

#### Welcome to E-XFL.COM

#### Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details

| Product Status                  | Obsolete                                                              |
|---------------------------------|-----------------------------------------------------------------------|
| Core Processor                  | PowerPC e500                                                          |
| Number of Cores/Bus Width       | 1 Core, 32-Bit                                                        |
| Speed                           | 1.067GHz                                                              |
| Co-Processors/DSP               | Signal Processing; SPE, Security; SEC                                 |
| RAM Controllers                 | DDR, DDR2, SDRAM                                                      |
| Graphics Acceleration           | No                                                                    |
| Display & Interface Controllers | -                                                                     |
| Ethernet                        | 10/100/1000Mbps (2)                                                   |
| SATA                            | -                                                                     |
| USB                             | -                                                                     |
| Voltage - I/O                   | 1.8V, 2.5V, 3.3V                                                      |
| Operating Temperature           | 0°C ~ 105°C (TA)                                                      |
| Security Features               | Cryptography, Random Number Generator                                 |
| Package / Case                  | 783-BBGA, FCBGA                                                       |
| Supplier Device Package         | 783-FCPBGA (29x29)                                                    |
| Purchase URL                    | https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8544evtarj |
|                                 |                                                                       |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

**Electrical Characteristics** 

|                                     | Characteristic                                                                                         | Symbol                               | Recommended<br>Value                               | Unit | Notes |
|-------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------|------|-------|
| Three-speed Ethe                    | ernet I/O voltage                                                                                      | LV <sub>DD</sub><br>(eTSEC1)         | 3.3 V ± 165 mV<br>2.5 V ± 125 mV                   | V    | 4     |
|                                     |                                                                                                        | TV <sub>DD</sub><br>(eTSEC3)         | 3.3 V ± 165 mV<br>2.5 V ± 125 mV                   |      |       |
| PCI, DUART, PCI<br>and JTAG I/O vol | Express, system control and power management, I <sup>2</sup> C, tage                                   | OV <sub>DD</sub>                     | 3.3 V ± 165 mV                                     | V    | 3     |
| Local bus I/O volt                  | age                                                                                                    | BV <sub>DD</sub>                     | 3.3 V ± 165 mV<br>2.5 V ± 125 mV<br>1.8 V ± 90 mV  | V    | 5     |
| Input voltage                       | DDR and DDR2 DRAM signals                                                                              | MV <sub>IN</sub>                     | GND to GV <sub>DD</sub>                            | V    | 2     |
|                                     | DDR and DDR2 DRAM reference                                                                            | MV <sub>REF</sub>                    | GND to GV <sub>DD</sub> /2                         | V    | 2     |
|                                     | Three-speed Ethernet signals                                                                           | LV <sub>IN</sub><br>TV <sub>IN</sub> | GND to LV <sub>DD</sub><br>GND to TV <sub>DD</sub> | V    | 4     |
|                                     | Local bus signals                                                                                      | BV <sub>IN</sub>                     | GND to BV <sub>DD</sub>                            | V    | 5     |
|                                     | PCI, Local bus, DUART, SYSCLK, system control and power management, I <sup>2</sup> C, and JTAG signals | OV <sub>IN</sub>                     | GND to OV <sub>DD</sub>                            | V    | 3     |
| Junction tempera                    | ture range                                                                                             | Τj                                   | 0 to 105                                           | °C   | —     |

### Table 2. Recommended Operating Conditions (continued)

Notes:

1. This voltage is the input to the filter discussed in Section 21.2, "PLL Power Supply Filtering," and not necessarily the voltage at the AV<sub>DD</sub> pin, which may be reduced from V<sub>DD</sub> by the filter.

2. Caution: MV<sub>IN</sub> must not exceed GV<sub>DD</sub> by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.

3. Caution: OV<sub>IN</sub> must not exceed OV<sub>DD</sub> by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.

4. Caution: T/LV<sub>IN</sub> must not exceed T/ LV<sub>DD</sub> by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.

5. Caution: BV<sub>IN</sub> must not exceed BV<sub>DD</sub> by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.

**Power Characteristics** 



# **3** Power Characteristics

The estimated typical core power dissipation for the core complex bus (CCB) versus the core frequency for this family of PowerQUICC III devices is shown in Table 4.

| Power Mode | Core Frequency<br>(MHz) | Platform Frequency<br>(MHz) | V <sub>DD</sub><br>(V) | Junction<br>Temperature (°C) | Power<br>(W) | Notes |
|------------|-------------------------|-----------------------------|------------------------|------------------------------|--------------|-------|
| Typical    | 667                     | 333                         | 1.0                    | 65                           | 2.6          | 1, 2  |
| Thermal    |                         |                             |                        | 105                          | 4.5          | 1, 3  |
| Maximum    |                         |                             |                        |                              | 7.15         | 1, 4  |
| Typical    | 800                     | 400                         | 1.0                    | 65                           | 2.9          | 1, 2  |
| Thermal    |                         |                             |                        | 105                          | 4.8          | 1, 3  |
| Maximum    |                         |                             |                        |                              | 7.35         | 1, 4  |
| Typical    | 1000                    | 400                         | 1.0                    | 65                           | 3.6          | 1, 2  |
| Thermal    |                         |                             |                        | 105                          | 5.3          | 1, 3  |
| Maximum    |                         |                             |                        |                              | 7.5          | 1, 4  |
| Typical    | 1067                    | 533                         | 1.0                    | 65                           | 3.9          | 1, 2  |
| Thermal    |                         |                             |                        | 105                          | 6.0          | 1, 3  |
| Maximum    |                         |                             |                        | 105                          | 7.7          | 1, 4  |

### Table 4. MPC8544ECore Power Dissipation

#### Notes:

1. These values specify the power consumption at nominal voltage and apply to all valid processor bus frequencies and configurations. The values do not include power dissipation for I/O supplies.

