset, an external pull-up is required to drive this pin to a safe state during reset.
- 16. This pin is only an output in FIFO mode when used as Rx flow control.

17.Do not connect.

18. These are test signals for factory use only and must be pulled up (100 Ω to 1 k Ω) to OV_{DD} for normal machine operation.

- 19.Independent supplies derived from board $\ensuremath{\mathsf{V}_{\text{DD}}}$.
- 20.Recommend a pull-up resistor (1 K~) be placed on this pin to OV_{DD} .
- 21. The following pins must not be pulled down during power-on reset: HRESET_REQ, TRIG_OUT/READY/QUIESCE, MSRCID[2:4], and ASLEEP.
- 22. This pin requires an external 4.7-kΩ pull-down resistor to prevent PHY from seeing a valid transmit enable before it is actively driven.
- 23.General-purpose POR configuration of user system.
- 24.When a PCI block is disabled, either the POR config pin that selects between internal and external arbiter must be pulled down to select external arbiter if there is any other PCI device connected on the PCI bus, or leave the address pins as No Connect or terminated through 2–10 kΩ pull-up resistors with the default of internal arbiter if the address pins are not connected to any other PCI device. The PCI block will drive the address pins if it is configured to be the PCI arbiter—through POR config pins—irrespective of whether it is disabled via the DEVDISR register or not. It may cause contention if there is any other PCI device connected on the bus.
- 25.MDIC0 is grounded through an 18.2-Ω precision 1% resistor and MDIC1 is connected GV_{DD} through an 18.2-Ω precision 1% resistor. These pins are used for automatic calibration of the DDR IOs.
- 26.For SGMII mode.

27.Connect to GND.

28. For systems that boot from a local bus (GPCM)-controlled flash, a pull-up on LGPL4 is required.

International Electronic Research Corporation (IERC)818-842-7277 413 North Moss St Burbank, CA 91502 Internet: www.ctscorp.com Millennium Electronics (MEI)408-436-8770 Loroco Sites 671 East Brokaw Road San Jose, CA 95112 Internet: www.mei-thermal.com Tvco Electronics800-522-6752 Chip Coolers[™] P.O. Box 3668 Harrisburg, PA 17105-3668 Internet: www.chipcoolers.com Wakefield Engineering603-635-2800 33 Bridge St. Pelham, NH 03076 Internet: www.wakefield.com

Ultimately, the final selection of an appropriate heat sink depends on many factors, such as thermal performance at a given air velocity, spatial volume, mass, attachment method, assembly, and cost. Several heat sinks offered by Aavid Thermalloy, Advanced Thermal Solutions, Alpha Novatech, IERC, Chip Coolers, Millennium Electronics, and Wakefield Engineering offer different heat sink-to-ambient thermal resistances, that will allow the MPC8544E to function in various environments.

20.3.1 Internal Package Conduction Resistance

For the packaging technology, shown in Table 70, the intrinsic internal conduction thermal resistance paths are as follows:

- The die junction-to-case thermal resistance
- The die junction-to-board thermal resistance

Thermal

Heat sinks are attached to the package by means of a spring clip to holes in the printed-circuit board (see Figure 61). Therefore, the synthetic grease offers the best thermal performance, especially at the low interface pressure.

Figure 63. Thermal Performance of Select Thermal Interface Materials

The system board designer can choose between several types of thermal interface. There are several commercially-available thermal interfaces provided by the following vendors:

Chomerics, Inc. 781-935-4850 77 Dragon Ct. Woburn, MA 01801 Internet: www.chomerics.com Dow-Corning Corporation800-248-2481 Corporate Center P.O.Box 999 Midland, MI 48686-0997 Internet: www.dow.com Shin-Etsu MicroSi, Inc.888-642-7674 10028 S. 51st St. Phoenix, AZ 85044 Internet: www.microsi.com The Bergquist Company800-347-4572 18930 West 78th St.

where:

- $I_{fw} = Forward current$
- $I_s =$ Saturation current
- V_d = Voltage at diode
- $V_f =$ Voltage forward biased
- $V_{\rm H}$ = Diode voltage while $I_{\rm H}$ is flowing
- V_{L} = Diode voltage while I_{L} is flowing
- $I_{\rm H}$ = Larger diode bias current
- I_{L} = Smaller diode bias current
- q = Charge of electron $(1.6 \times 10^{-19} \text{ C})$
- n = Ideality factor (normally 1.0)
- K = Boltzman's constant $(1.38 \times 10^{-23} \text{ Joules/K})$
- T = Temperature (Kelvins)

The ratio of I_H to I_L is usually selected to be 10:1. The above simplifies to the following:

$$V_{\rm H} - V_{\rm L} = 1.986 \times 10^{-4} \times nT$$

Solving for T, the equation becomes:

$$nT = \frac{V_{\rm H} - V_{\rm L}}{1.986 \times 10^{-4}}$$

21 System Design Information

This section provides electrical and thermal design recommendations for successful application of the MPC8544E.

21.1 System Clocking

This device includes six PLLs:

- The platform PLL generates the platform clock from the externally supplied SYSCLK input. The frequency ratio between the platform and SYSCLK is selected using the platform PLL ratio configuration bits as described in Section 19.2, "CCB/SYSCLK PLL Ratio."
- The e500 core PLL generates the core clock as a slave to the platform clock. The frequency ratio between the e500 core clock and the platform clock is selected using the e500 PLL ratio configuration bits as described in Section 19.3, "e500 Core PLL Ratio."
- The PCI PLL generates the clocking for the PCI bus.
- The local bus PLL generates the clock for the local bus.
- There are two PLLs for the SerDes block.

Device Nomenclature

Option 2

- If PCI arbiter is disabled during POR,
- All AD pins will be in the input state. Therefore, all ADs pins need to be grouped together and tied to OV_{DD} through a single (or multiple) 10-k Ω resistor(s).
- All PCI control pins can be grouped together and tied to OV_{DD} through a single 10-k Ω resistor.

21.12 Guideline for LBIU Termination

If the LBIU parity pins are not used, the following list shows the termination recommendation:

- For LDP[0:3]: tie them to ground or the power supply rail via a 4.7-k Ω resistor.
- For LPBSE: tie it to the power supply rail via a 4.7-k Ω resistor (pull-up resistor).

22 Device Nomenclature

Ordering information for the parts fully covered by this hardware specifications document is provided in Section 22.3, "Part Marking." Contact your local Freescale sales office or regional marketing team for order information.

22.1 Industrial and Commercial Tier Qualification

The MPC8544E device has been tested to meet the industrial tier qualification. Table 74 provides a description for commercial and industrial qualifications.

Tier ¹	Typical Application Use Time	Power-On Hours	Example of Typical Applications
Commercial	5 years	Part-time/ Full-Time	PC's, consumer electronics, office automation, SOHO networking, portable telecom products, PDAs, etc.
Industrial	10 years	Typically Full-Time	Installed telecom equipment, work stations, servers, warehouse equipment, etc.

Table 74. Commercial and Industrial Description

Note:

1. Refer to Table 2 for operating temperature ranges. Temperature is independent of tier and varies per product.