



#### Welcome to E-XFL.COM

#### **Understanding Embedded - Microprocessors**

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details

| PowerPC e500                                                           |
|------------------------------------------------------------------------|
| 1 Core, 32-Bit                                                         |
| 667MHz                                                                 |
| Signal Processing; SPE, Security; SEC                                  |
| DDR, DDR2, SDRAM                                                       |
| No                                                                     |
| -                                                                      |
| 10/100/1000Mbps (2)                                                    |
| -                                                                      |
| -                                                                      |
| 1.8V, 2.5V, 3.3V                                                       |
| 0°C ~ 105°C (TA)                                                       |
| Cryptography, Random Number Generator                                  |
| 783-BBGA, FCBGA                                                        |
| 783-FCPBGA (29x29)                                                     |
| https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8544edvtalf |
|                                                                        |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



| Parameter                            |          | Symbol                 | Min      | Тур | Max      | Unit | Notes |
|--------------------------------------|----------|------------------------|----------|-----|----------|------|-------|
| Input differential voltage           | LSTS = 0 | V <sub>rx_diffpp</sub> | 100      | —   | 1200     | mV   | 2, 4  |
|                                      | LSTS = 1 | 1                      | 175      | —   |          |      |       |
| Loss of signal threshold             | LSTS = 0 | VI <sub>os</sub>       | 30       | —   | 100      | mV   | 3, 4  |
|                                      | LSTS = 1 | 1                      | 65       | —   | 175      |      |       |
| Input AC common mode voltage         |          | V <sub>cm_acpp</sub>   | —        | —   | 100      | mV   | 5.    |
| Receiver differential input impedar  | ice      | Zrx_diff               | 80       | —   | 120      | Ω    | —     |
| Receiver common mode input impedance |          | Zrx_cm                 | 20       | —   | 35       | Ω    | —     |
| Common mode input voltage            |          | Vcm                    | xcorevss | —   | xcorevss | V    | 6     |

### Table 25. DC Receiver Electrical Characteristics (continued)

### Notes:

1. Input must be externally AC-coupled.

- 2.  $V_{RX\_DIFFp-p}$  is also referred to as peak-to-peak input differential voltage
- 3. The concept of this parameter is equivalent to the electrical idle detect threshold parameter in PCI Express. Refer to Section 17.4.3, "Differential Receiver (RX) Input Specifications," for further explanation.
- 4. The LSTS shown in this table refers to the LSTSCD bit field of MPC8544E SerDes 2 control register 1.
- 5. V<sub>CM ACp-p</sub> is also referred to as peak-to-peak AC common mode voltage.
- 6. On-chip termination to SGND\_SRDS2 (xcorevss).

# 8.4 SGMII AC Timing Specifications

This section describes the SGMII transmit and receive AC timing specifications. Transmitter and receiver characteristics are measured at the transmitter outputs ( $SD2_TX[n]$  and  $\overline{SD2_TX[n]}$ ) or at the receiver inputs ( $SD2_RX[n]$  and  $\overline{SD2_RX[n]}$ ) as depicted in Figure 10, respectively.

## 8.4.1 SGMII Transmit AC Timing Specifications

Table 26 provides the SGMII transmit AC timing targets. A source synchronous clock is not provided.

### Table 26. SGMII Transmit AC Timing Specifications

At recommended operating conditions with XVDD\_SRDS2 =  $1.0 V \pm 5\%$ .

| Parameter                           | Symbol            | Min    | Тур | Мах    | Unit   | Notes |
|-------------------------------------|-------------------|--------|-----|--------|--------|-------|
| Deterministic jitter                | J <sub>D</sub>    | —      | —   | 0.17   | UI p-p | —     |
| Total jitter                        | J <sub>T</sub>    | —      | —   | 0.35   | UI p-p | —     |
| Unit interval                       | UI                | 799.92 | 800 | 800.08 | ps     | 2     |
| V <sub>OD</sub> fall time (80%–20%) | t <sub>fall</sub> | 50     | —   | 120    | ps     | —     |
| V <sub>OD</sub> rise time (20%–80%) | t <sub>rise</sub> | 50     | —   | 120    | ps     | —     |

#### Notes;

1. Source synchronous clock is not supported.

2. Each UI value is 800 ps  $\pm$  100 ppm.



## 8.7.1 TBI Transmit AC Timing Specifications

Table 34 provides the TBI transmit AC timing specifications.

### Table 34. TBI Transmit AC Timing Specifications

At recommended operating conditions with L/TVDD of 3.3 V  $\pm$  5% or 2.5 V  $\pm$  5%

| Parameter/Condition            | Symbol <sup>1</sup> | Min | Тур | Max | Unit | Notes |
|--------------------------------|---------------------|-----|-----|-----|------|-------|
| GTX_CLK clock period           | t <sub>GTX</sub>    | _   | 8.0 | _   | ns   | —     |
| GTX_CLK to TCG[9:0] delay time | t <sub>TTKHDX</sub> | 0.2 | —   | 5.0 | ns   | 2     |
| GTX_CLK rise (20%–80%)         | t <sub>TTXR</sub>   | _   | —   | 1.0 | ns   | —     |
| GTX_CLK fall time (80%-20%)    | t <sub>TTXF</sub>   | _   | —   | 1.0 | ns   | —     |

Notes:

1. The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t<sub>TTKHDV</sub> symbolizes the TBI transmit timing (TT) with respect to the time from t<sub>TTX</sub> (K) going high (H) until the referenced data signals (D) reach the valid state (V) or setup time. Also, t<sub>TTKHDX</sub> symbolizes the TBI transmit timing (TT) with respect to the time from t<sub>TTX</sub> (K) going high (H) until the referenced data signals (D) reach the valid state (V) or setup time. Also, t<sub>TTKHDX</sub> symbolizes the TBI transmit timing (TT) with respect to the time from t<sub>TTX</sub> (K) going high (H) until the referenced data signals (D) reach the invalid state (X) or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t<sub>TTX</sub> represents the TBI (T) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).</sub>