- Typical power is an average value measured at the nominal recommended core voltage (V<sub>DD</sub>) and 65°C junction temperature (see Table 2) while running the Dhrystone 2.1 benchmark.
- Thermal power is the average power measured at nominal core voltage (V<sub>DD</sub>) and maximum operating junction temperature (see Table 2) while running the Dhrystone 2.1 benchmark.
- 4. Maximum power is the maximum power measured at nominal core voltage (V<sub>DD</sub>) and maximum operating junction temperature (see Table 2) while running a smoke test which includes an entirely L1-cache-resident, contrived sequence of instructions which keep the execution unit maximally busy.

# 4 Input Clocks

This section contains the following subsections:

- Section 4.1, "System Clock Timing"
- Section 4.2, "Real-Time Clock Timing"
- Section 4.3, "eTSEC Gigabit Reference Clock Timing"
- Section 4.4, "Platform to FIFO Restrictions"
- Section 4.5, "Other Input Clocks"



Figure 5 shows the DDR SDRAM output timing diagram.



Figure 5. DDR and DDR2 SDRAM Output Timing Diagram

Figure 6 provides the AC test load for the DDR bus.



# 7 DUART

This section describes the DC and AC electrical specifications for the DUART interface of the MPC8544E.

# 7.1 DUART DC Electrical Characteristics

Table 19 provides the DC electrical characteristics for the DUART interface.

Table 19. DUART DC Electrical Characteristics

| Parameter                                                     | Symbol          | Min  | Max                    | Unit | Notes |
|---------------------------------------------------------------|-----------------|------|------------------------|------|-------|
| High-level input voltage                                      | V <sub>IH</sub> | 2    | OV <sub>DD</sub> + 0.3 | V    | —     |
| Low-level input voltage                                       | V <sub>IL</sub> | -0.3 | 0.8                    | V    | —     |
| Input current ( $V_{IN} = 0 V \text{ or } V_{IN} = V_{DD}$ )  | I <sub>IN</sub> |      | ±5                     | μA   | 1     |
| High-level output voltage ( $OV_{DD} = min, I_{OH} = -2 mA$ ) | V <sub>OH</sub> | 2.4  |                        | V    |       |



### 8.7.5.2 RMII Receive AC Timing Specifications

Table 39 shows the RMII receive AC timing specifications.

### Table 39. RMII Receive AC Timing Specifications

At recommended operating conditions with  $L/TV_{DD}$  of 3.3 V ± 5%.or 2.5 V ± 5%.

| Parameter/Condition                                          | Symbol <sup>1</sup> | Min  | Тур  | Мах  | Unit | Notes |
|--------------------------------------------------------------|---------------------|------|------|------|------|-------|
| REF_CLK clock period                                         | t <sub>RMR</sub>    | 15.0 | 20.0 | 25.0 | ns   | —     |
| REF_CLK duty cycle                                           | t <sub>RMRH</sub>   | 35   | 50   | 65   | %    | —     |
| REF_CLK peak-to-peak jitter                                  | t <sub>RMRJ</sub>   | _    | _    | 250  | ps   | —     |
| Rise time REF_CLK (20%-80%)                                  | t <sub>RMRR</sub>   | 1.0  |      | 2.0  | ns   | —     |
| Fall time REF_CLK (80%-20%)                                  | t <sub>RMRF</sub>   | 1.0  |      | 2.0  | ns   | —     |
| RXD[1:0], CRS_DV, RX_ER setup time to<br>REF_CLK rising edge | t <sub>RMRDV</sub>  | 4.0  | _    | _    | ns   | —     |
| RXD[1:0], CRS_DV, RX_ER hold time to REF_CLK rising edge     | t <sub>RMRDX</sub>  | 2.0  | _    | _    | ns   | —     |

### Note:

1. The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)</sub>(reference)(state)(signal)(state) for outputs. For example, t<sub>MRDVKH</sub> symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t<sub>MRX</sub> clock reference (K) going to the high (H) state or setup time. Also, t<sub>MRDXKL</sub> symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t<sub>MRX</sub> clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t<sub>MRX</sub> represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).</sub>

Figure 24 provides the AC test load for eTSEC.



Figure 24. eTSEC AC Test Load

Figure 25 shows the RMII receive AC timing diagram.



Figure 25. RMII Receive AC Timing Diagram



Local Bus

# 10 Local Bus

This section describes the DC and AC electrical specifications for the local bus interface of the MPC8544E.

# **10.1 Local Bus DC Electrical Characteristics**

Table 42 provides the DC electrical characteristics for the local bus interface operating at  $BV_{DD} = 3.3 \text{ V DC}$ .

| Parameter                                                                       | Symbol          | Min  | Мах                    | Unit | Notes |
|---------------------------------------------------------------------------------|-----------------|------|------------------------|------|-------|
| High-level input voltage                                                        | V <sub>IH</sub> | 2    | BV <sub>DD</sub> + 0.3 | V    | —     |
| Low-level input voltage                                                         | V <sub>IL</sub> | -0.3 | 0.8                    | V    | —     |
| Input current (BV <sub>IN</sub> = 0 V or BV <sub>IN</sub> = BOV <sub>DD</sub> ) | I <sub>IN</sub> | —    | ±5                     | μA   | 1     |
| High-level output voltage ( $BV_{DD} = min$ , $I_{OH} = -2 mA$ )                | V <sub>OH</sub> | 2.4  | —                      | V    | —     |
| Low-level output voltage ( $BV_{DD} = min, I_{OL} = 2 mA$ )                     | V <sub>OL</sub> | —    | 0.4                    | V    | —     |

Table 42. Local Bus DC Electrical Characteristics (3.3 V DC)

### Note:

1. The symbol  $\mathsf{BV}_{\mathsf{IN}}$  in this case, represents the  $\mathsf{BV}_{\mathsf{IN}}$  symbol referenced in Table 1 and Table 2.

Table 43 provides the DC electrical characteristics for the local bus interface operating at  $BV_{DD} = 2.5 \text{ V DC}$ .

Table 43. Local Bus DC Electrical Characteristics (2.5 V DC)

| Parameter                                                       | Symbol          | Min  | Мах                    | Unit | Notes |
|-----------------------------------------------------------------|-----------------|------|------------------------|------|-------|
| High-level input voltage                                        | V <sub>IH</sub> | 1.70 | BV <sub>DD</sub> + 0.3 | V    | —     |
| Low-level input voltage                                         | V <sub>IL</sub> | -0.3 | 0.7                    | V    | —     |
| Input current ( $BV_{IN} = 0 V \text{ or } BV_{IN} = BV_{DD}$ ) | I <sub>IN</sub> | —    | ±15                    | μA   | 1     |
| High-level output voltage ( $BV_{DD} = min, I_{OH} = -1 mA$ )   | V <sub>OH</sub> | 2.0  | —                      | V    | —     |
| Low-level output voltage ( $BV_{DD} = min, I_{OL} = 1 mA$ )     | V <sub>OL</sub> | —    | 0.4                    | V    | —     |

### Note:

1. The symbol  $BV_{IN}$ , in this case, represents the  $BV_{IN}$  symbol referenced in Table 1 and Table 2.

Table 44 provides the DC electrical characteristics for the local bus interface operating at  $BV_{DD} = 1.8 \text{ V DC}$ .

### Table 44. Local Bus DC Electrical Characteristics (1.8 V DC)

| Parameter                                                       | Symbol          | Min  | Мах                    | Unit | Notes |
|-----------------------------------------------------------------|-----------------|------|------------------------|------|-------|
| High-level input voltage                                        | V <sub>IH</sub> | 1.3  | BV <sub>DD</sub> + 0.3 | V    | —     |
| Low-level input voltage                                         | V <sub>IL</sub> | -0.3 | 0.6                    | V    | —     |
| Input current ( $BV_{IN} = 0 V \text{ or } BV_{IN} = BV_{DD}$ ) | I <sub>IN</sub> | —    | ±15                    | μA   | 1     |



| Parameter                                            | Symbol <sup>1</sup>  | Min | Max | Unit | Notes |
|------------------------------------------------------|----------------------|-----|-----|------|-------|
| Local bus clock to output high impedance for LAD/LDP | t <sub>LBKHOZ2</sub> |     | 2.6 | ns   | 5     |

Notes:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t<sub>LBIXKH1</sub> symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t<sub>LBK</sub> clock reference (K) goes high (H), in this case for clock one (1). Also, t<sub>LBKHOX</sub> symbolizes local bus timing (LB) for the t<sub>LBK</sub> clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.
  </sub>
- 2. All timings are in reference to LSYNC\_IN for PLL enabled and internal local bus clock for PLL bypass mode.
- 3. All signals are measured from  $BV_{DD}/2$  of the rising edge of LSYNC\_IN for PLL enabled or internal local bus clock for PLL bypass mode to  $0.4 \times BV_{DD}$  of the signal in question for 1.8-V signaling levels.
- 4. Input timings are measured at the pin.
- 5. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- t<sub>LBOTOT</sub> is a measurement of the minimum time between the negation of LALE and any change in LAD. t<sub>LBOTOT</sub> is programmed with the LBCR[AHD] parameter.
- 7. Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between complementary signals at BV<sub>DD</sub>/2.

Figure 27 provides the AC test load for the local bus.



Figure 27. Local Bus AC Test Load







Figure 31. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 (PLL Bypass Mode)



Figure 38 provides the AC test load for the  $I^2C$ .



Figure 38. I<sup>2</sup>C AC Test Load

Figure 39 shows the AC timing diagram for the  $I^2C$  bus.



Figure 39. I<sup>2</sup>C Bus AC Timing Diagram

# 14 GPIO

This section describes the DC and AC electrical specifications for the GPIO interface of the MPC8544E.

# 14.1 GPIO DC Electrical Characteristics

Table 53 provides the DC electrical characteristics for the GPIO interface.

| Table 53. GPIO DO | Electrical | Characteristics |
|-------------------|------------|-----------------|
|-------------------|------------|-----------------|

| Parameter                                                    | Symbol          | Min  | Мах                    | Unit | Notes |
|--------------------------------------------------------------|-----------------|------|------------------------|------|-------|
| High-level input voltage                                     | V <sub>IH</sub> | 2    | OV <sub>DD</sub> + 0.3 | V    | —     |
| Low-level input voltage                                      | V <sub>IL</sub> | -0.3 | 0.8                    | V    | —     |
| Input current ( $V_{IN} = 0 V \text{ or } V_{IN} = V_{DD}$ ) | I <sub>IN</sub> | —    | ±5                     | μA   | 1     |
| High-level output voltage ( $OV_{DD} = mn, I_{OH} = -2 mA$ ) | V <sub>OH</sub> | 2.4  | —                      | V    | —     |
| Low-level output voltage ( $OV_{DD} = min, I_{OL} = 2 mA$ )  | V <sub>OL</sub> | —    | 0.4                    | V    |       |

Note:

1. Note that the symbol  $V_{IN}$ , in this case, represents the  $OV_{IN}$  symbol referenced in Table 1 and Table 2.



### 14.2 GPIO AC Electrical Specifications

Table 54 provides the GPIO input and output AC timing specifications.

Table 54. GPIO Input AC Timing Specifications

| Parameter                       | Symbol             | Тур | Unit | Notes |
|---------------------------------|--------------------|-----|------|-------|
| GPIO inputs—minimum pulse width | t <sub>PIWID</sub> | 20  | ns   | 1     |

#### Note:

1. GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by any external synchronous logic. GPIO inputs are required to be valid for at least t<sub>PIWID</sub> ns to ensure proper operation.

Figure 40 provides the AC test load for the GPIO.



# 15 PCI

This section describes the DC and AC electrical specifications for the PCI bus of the MPC8544E.