### Figure 19 shows the TBI transmit AC timing diagram.



Figure 19. TBI Transmit AC Timing Diagram

## 8.7.2 TBI Receive AC Timing Specifications

Table 35 provides the TBI receive AC timing specifications.

| Table 35. TBI Receive AC | <b>Timing Specifications</b> |
|--------------------------|------------------------------|
|--------------------------|------------------------------|

At recommended operating conditions with L/TVDD of 3.3 V  $\pm$  5% or 2.5 V  $\pm$  5%.

| Parameter/Condition          | Symbol <sup>1</sup> | Min | Тур  | Мах | Unit | Notes |
|------------------------------|---------------------|-----|------|-----|------|-------|
| PMA_RX_CLK[0:1] clock period | t <sub>TRX</sub>    | _   | 16.0 | _   | ns   | _     |
| PMA_RX_CLK[0:1] skew         | t <sub>SKTRX</sub>  | 7.5 | _    | 8.5 | ns   | —     |

Data valid t<sub>TTKHDV</sub> to GTX\_CLK Min setup time is a function of clock period and max hold time (Min setup = cycle time – Max delay).



A summary of the single-clock TBI mode AC specifications for receive appears in Table 36.

### Table 36. TBI Single-Clock Mode Receive AC Timing Specification

| Parameter/Condition                       | Symbol             | Min | Тур | Мах | Unit | Notes |
|-------------------------------------------|--------------------|-----|-----|-----|------|-------|
| RX_CLK clock period                       | t <sub>TRR</sub>   | 7.5 | 8.0 | 8.5 | ns   | —     |
| RX_CLK duty cycle                         | t <sub>TRRH</sub>  | 40  | 50  | 60  | %    | —     |
| RX_CLK peak-to-peak jitter                | t <sub>TRRJ</sub>  | —   | —   | 250 | ps   | —     |
| Rise time RX_CLK (20%-80%)                | t <sub>TRRR</sub>  | —   | —   | 1.0 | ns   | —     |
| Fall time RX_CLK (80%–20%)                | t <sub>TRRF</sub>  | —   | —   | 1.0 | ns   | —     |
| RCG[9:0] setup time to RX_CLK rising edge | t <sub>TRRDV</sub> | 2.0 | —   | _   | ns   | —     |
| RCG[9:0] hold time to RX_CLK rising edge  | t <sub>TRRDX</sub> | 1.0 | —   | —   | ns   | —     |

A timing diagram for TBI receive appears in Figure 21.



Figure 21. TBI Single-Clock Mode Receive AC Timing Diagram

## 8.7.4 RGMII and RTBI AC Timing Specifications

Table 37 presents the RGMII and RTBI AC timing specifications.

### Table 37. RGMII and RTBI AC Timing Specifications

At recommended operating conditions with L/TV<sub>DD</sub> of 2.5 V  $\pm$  5%.

| Parameter/Condition                        | Symbol <sup>1</sup>                 | Min  | Тур | Мах  | Unit | Notes |
|--------------------------------------------|-------------------------------------|------|-----|------|------|-------|
| Data to clock output skew (at transmitter) | t <sub>SKRGT_TX</sub>               | -500 | 0   | 500  | ps   | 5     |
| Data to clock input skew (at receiver)     | t <sub>SKRGT_RX</sub>               | 1.0  | —   | 2.8  | ns   | 2     |
| Clock period duration                      | t <sub>RGT</sub>                    | 7.2  | 8.0 | 8.8  | ns   | 3     |
| Duty cycle for 10BASE-T and 100BASE-TX     | t <sub>RGTH</sub> /t <sub>RGT</sub> | 40   | 50  | 60   | %    | 3, 4  |
| Rise time (20%–80%)                        | t <sub>RGTR</sub>                   | —    | —   | 0.75 | ns   | —     |



## 8.7.5 RMII AC Timing Specifications

This section describes the RMII transmit and receive AC timing specifications.

## 8.7.5.1 RMII Transmit AC Timing Specifications

The RMII transmit AC timing specifications are in Table 38.

### Table 38. RMII Transmit AC Timing Specifications

At recommended operating conditions with L/TV<sub>DD</sub> of 3.3 V  $\pm$  5% or 2.5 V  $\pm$  5%.

| Parameter/Condition                        | Symbol <sup>1</sup> | Min  | Тур  | Max  | Unit | Notes |
|--------------------------------------------|---------------------|------|------|------|------|-------|
| REF_CLK clock period                       | t <sub>RMT</sub>    | 15.0 | 20.0 | 25.0 | ns   | —     |
| REF_CLK duty cycle                         | t <sub>RMTH</sub>   | 35   | 50   | 65   | %    | —     |
| REF_CLK peak-to-peak jitter                | t <sub>RMTJ</sub>   | _    | _    | 250  | ps   | —     |
| Rise time REF_CLK (20%–80%)                | t <sub>RMTR</sub>   | 1.0  | _    | 2.0  | ns   | —     |
| Fall time REF_CLK (80%–20%)                | t <sub>RMTF</sub>   | 1.0  | _    | 2.0  | ns   | —     |
| REF_CLK to RMII data TXD[1:0], TX_EN delay | t <sub>RMTDX</sub>  | 1.0  | _    | 10.0 | ns   | —     |

### Note:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t<sub>MTKHDX</sub> symbolizes MII transmit timing (MT) for the time t<sub>MTX</sub> clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t<sub>MTX</sub> represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub></sub>

### Figure 23 shows the RMII transmit AC timing diagram.



Figure 23. RMII Transmit AC Timing Diagram



## 8.7.5.2 RMII Receive AC Timing Specifications

Table 39 shows the RMII receive AC timing specifications.