### **15.1 PCI DC Electrical Characteristics**

Table 55 provides the DC electrical characteristics for the PCI interface.

| Table 55. | PCI DC | Electrical | Characteristics | 1 |
|-----------|--------|------------|-----------------|---|
|-----------|--------|------------|-----------------|---|

| Parameter                                                    | Symbol          | Min  | Мах                    | Unit | Notes |
|--------------------------------------------------------------|-----------------|------|------------------------|------|-------|
| High-level input voltage                                     | V <sub>IH</sub> | 2    | OV <sub>DD</sub> + 0.3 | V    | —     |
| Low-level input voltage                                      | V <sub>IL</sub> | -0.3 | 0.8                    | V    | —     |
| Input current ( $V_{IN} = 0 V \text{ or } V_{IN} = V_{DD}$ ) | I <sub>IN</sub> | —    | ±5                     | μA   | 2     |
| High-level output voltage ( $OV_{DD} = min, I_{OH} = -2mA$ ) | V <sub>OH</sub> | 2.4  | _                      | V    | —     |
| Low-level output voltage ( $OV_{DD} = min, I_{OL} = 2 mA$ )  | V <sub>OL</sub> | —    | 0.4                    | V    | —     |

Notes:

1. Ranges listed do not meet the full range of the DC specifications of the PCI 2.2 Local Bus Specifications.

2. Note that the symbol  $V_{IN}$ , in this case, represents the  $OV_{IN}$  symbol referenced in Table 1 and Table 2.



PCI

# 15.2 PCI AC Electrical Specifications

This section describes the general AC timing parameters of the PCI bus. Note that the SYSCLK signal is used as the PCI input clock. Table 56 provides the PCI AC timing specifications at 66 MHz.

| Parameter                               | Symbol <sup>1</sup> | Min                 | Max | Unit   | Notes |
|-----------------------------------------|---------------------|---------------------|-----|--------|-------|
| SYSCLK to output valid                  | t <sub>PCKHOV</sub> | _                   | 7.4 | ns     | 2, 3  |
| Output hold from SYSCLK                 | t <sub>PCKHOX</sub> | 2.0                 | _   | ns     | 2     |
| SYSCLK to output high impedance         | t <sub>PCKHOZ</sub> | _                   | 14  | ns     | 2, 4  |
| Input setup to SYSCLK                   | t <sub>PCIVKH</sub> | 3.7                 | _   | ns     | 2, 5  |
| Input hold from SYSCLK                  | t <sub>PCIXKH</sub> | 0.5                 | _   | ns     | 2, 5  |
| REQ64 to HRESET <sup>9</sup> setup time | t <sub>PCRVRH</sub> | $10 \times t_{SYS}$ | _   | clocks | 6, 7  |
| HRESET to REQ64 hold time               | t <sub>PCRHRX</sub> | 0                   | 50  | ns     | 7     |
| HRESET high to first FRAME assertion    | t <sub>PCRHFV</sub> | 10                  | _   | clocks | 8     |
| Rise time (20%–80%)                     | t <sub>PCICLK</sub> | 0.6                 | 2.1 | ns     |       |
| Fall time (20%–80%)                     | t <sub>PCICLK</sub> | 0.6                 | 2.1 | ns     |       |

| Table 56. PCI AC Timin | g Specifications at 66 MHz |
|------------------------|----------------------------|
|------------------------|----------------------------|

Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t<sub>PCIVKH</sub> symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the SYSCLK clock, t<sub>SYS</sub>, reference (K) going to the high (H) state or setup time. Also, t<sub>PCRHFV</sub> symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
</sub></sub>

- 2. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.
- 3. All PCI signals are measured from  $OV_{DD}/2$  of the rising edge of PCI\_SYNC\_IN to  $0.4 \times OV_{DD}$  of the signal in question for 3.3-V PCI signaling levels.
- 4. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 5. Input timings are measured at the pin.
- The timing parameter t<sub>SYS</sub> indicates the minimum and maximum CLK cycle times for the various specified frequencies. The system clock period must be kept within the minimum and maximum defined ranges. For values see Section 19, "Clocking."
- 7. The setup and hold time is with respect to the rising edge of HRESET.
- 8. The timing parameter t<sub>PCRHFV</sub> is a minimum of 10 clocks rather than the minimum of 5 clocks in the PCI 2.2 Local Bus Specifications.
- 9. The reset assertion timing requirement for  $\overline{\text{HRESET}}$  is 100  $\mu\text{s}.$

Figure 41 provides the AC test load for PCI.



Figure 41. PCI AC Test Load



### 16.2.4 AC Requirements for SerDes Reference Clocks

The clock driver selected should provide a high quality reference clock with low phase noise and cycle-to-cycle jitter. Phase noise less than 100 kHz can be tracked by the PLL and data recovery loops and is less of a problem. Phase noise above 15 MHz is filtered by the PLL. The most problematic phase noise occurs in the 1–15 MHz range. The source impedance of the clock driver should be 50  $\Omega$  to match the transmission line and reduce reflections which are a source of noise to the system.

Table 57 describes some AC parameters common to SGMII, and PCI Express protocols.

| Parameter                                                                                    | Symbol             | Min  | Max  | Unit | Notes |
|----------------------------------------------------------------------------------------------|--------------------|------|------|------|-------|
| Rising Edge Rate                                                                             | Rise Edge Rate     | 1.0  | 4.0  | V/ns | 2, 3  |
| Falling Edge Rate                                                                            | Fall Edge Rate     | 1.0  | 4.0  | V/ns | 2, 3  |
| Differential Input High Voltage                                                              | V <sub>IH</sub>    | +200 |      | mV   | 2     |
| Differential Input Low Voltage                                                               | V <sub>IL</sub>    | _    | -200 | mV   | 2     |
| Rising edge rate (SD <i>n</i> _REF_CLK) to falling edge rate (SD <i>n</i> _REF_CLK) matching | Rise-Fall Matching | _    | 20   | %    | 1, 4  |

### Table 57. SerDes Reference Clock Common AC Parameters

#### Notes:

- 1. Measurement taken from single ended waveform.
- 2. Measurement taken from differential waveform.
- 3. Measured from –200 mV to +200 mV on the differential waveform (derived from SD*n*\_REF\_CLK minus SD*n*\_REF\_CLK). The signal must be monotonic through the measurement region for rise and fall time. The 400 mV measurement window is centered on the differential zero crossing. See Figure 53.
- 4. Matching applies to rising edge rate for SDn\_REF\_CLK and falling edge rate for SDn\_REF\_CLK. It is measured using a 200 mV window centered on the median cross point where SDn\_REF\_CLK rising meets SDn\_REF\_CLK falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The rise edge rate of SDn\_REF\_CLK should be compared to the fall edge rate of SDn\_REF\_CLK, the maximum allowed difference should not exceed 20% of the slowest edge rate. See Figure 54.



Figure 53. Differential Measurement Points for Rise and Fall Time



# 17 PCI Express

This section describes the DC and AC electrical specifications for the PCI Express bus of the MPC8544.

# 17.1 DC Requirements for PCI Express SD\_REF\_CLK and SD\_REF\_CLK

For more information, see Section 16.2, "SerDes Reference Clocks."

### **17.2 AC Requirements for PCI Express SerDes Clocks**

Table 58 provides the AC requirements for the PCI Express SerDes clocks.

| Symbol <sup>2</sup> | Parameter Description                                                                    | Min | Тур | Max | Units | Notes |
|---------------------|------------------------------------------------------------------------------------------|-----|-----|-----|-------|-------|
| t <sub>REF</sub>    | REFCLK cycle time                                                                        | _   | 10  | _   | ns    | 1     |
| t <sub>REFCJ</sub>  | REFCLK cycle-to-cycle jitter. Difference in the period of any two adjacent REFCLK cycles |     |     | 100 | ps    |       |
| t <sub>REFPJ</sub>  | Phase jitter. Deviation in edge location with respect to mean edge location              | -50 | —   | 50  | ps    | —     |

### Table 58. SD\_REF\_CLK and SD\_REF\_CLK AC Requirements

Notes:

1. Typical based on PCI Express Specification 2.0.

2. Guaranteed by characterization.

### 17.3 Clocking Dependencies

The ports on the two ends of a link must transmit data at a rate that is within 600 parts per million (ppm) of each other at all times. This is specified to allow bit rate clock sources with a  $\pm 300$  ppm tolerance.

# 17.4 Physical Layer Specifications

The following is a summary of the specifications for the physical layer of PCI Express on this device. For further details as well as the specifications of the transport and data link layer please refer to the *PCI Express Base Specification. Rev. 1.0a.* 







### 17.4.3 Differential Receiver (RX) Input Specifications

Table 60 defines the specifications for the differential input at all receivers. The parameters are specified at the component pins.

| Symbol                  | Parameter                                   | Min    | Nom | Max    | Units | Comments                                                                                                                                                                             |
|-------------------------|---------------------------------------------|--------|-----|--------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UI                      | Unit interval                               | 399.88 | 400 | 400.12 | ps    | Each UI is 400 ps ± 300 ppm. UI does not<br>account for spread spectrum clock dictated<br>variations. See Note 1.                                                                    |
| V <sub>RX-DIFFp-p</sub> | Differential peak-to-<br>peak input voltage | 0.175  | _   | 1.200  | V     | $V_{RX-DIFFp-p} = 2 \times  V_{RX-D+} - V_{RX-D-} $<br>See Note 2.                                                                                                                   |
| T <sub>RX-EYE</sub>     | Minimum receiver<br>eye width               | 0.4    |     |        | UI    | The maximum interconnect media and transmitter jitter that can be tolerated by the receiver can be derived as $T_{RX-MAX-JITTER}$ = 1 – $T_{RX-EYE}$ = 0.6 UI.<br>See Notes 2 and 3. |

Table 60. Differential Receiver (RX) Input Specifications



PCI Express

| Table 60. Differential Receiver | <sup>·</sup> (RX) Input | Specifications | (continued) |
|---------------------------------|-------------------------|----------------|-------------|
|---------------------------------|-------------------------|----------------|-------------|

| Symbol                                        | Parameter                                                                                | Min   | Nom | Max | Units | Comments                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------|------------------------------------------------------------------------------------------|-------|-----|-----|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T <sub>RX-EYE</sub> -MEDIAN-to-MAX<br>-JITTER | Maximum time<br>between the jitter<br>median and<br>maximum deviation<br>from the median |       | _   | 0.3 | UI    | Jitter is defined as the measurement<br>variation of the crossing points ( $V_{RX-DIFFp-p}$<br>= 0 V) in relation to a recovered TX UI. A<br>recovered TX UI is calculated over 3500<br>consecutive unit intervals of sample data.<br>Jitter is measured using all edges of the 250<br>consecutive UI in the center of the 3500 UI<br>used for calculating the TX UI. See Notes 2,<br>3, and 7. |
| V <sub>RX-CM-ACp</sub>                        | AC peak common<br>mode input voltage                                                     | _     | _   | 150 | mV    | $ \begin{split} & V_{RX-CM-ACp} =  V_{RXD+} - V_{RXD-}  \div 2 - \\ & V_{RX-CM-DC} \\ & V_{RX-CM-DC} = DC_{(avg)} \text{ of }  V_{RX-D+} - V_{RX-D-} /2 \\ & See Note  2. \end{split} $                                                                                                                                                                                                         |
| RL <sub>RX-DIFF</sub>                         | Differential return<br>loss                                                              | 15    | _   | _   | dB    | Measured over 50 MHz to 1.25 GHz with the<br>D+ and D– lines biased at +300 and<br>–300 mV, respectively. See Note 4.                                                                                                                                                                                                                                                                           |
| RL <sub>RX-CM</sub>                           | Common mode<br>return loss                                                               | 6     |     |     | dB    | Measured over 50 MHz to 1.25 GHz with the D+ and D– lines biased at 0 V. See Note 4.                                                                                                                                                                                                                                                                                                            |
| Z <sub>RX-DIFF-DC</sub>                       | DC differential input<br>impedance                                                       | 80    | 100 | 120 | Ω     | RX DC differential mode impedance. See Note 5.                                                                                                                                                                                                                                                                                                                                                  |
| Z <sub>RX-DC</sub>                            | DC input impedance                                                                       | 40    | 50  | 60  | Ω     | Required RX D+ as well as D– DC<br>impedance (50 $\pm$ 20% tolerance).<br>See Notes 2 and 5.                                                                                                                                                                                                                                                                                                    |
| Z <sub>RX-HIGH-IMP-DC</sub>                   | Powered down DC input impedance                                                          | 200 k | _   | _   | Ω     | Required RX D+ as well as D– DC<br>impedance when the receiver terminations<br>do not have power. See Note 6.                                                                                                                                                                                                                                                                                   |
| V <sub>RX-IDLE-DET-DIFFp-p</sub>              | Electrical idle detect threshold                                                         | 65    | _   | 175 | mV    | $V_{RX-IDLE-DET-DIFFp-p} = 2 \times  V_{RX-D+} - V_{RX-D-} $<br>Measured at the package pins of the<br>receiver.                                                                                                                                                                                                                                                                                |
| T <sub>RX-IDLE-DET-DIFF-</sub><br>ENTERTIME   | Unexpected<br>electrical idle enter<br>detect threshold<br>integration time              |       | _   | 10  | ms    | An unexpected electrical idle ( $V_{RX-DIFFp-p}$<br>< $V_{RX-IDLE-DET-DIFFp-p}$ ) must be recognized<br>no longer than $T_{RX-IDLE-DET-DIFF-ENTERING}$ to<br>signal an unexpected idle condition.                                                                                                                                                                                               |