### Table 39. RMII Receive AC Timing Specifications

At recommended operating conditions with  $L/TV_{DD}$  of 3.3 V ± 5%.or 2.5 V ± 5%.

| Parameter/Condition                                          | Symbol <sup>1</sup> | Min  | Тур  | Мах  | Unit | Notes |
|--------------------------------------------------------------|---------------------|------|------|------|------|-------|
| REF_CLK clock period                                         | t <sub>RMR</sub>    | 15.0 | 20.0 | 25.0 | ns   | —     |
| REF_CLK duty cycle                                           | t <sub>RMRH</sub>   | 35   | 50   | 65   | %    | —     |
| REF_CLK peak-to-peak jitter                                  | t <sub>RMRJ</sub>   | _    | _    | 250  | ps   | —     |
| Rise time REF_CLK (20%-80%)                                  | t <sub>RMRR</sub>   | 1.0  |      | 2.0  | ns   | —     |
| Fall time REF_CLK (80%-20%)                                  | t <sub>RMRF</sub>   | 1.0  |      | 2.0  | ns   | —     |
| RXD[1:0], CRS_DV, RX_ER setup time to<br>REF_CLK rising edge | t <sub>RMRDV</sub>  | 4.0  | _    | _    | ns   | —     |
| RXD[1:0], CRS_DV, RX_ER hold time to REF_CLK rising edge     | t <sub>RMRDX</sub>  | 2.0  | _    | _    | ns   | —     |

### Note:

1. The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)</sub>(reference)(state)(signal)(state) for outputs. For example, t<sub>MRDVKH</sub> symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t<sub>MRX</sub> clock reference (K) going to the high (H) state or setup time. Also, t<sub>MRDXKL</sub> symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t<sub>MRX</sub> clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t<sub>MRX</sub> represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).</sub>

Figure 24 provides the AC test load for eTSEC.



Figure 24. eTSEC AC Test Load

Figure 25 shows the RMII receive AC timing diagram.



Figure 25. RMII Receive AC Timing Diagram



### Table 46. Local Bus General Timing Parameters (BV<sub>DD</sub> = 2.5 V)—PLL Enabled (continued)

| Parameter                                            | Symbol <sup>1</sup>  | Min | Max | Unit | Notes |
|------------------------------------------------------|----------------------|-----|-----|------|-------|
| Local bus clock to output high impedance for LAD/LDP | t <sub>LBKHOZ2</sub> | _   | 2.6 | ns   | 5     |

Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(First two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t<sub>LBIXKH1</sub> symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t<sub>LBK</sub> clock reference (K) goes high (H), in this case for clock one (1). Also, t<sub>LBKHOX</sub> symbolizes local bus timing (LB) for the t<sub>LBK</sub> clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.
</sub>

2. All timings are in reference to LSYNC\_IN for PLL enabled and internal local bus clock for PLL bypass mode.

3. All signals are measured from  $BV_{DD}/2$  of the rising edge of LSYNC\_IN for PLL enabled or internal local bus clock for PLL bypass mode to 0.4 ×  $BV_{DD}$  of the signal in question for 2.5-V signaling levels.

4. Input timings are measured at the pin.

5. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

- 6. t<sub>LBOTOT</sub> is a measurement of the minimum time between the negation of LALE and any change in LAD. t<sub>LBOTOT</sub> is programmed with the LBCR[AHD] parameter.
- 7. Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between complementary signals at BV<sub>DD</sub>/2.

| Table 47 | describes the | general timing | parameters of the | local bus inter | face at $BV_{DD} =$ | 1.8 V DC. |
|----------|---------------|----------------|-------------------|-----------------|---------------------|-----------|
|          |               | L) L.          |                   |                 | 1717                |           |

| Parameter                                                                       | Symbol <sup>1</sup>                 | Min | Мах | Unit | Notes |
|---------------------------------------------------------------------------------|-------------------------------------|-----|-----|------|-------|
| Local bus cycle time                                                            | t <sub>LBK</sub>                    | 7.5 | 12  | ns   | 2     |
| Local bus duty cycle                                                            | t <sub>LBKH/</sub> t <sub>LBK</sub> | 43  | 57  | %    | —     |
| LCLK[n] skew to LCLK[m] or LSYNC_OUT                                            | t <sub>lbkskew</sub>                | —   | 150 | ps   | 7     |
| Input setup to local bus clock (except LUPWAIT)                                 | t <sub>LBIVKH1</sub>                | 2.6 | —   | ns   | 3, 4  |
| LUPWAIT input setup to local bus clock                                          | t <sub>LBIVKH2</sub>                | 1.9 | —   | ns   | 3, 4  |
| Input hold from local bus clock (except LUPWAIT)                                | t <sub>LBIXKH1</sub>                | 1.1 | —   | ns   | 3, 4  |
| LUPWAIT input hold from local bus clock                                         | t <sub>LBIXKH2</sub>                | 1.1 | —   | ns   | 3, 4  |
| LALE output transition to LAD/LDP output transition (LATCH setup and hold time) | t <sub>lbotot</sub>                 | 1.2 | —   | ns   | 6     |
| Local bus clock to output valid (except LAD/LDP and LALE)                       | t <sub>LBKHOV1</sub>                | —   | 3.2 | ns   | _     |
| Local bus clock to data valid for LAD/LDP                                       | t <sub>LBKHOV2</sub>                | —   | 3.2 | ns   | 3     |
| Local bus clock to address valid for LAD                                        | t <sub>LBKHOV3</sub>                | —   | 3.2 | ns   | 3     |
| Local bus clock to LALE assertion                                               | t <sub>LBKHOV4</sub>                | —   | 3.2 | ns   | 3     |
| Output hold from local bus clock (except LAD/LDP and LALE)                      | t <sub>LBKHOX1</sub>                | 0.9 | —   | ns   | 3     |
| Output hold from local bus clock for LAD/LDP                                    | t <sub>LBKHOX2</sub>                | 0.9 | —   | ns   | 3     |
| Local bus clock to output high Impedance (except LAD/LDP and LALE)              | t <sub>LBKHOZ1</sub>                | _   | 2.6 | ns   | 5     |

### Table 47. Local Bus General Timing Parameters (BV<sub>DD</sub> = 1.8 V DC)



Figure 28 through Figure 33 show the local bus signals.