Package Description

| Signal                     | Package Pin Number                                                                                                                                                                                                                                                                                              | Pin Type | Power<br>Supply  | Notes    |  |  |  |  |  |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|----------|--|--|--|--|--|
| DDR SDRAM Memory Interface |                                                                                                                                                                                                                                                                                                                 |          |                  |          |  |  |  |  |  |
| MDQ[0:63]                  | A26, B26, C22, D21, D25, B25, D22, E21, A24,<br>A23, B20, A20, A25, B24, B21, A21, E19, D19,<br>E16, C16, F19, F18, F17, D16, B18, A18, A15,<br>B14, B19, A19, A16, B15, D1, F3, G1, H2, E4,<br>G5, H3, J4, B2, C3, F2, G2, A2, B3, E1, F1, L5,<br>L4,N3, P3, J3, K4, N4, P4, J1, K1, P1, R1, J2,<br>K2, N1, R2 | I/O      | GV <sub>DD</sub> | _        |  |  |  |  |  |
| MECC[0:7]                  | G12, D14, F11, C11, G14, F14,C13, D12                                                                                                                                                                                                                                                                           | I/O      | GV <sub>DD</sub> | _        |  |  |  |  |  |
| MDM[0:8]                   | C25, B23, D18, B17, G4, C2, L3, L2, F13                                                                                                                                                                                                                                                                         | 0        | GV <sub>DD</sub> | 21       |  |  |  |  |  |
| MDQS[0:8]                  | D24, B22, C18, A17, J5, C1, M4, M2, E13                                                                                                                                                                                                                                                                         | I/O      | GV <sub>DD</sub> | —        |  |  |  |  |  |
| MDQS[0:8]                  | C23, A22, E17, B16, K5, D2, M3, P2, D13                                                                                                                                                                                                                                                                         | I/O      | GV <sub>DD</sub> |          |  |  |  |  |  |
| MA[0:15]                   | B7, G8, C8, A10, D9, C10, A11, F9, E9, B12,<br>A5, A12, D11, F7, E10, F10                                                                                                                                                                                                                                       | 0        | GV <sub>DD</sub> | _        |  |  |  |  |  |
| MBA[0:2]                   | A4, B5, B13                                                                                                                                                                                                                                                                                                     | 0        | GV <sub>DD</sub> | -        |  |  |  |  |  |
| MWE                        | B4                                                                                                                                                                                                                                                                                                              | 0        | GV <sub>DD</sub> | —        |  |  |  |  |  |
| MCAS                       | E7                                                                                                                                                                                                                                                                                                              | 0        | GV <sub>DD</sub> | —        |  |  |  |  |  |
| MRAS                       | C5                                                                                                                                                                                                                                                                                                              | 0        | GV <sub>DD</sub> | -        |  |  |  |  |  |
| MCKE[0:3]                  | H10, K10, G10, H9                                                                                                                                                                                                                                                                                               | 0        | GV <sub>DD</sub> | 10       |  |  |  |  |  |
| MCS[0:3]                   | D3, H6, C4, G6                                                                                                                                                                                                                                                                                                  | 0        | GV <sub>DD</sub> | —        |  |  |  |  |  |
| MCK[0:5]                   | A9, J11, J6, A8, J13, H8                                                                                                                                                                                                                                                                                        | 0        | GV <sub>DD</sub> | -        |  |  |  |  |  |
| MCK[0:5]                   | B9, H11, K6, B8, H13, J8                                                                                                                                                                                                                                                                                        | 0        | GV <sub>DD</sub> | -        |  |  |  |  |  |
| MODT[0:3]                  | E5, H7, E6, F6                                                                                                                                                                                                                                                                                                  | 0        | GV <sub>DD</sub> | —        |  |  |  |  |  |
| MDIC[0:1]                  | H15, K15                                                                                                                                                                                                                                                                                                        | I/O      | GV <sub>DD</sub> | 25       |  |  |  |  |  |
| TEST_IN                    | A13                                                                                                                                                                                                                                                                                                             | I        | _                | 27       |  |  |  |  |  |
| TEST_OUT                   | A6                                                                                                                                                                                                                                                                                                              | 0        | —                | 17       |  |  |  |  |  |
|                            | Local Bus Controller Interfac                                                                                                                                                                                                                                                                                   | e        | I                | _        |  |  |  |  |  |
| LAD[0:31]                  | K22, L21, L22, K23, K24, L24, L25, K25, L28,<br>L27, K28, K27, J28, H28, H27, G27, G26, F28,<br>F26, F25, E28, E27, E26, F24, E24, C26, G24,<br>E23, G23, F22, G22, G21                                                                                                                                         | I/O      | BV <sub>DD</sub> | 23       |  |  |  |  |  |
| LDP[0:3]                   | K26, G28, B27, E25                                                                                                                                                                                                                                                                                              | I/O      | BV <sub>DD</sub> |          |  |  |  |  |  |
| LA[27]                     | L19                                                                                                                                                                                                                                                                                                             | 0        | BV <sub>DD</sub> | 4, 8     |  |  |  |  |  |
| LA[28:31]                  | K16, K17, H17,G17                                                                                                                                                                                                                                                                                               | 0        | BV <sub>DD</sub> | 4, 6, 8  |  |  |  |  |  |
| LCS[0:4]                   | K18, G19, H19, H20, G16                                                                                                                                                                                                                                                                                         | 0        | BV <sub>DD</sub> | <u> </u> |  |  |  |  |  |
| LCS5/DMA_DREQ2             | H16                                                                                                                                                                                                                                                                                                             | I/O      | BV <sub>DD</sub> | 1        |  |  |  |  |  |