Table 48 describes the general timing parameters of the local bus interface at  $V_{DD}$  = 3.3 V DC with PLL disabled.

| Parameter                                                             | Symbol <sup>1</sup>                 | Min  | Max | Unit | Notes |
|-----------------------------------------------------------------------|-------------------------------------|------|-----|------|-------|
| Local bus cycle time                                                  | t <sub>LBK</sub>                    | 12   | _   | ns   | 2     |
| Local bus duty cycle                                                  | t <sub>LBKH/</sub> t <sub>LBK</sub> | 43   | 57  | %    | _     |
| Internal launch/capture clock to LCLK delay                           | t <sub>LBKHKT</sub>                 | 1.2  | 4.9 | ns   | _     |
| Input setup to local bus clock (except LUPWAIT)                       | t <sub>LBIVKH1</sub>                | 7.4  | _   | ns   | 4, 5  |
| LUPWAIT input setup to local bus clock                                | t <sub>LBIVKL2</sub>                | 6.75 | _   | ns   | 4, 5  |
| Input hold from local bus clock (except LUPWAIT)                      | t <sub>LBIXKH1</sub>                | -0.2 | _   | ns   | 4, 5  |
| LUPWAIT input hold from local bus clock                               | t <sub>LBIXKL2</sub>                | -0.2 | _   | ns   | 4, 5  |
| LALE output transition to LAD/LDP output transition (LATCH hold time) | t <sub>lbotot</sub>                 | 1.5  | —   | ns   | 6     |
| Local bus clock to output valid (except LAD/LDP and LALE)             | t <sub>LBKLOV1</sub>                | —    | 1.6 | ns   | _     |

Table 48. Local Bus General Timing Parameters—PLL Bypassed



JTAG

# 12 JTAG

This section describes the AC electrical specifications for the IEEE 1149.1 (JTAG) interface of the MPC8544E.

# 12.1 JTAG DC Electrical Characteristics

Table 49 provides the DC electrical characteristics for the JTAG interface.

### Table 49. JTAG DC Electrical Characteristics

| Parameter                                                                      | Symbol          | Min  | Мах                    | Unit | Notes |
|--------------------------------------------------------------------------------|-----------------|------|------------------------|------|-------|
| High-level input voltage                                                       | V <sub>IH</sub> | 2    | OV <sub>DD</sub> + 0.3 | V    |       |
| Low-level input voltage                                                        | V <sub>IL</sub> | -0.3 | 0.8                    | V    |       |
| Input current (OV <sub>IN</sub> = 0 V or OV <sub>IN</sub> = OV <sub>DD</sub> ) | I <sub>IN</sub> | —    | ±5                     | μA   | 1     |
| High-level output voltage ( $OV_{DD} = min, I_{OH} = -2 mA$ )                  | V <sub>OH</sub> | 2.4  | —                      | V    | _     |
| Low-level output voltage ( $OV_{DD} = min, I_{OL} = 2 mA$ )                    | V <sub>OL</sub> | —    | 0.4                    | V    | _     |

Note:

1. Note that the symbol  $V_{IN}$ , in this case, represents the  $OV_{IN}$ .

# **12.2 JTAG AC Electrical Specifications**

Table 50 provides the JTAG AC timing specifications as defined in Figure 34 through Figure 37.

## Table 50. JTAG AC Timing Specifications (Independent of SYSCLK)<sup>1</sup>

At recommended operating conditions (see Table 3).

| Parameter                                            | Symbol <sup>2</sup>                        | Min      | Max      | Unit | Notes |
|------------------------------------------------------|--------------------------------------------|----------|----------|------|-------|
| JTAG external clock frequency of operation           | f <sub>JTG</sub>                           | 0        | 33.3     | MHz  | —     |
| JTAG external clock cycle time                       | t <sub>JTG</sub>                           | 30       | _        | ns   | —     |
| JTAG external clock pulse width measured at 1.4 V    | t <sub>JTKHKL</sub>                        | 15       | —        | ns   | —     |
| JTAG external clock rise and fall times              | t <sub>JTGR</sub> & t <sub>JTGF</sub>      | 0        | 2        | ns   | —     |
| TRST assert time                                     | t <sub>TRST</sub>                          | 25       | —        | ns   | 3     |
| Input setup times:<br>Boundary-scan data<br>TMS, TDI | t <sub>JTDVKH</sub><br>t <sub>JTIVKH</sub> | 4<br>0   |          | ns   | 4     |
| Input hold times:<br>Boundary-scan data<br>TMS, TDI  | t <sub>JTDXKH</sub><br>t <sub>JTIXKH</sub> | 20<br>25 | _        | ns   | 4     |
| Valid times:<br>Boundary-scan data<br>TDO            | t <sub>JTKLDV</sub><br>t <sub>JTKLOV</sub> | 4<br>4   | 20<br>25 | ns   | 5     |
| Output hold times:<br>Boundary-scan data<br>TDO      | t <sub>jtkldx</sub><br>t <sub>jtklox</sub> | 2.5<br>4 |          | ns   | 5     |



# 13.2 I<sup>2</sup>C AC Electrical Specifications

Table 52 provides the AC timing parameters for the  $I^2C$  interfaces.