### Table 62. MPC8544E Pinout Listing (continued)



Package Description

### Table 62. MPC8544E Pinout Listing (continued)

| Signal                        | Package Pin Number                     | Pin Type       | Power<br>Supply  | Notes    |  |  |  |  |  |
|-------------------------------|----------------------------------------|----------------|------------------|----------|--|--|--|--|--|
| Ethernet Management Interface |                                        |                |                  |          |  |  |  |  |  |
| EC_MDC                        | AC7                                    | 0              | OV <sub>DD</sub> | 4, 8, 14 |  |  |  |  |  |
| EC_MDIO                       | Y9                                     | I/O            | OV <sub>DD</sub> | —        |  |  |  |  |  |
|                               | Gigabit Reference Clock                | ·              |                  |          |  |  |  |  |  |
| EC_GTX_CLK125                 | Т2                                     | I              | LV <sub>DD</sub> | —        |  |  |  |  |  |
|                               | Three-Speed Ethernet Controller (Gigab | it Ethernet 1) |                  |          |  |  |  |  |  |
| TSEC1_RXD[7:0]                | U10, U9, T10, T9, U8, T8, T7, T6       | I              | LV <sub>DD</sub> | —        |  |  |  |  |  |
| TSEC1_TXD[7:0]                | T5, U5, V5, V3, V2, V1, U2, U1         | 0              | LV <sub>DD</sub> | 4, 8, 14 |  |  |  |  |  |
| TSEC1_COL                     | R5                                     | I              | LV <sub>DD</sub> | —        |  |  |  |  |  |
| TSEC1_CRS                     | Τ4                                     | I/O            | LV <sub>DD</sub> | 16       |  |  |  |  |  |
| TSEC1_GTX_CLK                 | Т1                                     | 0              | LV <sub>DD</sub> | —        |  |  |  |  |  |
| TSEC1_RX_CLK                  | V7                                     | I              | LV <sub>DD</sub> | —        |  |  |  |  |  |
| TSEC1_RX_DV                   | U7                                     | I              | LV <sub>DD</sub> | —        |  |  |  |  |  |
| TSEC1_RX_ER                   | R9                                     | I              | LV <sub>DD</sub> | 4, 8     |  |  |  |  |  |
| TSEC1_TX_CLK                  | V6                                     | I              | LV <sub>DD</sub> | —        |  |  |  |  |  |
| TSEC1_TX_EN                   | U4                                     | 0              | LV <sub>DD</sub> | 22       |  |  |  |  |  |
| TSEC1_TX_ER                   | ТЗ                                     | 0              | LV <sub>DD</sub> | —        |  |  |  |  |  |
|                               | Three-Speed Ethernet Controller (Gigab | it Ethernet 3) |                  |          |  |  |  |  |  |
| TSEC3_RXD[7:0]                | P11, N11, M11, L11, R8, N10, N9, P10   | I              | LV <sub>DD</sub> | —        |  |  |  |  |  |
| TSEC3_TXD[7:0]                | M7, N7, P7, M8, L7, R6, P6, M6         | 0              | LV <sub>DD</sub> | 4, 8, 14 |  |  |  |  |  |
| TSEC3_COL                     | M9                                     | I              | LV <sub>DD</sub> | —        |  |  |  |  |  |
| TSEC3_CRS                     | L9                                     | I/O            | LV <sub>DD</sub> | 16       |  |  |  |  |  |
| TSEC3_GTX_CLK                 | R7                                     | 0              | LV <sub>DD</sub> | —        |  |  |  |  |  |
| TSEC3_RX_CLK                  | Р9                                     | I              | LV <sub>DD</sub> | —        |  |  |  |  |  |
| TSEC3_RX_DV                   | P8                                     | I              | LV <sub>DD</sub> | —        |  |  |  |  |  |
| TSEC3_RX_ER                   | R11                                    | I              | LV <sub>DD</sub> | —        |  |  |  |  |  |
| TSEC3_TX_CLK                  | L10                                    | I              | LV <sub>DD</sub> | —        |  |  |  |  |  |
| TSEC3_TX_EN                   | N6                                     | 0              | LV <sub>DD</sub> | 22       |  |  |  |  |  |
| TSEC3_TX_ER                   | L8                                     | 0              | LV <sub>DD</sub> | 4, 8     |  |  |  |  |  |
|                               | DUART                                  |                |                  |          |  |  |  |  |  |
| UART_CTS[0:1]                 | AH8, AF6                               | I              | OV <sub>DD</sub> | _        |  |  |  |  |  |
| UART_RTS[0:1]                 | AG8, AG9                               | 0              | OV <sub>DD</sub> | —        |  |  |  |  |  |



Figure 62 depicts the primary heat transfer path for a package with an attached heat sink mounted to a printed-circuit board.



(Note the internal versus external package resistance.)