### Table 52. I<sup>2</sup>C AC Electrical Specifications

All values refer to  $V_{IH}$  (min) and  $V_{IL}$  (max) levels (see Table 51).

| Parameter                                                                                    | Symbol <sup>1</sup> | Min                     | Мах | Unit | Notes |
|----------------------------------------------------------------------------------------------|---------------------|-------------------------|-----|------|-------|
| SCL clock frequency                                                                          | f <sub>I2C</sub>    | 0                       | 400 | kHz  | —     |
| Low period of the SCL clock                                                                  | t <sub>I2CL</sub>   | 1.3                     | —   | μS   | —     |
| High period of the SCL clock                                                                 | t <sub>I2CH</sub>   | 0.6                     | —   | μS   | —     |
| Setup time for a repeated START condition                                                    | t <sub>I2SVKH</sub> | 0.6                     | —   | μS   | —     |
| Hold time (repeated) START condition (after this period, the first clock pulse is generated) | t <sub>I2SXKL</sub> | 0.6                     | —   | μs   | —     |
| Data setup time                                                                              | t <sub>i2DVKH</sub> | 100                     | —   | ns   | —     |
| Data hold time:<br>CBUS compatible masters<br>I <sup>2</sup> C bus devices                   | t <sub>I2DXKL</sub> | 0                       |     | μs   | 2     |
| Data output delay time                                                                       | t <sub>I2OVKL</sub> | —                       | 0.9 |      | 3     |
| Set-up time for STOP condition                                                               | t <sub>I2PVKH</sub> | 0.6                     | —   | μS   | _     |
| Rise time of both SDA and SCL signals                                                        | t <sub>I2CR</sub>   | 20 + 0.1 C <sub>b</sub> | 300 | ns   | 4     |
| Fall time of both SDA and SCL signals                                                        | t <sub>I2CF</sub>   | 20 + 0.1 C <sub>b</sub> | 300 | ns   | 4     |
| Bus free time between a STOP and START condition                                             | t <sub>I2KHDX</sub> | 1.3                     | —   | μS   | —     |
| Noise margin at the LOW level for each connected device (including hysteresis)               | V <sub>NL</sub>     | $0.1 \times OV_{DD}$    | —   | V    | —     |
| Noise margin at the HIGH level for each connected device (including hysteresis)              | V <sub>NH</sub>     | $0.2 \times OV_{DD}$    | _   | V    | —     |

#### Notes:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t<sub>12DVKH</sub> symbolizes I<sup>2</sup>C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the t<sub>12C</sub> clock reference (K) going to the high (H) state or setup time. Also, t<sub>12SXKL</sub> symbolizes I<sup>2</sup>C timing (I2) for the time that the data with respect to the start condition (S) went invalid (X) relative to the t<sub>12C</sub> clock reference (K) going to the stop condition (P) reaching the valid state (V) relative to the t<sub>12C</sub> clock reference (K) going to the stop condition (P) reaching the valid state (V) relative to the t<sub>12C</sub> clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
  </sub></sub>
- The MPC8544E provides a hold time of at least 300 ns for the SDA signal (referred to the V<sub>IH</sub>min of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- 3. The maximum t<sub>I2DXKL</sub> has only to be met if the device does not stretch the LOW period (t<sub>I2CL</sub>) of the SCL signal.
- 4.  $C_B$  = capacitance of one bus line in pF.

1<sup>2</sup>C



## 16.2.4 AC Requirements for SerDes Reference Clocks

The clock driver selected should provide a high quality reference clock with low phase noise and cycle-to-cycle jitter. Phase noise less than 100 kHz can be tracked by the PLL and data recovery loops and is less of a problem. Phase noise above 15 MHz is filtered by the PLL. The most problematic phase noise occurs in the 1–15 MHz range. The source impedance of the clock driver should be 50  $\Omega$  to match the transmission line and reduce reflections which are a source of noise to the system.

Table 57 describes some AC parameters common to SGMII, and PCI Express protocols.

| Parameter                                                                                    | Symbol             | Min  | Max  | Unit | Notes |
|----------------------------------------------------------------------------------------------|--------------------|------|------|------|-------|
| Rising Edge Rate                                                                             | Rise Edge Rate     | 1.0  | 4.0  | V/ns | 2, 3  |
| Falling Edge Rate                                                                            | Fall Edge Rate     | 1.0  | 4.0  | V/ns | 2, 3  |
| Differential Input High Voltage                                                              | V <sub>IH</sub>    | +200 | _    | mV   | 2     |
| Differential Input Low Voltage                                                               | V <sub>IL</sub>    | _    | -200 | mV   | 2     |
| Rising edge rate (SD <i>n</i> _REF_CLK) to falling edge rate (SD <i>n</i> _REF_CLK) matching | Rise-Fall Matching | _    | 20   | %    | 1, 4  |

### Table 57. SerDes Reference Clock Common AC Parameters

#### Notes:

- 1. Measurement taken from single ended waveform.
- 2. Measurement taken from differential waveform.
- 3. Measured from –200 mV to +200 mV on the differential waveform (derived from SD*n*\_REF\_CLK minus SD*n*\_REF\_CLK). The signal must be monotonic through the measurement region for rise and fall time. The 400 mV measurement window is centered on the differential zero crossing. See Figure 53.
- 4. Matching applies to rising edge rate for SDn\_REF\_CLK and falling edge rate for SDn\_REF\_CLK. It is measured using a 200 mV window centered on the median cross point where SDn\_REF\_CLK rising meets SDn\_REF\_CLK falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The rise edge rate of SDn\_REF\_CLK should be compared to the fall edge rate of SDn\_REF\_CLK, the maximum allowed difference should not exceed 20% of the slowest edge rate. See Figure 54.