### Figure 62. Package with Heat Sink Mounted to a Printed-Circuit Board

The heat sink removes most of the heat from the device. Heat generated on the active side of the chip is conducted through the silicon and through the heat sink attach material (or thermal interface material), and finally to the heat sink. The junction-to-case thermal resistance is low enough that the heat sink attach material and heat sink thermal resistance are the dominant terms.

### 20.3.2 Thermal Interface Materials

A thermal interface material is required at the package-to-heat sink interface to minimize the thermal contact resistance. For those applications where the heat sink is attached by spring clip mechanism, Figure 63 shows the thermal performance of three thin-sheet thermal-interface materials (silicone, graphite/oil, floroether oil), a bare joint, and a joint with thermal grease as a function of contact pressure. As shown, the performance of these thermal interface materials improves with increasing contact pressure. The use of thermal grease significantly reduces the interface thermal resistance. The bare joint results in a thermal resistance approximately six times greater than the thermal grease joint.



Chanhassen, MN 55317 Internet: www.bergquistcompany.com Thermagon Inc. 888-246-9050 4707 Detroit Ave. Cleveland, OH 44102 Internet: www.thermagon.com

### 20.3.3 Heat Sink Selection Examples

The following section provides a heat sink selection example using one of the commercially available heat sinks.

For preliminary heat sink sizing, the die-junction temperature can be expressed as follows:

$$T_{J} = T_{I} + T_{R} + (\theta_{JC} + \theta_{INT} + \theta_{SA}) \times P_{D}$$

where

 $T_J$  is the die-junction temperature

T<sub>I</sub> is the inlet cabinet ambient temperature

 $T_R$  is the air temperature rise within the computer cabinet

 $\theta_{IC}$  is the junction-to-case thermal resistance

 $\theta_{INT}$  is the adhesive or interface material thermal resistance

 $\theta_{SA}$  is the heat sink base-to-ambient thermal resistance

 $P_D$  is the power dissipated by the device

During operation the die-junction temperatures (T<sub>J</sub>) should be maintained within the range specified in Table 2. The temperature of air cooling the component greatly depends on the ambient inlet air temperature and the air temperature rise within the electronic cabinet. An electronic cabinet inlet-air temperature (T<sub>I</sub>) may range from 30° to 40°C. The air temperature rise within a cabinet (T<sub>R</sub>) may be in the range of 5° to 10°C. The thermal resistance of the thermal interface material ( $\theta_{INT}$ ) may be about 1°C/W. Assuming a T<sub>I</sub> of 30°C, a T<sub>R</sub> of 5°C, a FC-PBGA package  $\theta_{JC} = 0.1$ , and a power consumption (P<sub>D</sub>) of 5, the following expression for T<sub>I</sub> is obtained:

Die-junction temperature:  $T_J = 30^{\circ}C + 5^{\circ}C + (0.1^{\circ}C/W + 1.0^{\circ}C/W + \theta_{SA}) \times P_D$ 

The heat sink-to-ambient thermal resistance ( $\theta_{SA}$ ) versus airflow velocity for a Thermalloy heat sink #2328B is shown in Figure 64.

Assuming an air velocity of 1 m/s, we have an effective  $\theta_{SA+}$  of about 5°C/W, thus

$$T_I = 30^\circ + 5^\circ C + (0.1^\circ C/W + 1.0^\circ C/W + 5^\circ C/W) \times 5$$

resulting in a die-junction temperature of approximately 66, which is well within the maximum operating temperature of the component.



### System Design Information

been encoded such that a high voltage level puts the device into the default state and external resistors are needed only when non-default settings are required by the user.

Careful board layout with stubless connections to these pull-down resistors coupled with the large value of the pull-down resistor should minimize the disruption of signal quality or speed for output pins thus configured.

The platform PLL ratio and e500 PLL ratio configuration pins are not equipped with these default pull-up devices.

# 21.9 JTAG Configuration Signals

Correct operation of the JTAG interface requires configuration of a group of system control pins as demonstrated in Figure 69. Care must be taken to ensure that these pins are maintained at a valid deasserted state under normal operating conditions as most have asynchronous behavior and spurious assertion will give unpredictable results.

Boundary-scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the IEEE 1149.1 specification, but is provided on all processors built on Power Architecture<sup>TM</sup> technology. The device requires TRST to be asserted during reset conditions to ensure the JTAG boundary logic does not interfere with normal chip operation. While it is possible to force the TAP controller to the reset state using only the TCK and TMS signals, generally systems will assert TRST during the power-on reset flow. Simply tying TRST to HRESET is not practical because the JTAG interface is also used for accessing the common on-chip processor (COP) function.

The COP function of these processors allow a remote computer system (typically, a PC with dedicated hardware and debugging software) to access and control the internal operations of the processor. The COP interface connects primarily through the JTAG port of the processor, with some additional status monitoring signals. The COP port requires the ability to independently assert HRESET or TRST in order to fully control the processor. If the target system has independent reset sources, such as voltage monitors, watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be merged into these signals with logic. The arrangement shown in Figure 69 allows the COP port to independently assert HRESET or TRST, while ensuring that the target can drive HRESET as well.

The COP interface has a standard header, shown in Figure 68, for connection to the target system, and is based on the 0.025" square-post, 0.100" centered header assembly (often called a Berg header). The connector typically has pin 14 removed as a connector key.

The COP header adds many benefits such as breakpoints, watchpoints, register and memory examination/modification, and other standard debugger features. An inexpensive option can be to leave the COP header unpopulated until needed.

There is no standardized way to number the COP header; consequently, many different pin numbers have been observed from emulator vendors. Some are numbered top-to-bottom then left-to-right, while others use left-to-right then top-to-bottom, while still others number the pins counter clockwise from pin 1 (as with an IC). Regardless of the numbering, the signal placement recommended in Figure 68 is common to all known emulators.



#### How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and PowerQUICC are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2008-2011, 2014-2015 Freescale Semiconductor, Inc.



Document Number: MPC8544EEC Rev. 8 09/2015