Figure 53. Differential Measurement Points for Rise and Fall Time



| Symbol                             | Parameter                                                                                                      | Min | Nom | Мах           | Unit | Comments                                                                                                                                                                                                                                                |
|------------------------------------|----------------------------------------------------------------------------------------------------------------|-----|-----|---------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V <sub>TX-RCV</sub> -DETECT        | Amount of voltage<br>change allowed during<br>receiver detection                                               |     | _   | 600           | mV   | The total amount of voltage change that a transmitter can apply to sense whether a low impedance receiver is present. See Note 6.                                                                                                                       |
| V <sub>TX-DC-CM</sub>              | TX DC common mode voltage                                                                                      | 0   | —   | 3.6           | V    | The allowed DC common mode voltage under any conditions. See Note 6.                                                                                                                                                                                    |
| I <sub>TX-SHORT</sub>              | TX short circuit current limit                                                                                 | —   | —   | 90            | mA   | The total current the transmitter can provide when shorted to its ground.                                                                                                                                                                               |
| T <sub>TX-IDLE-MIN</sub>           | Minimum time spent in electrical idle                                                                          | 50  | _   | _             | UI   | Minimum time a transmitter must be in<br>electrical idle utilized by the receiver to<br>start looking for an electrical idle exit after<br>successfully receiving an electrical idle<br>ordered set.                                                    |
| T <sub>TX-IDLE-SET-TO-IDLE</sub>   | Maximum time to<br>transition to a valid<br>electrical idle after<br>sending an electrical<br>Idle ordered set |     | _   | 20            | UI   | After sending an electrical idle ordered set,<br>the transmitter must meet all electrical idle<br>specifications within this time. This is<br>considered a debounce time for the<br>transmitter to meet electrical idle after<br>transitioning from LO. |
| T <sub>TX</sub> -IDLE-TO-DIFF-DATA | Maximum time to<br>transition to valid TX<br>specifications after<br>leaving an electrical<br>idle condition   | _   | _   | 20            | UI   | Maximum time to meet all TX<br>specifications when transitioning from<br>electrical idle to sending differential data.<br>This is considered a debounce time for the<br>TX to meet all TX specifications after<br>leaving electrical idle.              |
| RL <sub>TX-DIFF</sub>              | Differential return loss                                                                                       | 12  | —   | —             | dB   | Measured over 50 MHz to 1.25 GHz. See Note 4.                                                                                                                                                                                                           |
| RL <sub>TX-CM</sub>                | Common mode return loss                                                                                        | 6   | —   | —             | dB   | Measured over 50 MHz to 1.25 GHz. See Note 4.                                                                                                                                                                                                           |
| Z <sub>TX-DIFF-DC</sub>            | DC differential TX impedance                                                                                   | 80  | 100 | 120           | Ω    | TX DC differential mode low impedance.                                                                                                                                                                                                                  |
| Z <sub>TX-DC</sub>                 | Transmitter DC impedance                                                                                       | 40  | —   | —             | Ω    | Required TX D+ as well as D– DC<br>Impedance during all states.                                                                                                                                                                                         |
| L <sub>TX-SKEW</sub>               | Lane-to-lane output skew                                                                                       | _   | —   | 500 +<br>2 UI | ps   | Static skew between any two transmitter lanes within a single link.                                                                                                                                                                                     |
| C <sub>TX</sub>                    | AC coupling capacitor                                                                                          | 75  | _   | 200           | nF   | All transmitters shall be AC coupled. The AC coupling is required either within the media or within the transmitting component itself.                                                                                                                  |



PCI Express

The eye diagram must be valid for any 250 consecutive UIs.

A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. The eye diagram is created using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the TX UI.

## NOTE

The reference impedance for return loss measurements is 50  $\Omega$  to ground for both the D+ and D– line (that is, as measured by a vector network analyzer with 50- $\Omega$  probes, see Figure 57). Note that the series capacitors, CTX, are optional for the return loss measurement.



Figure 57. Minimum Receiver Eye Timing and Voltage Compliance Specification

## 17.5.1 Compliance Test and Measurement Load

The AC timing and voltage parameters must be verified at the measurement point, as specified within 0.2 inches of the package pins, into a test/measurement load shown in Figure 58.

## NOTE

The allowance of the measurement point to be within 0.2 inches of the package pins is meant to acknowledge that package/board routing may benefit from D+ and D- not being exactly matched in length at the package pin boundary.



Figure 58. Compliance Test/Measurement Load



# **18 Package Description**

This section details package parameters, pin assignments, and dimensions.

## 18.1 Package Parameters for the MPC8544E FC-PBGA

The package parameters for flip chip plastic ball grid array (FC-PBGA) are provided in Table 61.

| Parameter               | PBGA <sup>1</sup>   |
|-------------------------|---------------------|
| Package outline         | 29 mm × 29 mm       |
| Interconnects           | 783                 |
| Ball pitch              | 1 mm                |
| Ball diameter (typical) | 0.6 mm              |
| Solder ball (Pb-free)   | 96.5% Sn<br>3.5% Ag |

### Table 61. Package Parameters

Note:

1. (FC-PBGA) without a lid.



Package Description

# 18.2 Mechanical Dimensions of the MPC8544E FC-PBGA

Figure 59 shows the mechanical dimensions and bottom surface nomenclature of the MPC8544E, 783 FC-PBGA package without a lid.



### Notes:

- 1. All dimensions are in millimeters.
- 2. Dimensions and tolerances per ASME Y14.5M-1994.
- 3. Maximum solder ball diameter measured parallel to datum A.
- 4. Datum A, the seating plane, is determined by the spherical crowns of the solder balls.
- 5. Parallelism measurement shall exclude any effect of mark on top surface of package.
- 6. Capacitors may not be present on all parts. Care must be taken not to short exposed metal capacitor pads.
- 7. All dimensions are symmetric across the package center lines, unless dimensioned otherwise.

### Figure 59. Mechanical Dimensions and Bottom Surface Nomenclature of the MPC8544E FC-PBGA without a Lid



| Signal                       | Package Pin Number                             | Pin Type | Power<br>Supply  | Notes   |
|------------------------------|------------------------------------------------|----------|------------------|---------|
| LCS6/DMA_DACK2               | J16                                            | 0        | BV <sub>DD</sub> | 1       |
| LCS7/DMA_DDONE2              | L18                                            | 0        | BV <sub>DD</sub> | 1       |
| LWE0/LBS0/LSDDQM[0]          | J22                                            | 0        | BV <sub>DD</sub> | 4, 8    |
| LWE1/LBS1/LSDDQM[1]          | H22                                            | 0        | BV <sub>DD</sub> | 4, 8    |
| LWE2/LBS2/LSDDQM[2]          | H23                                            | 0        | BV <sub>DD</sub> | 4, 8    |
| LWE3/LBS3/LSDDQM[3]          | H21                                            | 0        | BV <sub>DD</sub> | 4, 8    |
| LALE                         | J26                                            | 0        | BV <sub>DD</sub> | 4, 7, 8 |
| LBCTL                        | J25                                            | 0        | BV <sub>DD</sub> | 4, 7, 8 |
| LGPL0/LSDA10                 | J20                                            | 0        | BV <sub>DD</sub> | 4, 8    |
| LGPL1/LSDWE                  | К20                                            | 0        | BV <sub>DD</sub> | 4, 8    |
| LGPL2/LOE/LSDRAS             | G20                                            | 0        | BV <sub>DD</sub> | 4, 7, 8 |
| LGPL3/LSDCAS                 | H18                                            | 0        | BV <sub>DD</sub> | 4, 8    |
| LGPL4/LGTA/LUPWAIT/<br>LPBSE | GTA/LUPWAIT/ L20                               |          | BV <sub>DD</sub> | 28      |
| LGPL5                        | К19                                            | 0        | BV <sub>DD</sub> | 4, 8    |
| LCKE                         | L17                                            | 0        | BV <sub>DD</sub> | —       |
| LCLK[0:2]                    | H24, J24, H25                                  | 0        | BV <sub>DD</sub> | —       |
| LSYNC_IN                     | D27                                            | I        | BV <sub>DD</sub> | —       |
| LSYNC_OUT                    | D28                                            | 0        | BV <sub>DD</sub> | —       |
|                              | DMA                                            |          |                  |         |
| DMA_DACK[0:1]                | Y13, Y12                                       | 0        | OV <sub>DD</sub> | 4, 8, 9 |
| DMA_DREQ[0:1]                | AA10, AA11                                     | I        | OV <sub>DD</sub> | —       |
| DMA_DDONE[0:1]               | AA7, Y11                                       | 0        | OV <sub>DD</sub> | —       |
|                              | Programmable Interrupt Contro                  | oller    |                  | ·       |
| UDE                          | AH15                                           | I        | OV <sub>DD</sub> | —       |
| MCP                          | AG18                                           | I        | OV <sub>DD</sub> | —       |
| IRQ[0:7]                     | AG22, AF17, AD21, AF19, AG17, AF16, AC23, AC22 | I        | OV <sub>DD</sub> | _       |
| IRQ[8]                       | AC19                                           | I        | OV <sub>DD</sub> | —       |
| IRQ[9]/DMA_DREQ3             | AG20                                           | I        | OV <sub>DD</sub> | 1       |
| IRQ[10]/DMA_DACK3            | AE27                                           | I/O      | OV <sub>DD</sub> | 1       |
| IRQ[11]/DMA_DDONE3           | AE24                                           | I/O      | OV <sub>DD</sub> | 1       |
| IRQ_OUT                      | AD14                                           | 0        | OV <sub>DD</sub> | 2       |

### Table 62. MPC8544E Pinout Listing (continued)



Table 71 provides the thermal resistance with heat sink in open flow.

| Heat Sink with Thermal Grease                 | Air Flow           | Thermal Resistance (°C/W) |
|-----------------------------------------------|--------------------|---------------------------|
| Wakefield $53 \times 53 \times 25$ mm pin fin | Natural convection | 6.1                       |
| Wakefield $53 \times 53 \times 25$ mm pin fin | 1 m/s              | 3.0                       |
| Aavid $35 \times 31 \times 23$ mm pin fin     | Natural convection | 8.1                       |
| Aavid $35 \times 31 \times 23$ mm pin fin     | 1 m/s              | 4.3                       |
| Aavid $30 \times 30 \times 9.4$ mm pin fin    | Natural convection | 11.6                      |
| Aavid $30 \times 30 \times 9.4$ mm pin fin    | 1 m/s              | 6.7                       |
| Aavid $43 \times 41 \times 16.5$ mm pin fin   | Natural convection | 8.3                       |
| Aavid $43 \times 41 \times 16.5$ mm pin fin   | 1 m/s              | 4.3                       |

Table 71. Thermal Resistance with Heat Sink in Open Flow

Simulations with heat sinks were done with the package mounted on the 2s2p thermal test board. The thermal interface material was a typical thermal grease such as Dow Corning 340 or Wakefield 120 grease. For system thermal modeling, the MPC8544E thermal model without a lid is shown in Figure 60. The substrate is modeled as a block  $29 \times 29 \times 1.18$  mm with an in-plane conductivity of 18.0 W/m•K and a through-plane conductivity of 1.0 W/m•K. The solder balls and air are modeled as a single block  $29 \times 29 \times 0.58$  mm with an in-plane conductivity of 0.034 W/m•K and a through plane conductivity of 12.1 W/m•K. The die is modeled as  $7.6 \times 8.4$  mm with a thickness of 0.75 mm. The bump/underfill layer is modeled as a collapsed thermal resistance between the die and substrate assuming a conductivity of 6.5 W/m•K in the thickness dimension of 0.07 mm. The die is centered on the substrate. The thermal model uses approximate dimensions to reduce grid. Please refer to Figure 59 for actual dimensions.

# 20.2 Recommended Thermal Model

Table 72 shows the MPC8544E thermal model.

| Table 72. MPC | C8544EThermal Model |
|---------------|---------------------|
|---------------|---------------------|

| Conductivity                                                                     | Value                 | Units |
|----------------------------------------------------------------------------------|-----------------------|-------|
| Die (7.6 × 8.4 × 0.75mm)                                                         |                       |       |
| Silicon                                                                          | Temperature dependent | _     |
| Bump/Underfill (7.6 $\times$ 8.4 $\times$ 0.070 mm) Collapsed Thermal Resistance |                       |       |
| Kz                                                                               | 6.5                   | W/m∙K |
| Substrate (29 × 29 × 1.18 mm)                                                    |                       |       |
| Кх                                                                               | 18                    | W/m∙K |
| Ку                                                                               | 18                    |       |
| Kz                                                                               | 1.0                   |       |



Figure 62 depicts the primary heat transfer path for a package with an attached heat sink mounted to a printed-circuit board.



(Note the internal versus external package resistance.)

### Figure 62. Package with Heat Sink Mounted to a Printed-Circuit Board

The heat sink removes most of the heat from the device. Heat generated on the active side of the chip is conducted through the silicon and through the heat sink attach material (or thermal interface material), and finally to the heat sink. The junction-to-case thermal resistance is low enough that the heat sink attach material and heat sink thermal resistance are the dominant terms.

## 20.3.2 Thermal Interface Materials

A thermal interface material is required at the package-to-heat sink interface to minimize the thermal contact resistance. For those applications where the heat sink is attached by spring clip mechanism, Figure 63 shows the thermal performance of three thin-sheet thermal-interface materials (silicone, graphite/oil, floroether oil), a bare joint, and a joint with thermal grease as a function of contact pressure. As shown, the performance of these thermal interface materials improves with increasing contact pressure. The use of thermal grease significantly reduces the interface thermal resistance. The bare joint results in a thermal resistance approximately six times greater than the thermal grease joint.



System Design Information

# 21.5 Connection Recommendations

To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal level. All unused active low inputs should be tied to  $V_{DD}$ ,  $TV_{DD}$ ,  $BV_{DD}$ ,  $OV_{DD}$ ,  $GV_{DD}$ , and  $LV_{DD}$  as required. All unused active high inputs should be connected to GND. All NC (no connect) signals must remain unconnected. Power and ground connections must be made to all external  $V_{DD}$ ,  $TV_{DD}$ ,  $BV_{DD}$ ,  $OV_{DD}$ ,  $GV_{DD}$ , and  $LV_{DD}$ ,  $BV_{DD}$ ,  $OV_{DD}$ ,  $GV_{DD}$ , and  $LV_{DD}$ , and GND pins of the device.

# 21.6 Pull-Up and Pull-Down Resistor Requirements

The MPC8544E requires weak pull-up resistors (2–10 k $\Omega$  is recommended) on open drain type pins including I<sup>2</sup>C pins and MPIC interrupt pins.

Correct operation of the JTAG interface requires configuration of a group of system control pins as demonstrated in Figure 69. Care must be taken to ensure that these pins are maintained at a valid deasserted state under normal operating conditions as most have asynchronous behavior and spurious assertion will give unpredictable results.

The following pins must NOT be pulled down during power-on reset: TSEC3\_TXD[3], <u>HRESET\_REQ</u>, TRIG\_OUT/READY/QUIESCE, MSRCID[2:4], ASLEEP. The <u>DMA\_DACK[0:1]</u> and <u>TEST\_SEL</u> pins must be set to a proper state during POR configuration. Refer to the pinout listing table (Table 62) for more details. Refer to the *PCI 2.2 Local Bus Specifications*, for all pullups required for PCI.

# 21.7 Output Buffer DC Impedance

The MPC8544E drivers are characterized over process, voltage, and temperature. For all buses, the driver is a push-pull single-ended driver type (open drain for I<sup>2</sup>C). To measure  $Z_0$  for the single-ended drivers, an external resistor is connected from the chip pad to  $OV_{DD}$  or GND. Then, the value of each resistor is varied until the pad voltage is  $OV_{DD}/2$  (see Figure 67). The output impedance is the average of two components, the resistances of the pull-up and pull-down devices. When data is held high, SW1 is closed (SW2 is open) and R<sub>P</sub> is trimmed until the voltage at the pad equals  $OV_{DD}/2$ . R<sub>P</sub> then becomes the



**Document Revision History** 

# 23 Document Revision History

This table provides a revision history for the MPC8544E hardware specification.

#### Revision Date Substantive Change(s) 8 09/2015 • In Table 10 and Table 12, removed the output leakage current rows and removed table note 4. 7 06/2014 • In Table 75, "Device Nomenclature," added full Pb-free part code. • In Table 75, "Device Nomenclature," added footnotes 3 and 4. 05/2011 6 Updated the value of t<sub>JTKLDX</sub> to 2.5 ns from 4ns in Table 50. 5 01/2011 • Updated Table 75. 4 09/2010 • Modified local bus information in Section 1.1, "Key Features," to show max local bus frequency as 133 MHz. Added footnote 28 to Table 62. • Updated solder-ball parameter in Table 61. 11/2009 • Update Section 20.3.4, "Temperature Diode," 3 • Update Table 61 Package Parameters from 95.5%sn to 96.5%sn 2 01/2009 • Update power number table to include 1067 MHz/533 MHz power numbers. Remove Part number tables from Hardware spec. The part numbers are available on Freescale web site product page. Removed I/O power numbers from the Hardware spec. and added the table to bring-up guide application note. • Update t<sub>DDKHMP</sub>, t<sub>DDKHME</sub> in Table 18. • Updated RX\_CLK duty cycle min, and max value to meet the industry standard GMII duty cycle.

• Update paragraph Section 21.3, "Decoupling Recommendations."

• Update Section 22, "Device Nomenclature," with regards to Commercial Tier.

Update in Table 48 Local Bus General Timing Parameters—PLL Bypassed

Update in Table 18 DDR SDRAM Output AC Timing Specifications tMCK Max value

• In Table 40, removed note 1 and renumbered remaining note.

Improvement to Section 16, "High-Speed Serial Interfaces (HSSI)

• Update Figure 5 DDR Output Timing Diagram.

Update Figure 59 Mechanical Dimensions

### Table 76. MPC8544E Document Revision History

1

0

06/2008

04/2008

Initial release.



#### How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and PowerQUICC are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2008-2011, 2014-2015 Freescale Semiconductor, Inc.



Document Number: MPC8544EEC Rev. 8 09/2015

