

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

-XF

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	667MHz
Co-Processors/DSP	Signal Processing; SPE
RAM Controllers	DDR, DDR2, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	-
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	783-BBGA, FCBGA
Supplier Device Package	783-FCBGA (29x29)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc8544vtalf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Characteristic		Symbol	Max Value	Unit	Notes
DDR and DDR2 I	DRAM I/O voltage	GV _{DD}	-0.3 to 2.75 -0.3 to 1.98	V	_
Three-speed Ethe	Three-speed Ethernet I/O, MII management voltage		-0.3 to 3.63 -0.3 to 2.75	V	_
		TV _{DD} (eTSEC3)	-0.3 to 3.63 -0.3 to 2.75	V	—
PCI, DUART, system control and power management, I ² C, and JTAG I/O voltage		OV _{DD}	-0.3 to 3.63	V	—
Local bus I/O voltage		BV _{DD}	-0.3 to 3.63 -0.3 to 2.75 -0.3 to 1.98	V	—
Input voltage	DDR/DDR2 DRAM signals	MV _{IN}	–0.3 to (GV _{DD} + 0.3)	V	2
	DDR/DDR2 DRAM reference	MV _{REF}	–0.3 to (GV _{DD} + 0.3)	V	2
	Three-speed Ethernet signals	LV _{IN} TV _{IN}	-0.3 to (LV _{DD} + 0.3) -0.3 to (TV _{DD} + 0.3)	V	2
	Local bus signals	BV _{IN}	-0.3 to (BV _{DD} + 0.3)	V	—
	DUART, SYSCLK, system control and power management, I ² C, and JTAG signals	OV _{IN}	-0.3 to (OV _{DD} + 0.3)	V	2
	PCI	OV _{IN}	-0.3 to (OV _{DD} + 0.3)	V	2
Storage temperat	ure range	T _{STG}	–55 to 150	°C	—

Table 1. Absolute Maximum Ratings¹ (continued)

Notes:

1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause.

2. (M,L,O)V_{IN}, and MV_{RFF} may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.

2.1.2 Recommended Operating Conditions

Table 2 provides the recommended operating conditions for this device. Note that the values in Table 2 are the recommended and tested operating conditions. Proper device operation outside these conditions is not guaranteed.

Table 2. Recommended Operating Conditions	
---	--

Characteristic	Symbol	Recommended Value	Unit	Notes
Core supply voltage	V _{DD}	1.0 ± 50 mV	V	
PLL supply voltage	AV _{DD}	1.0 ± 50 mV	V	1
Core power supply for SerDes transceivers	SV _{DD}	1.0 ± 50 mV	V	—
Pad power supply for SerDes transceivers	XV _{DD}	1.0 ± 50 mV	V	—
DDR and DDR2 DRAM I/O voltage	GV _{DD}	2.5 V ± 125 mV 1.8 V ± 90 mV	V	2

4.2 Real-Time Clock Timing

The RTC input is sampled by the platform clock (CCB clock). The output of the sampling latch is then used as an input to the counters of the PIC and the TimeBase unit of the e500. There is no jitter specification. The minimum pulse width of the RTC signal should be greater than $2 \times$ the period of the CCB clock. That is, minimum clock high time is $2 \times t_{CCB}$, and minimum clock low time is $2 \times t_{CCB}$. There is no minimum RTC frequency; RTC may be grounded if not needed.

4.3 eTSEC Gigabit Reference Clock Timing

Table 7 provides the eTSEC gigabit reference clocks (EC_GTX_CLK125) AC timing specifications for the MPC8544E.

Parameter/Condition	Symbol	Min	Тур	Max	Unit	Notes
EC_GTX_CLK125 frequency	f _{G125}	—	125	—	MHz	_
EC_GTX_CLK125 cycle time	t _{G125}		8	_	ns	_
EC_GTX_CLK rise and fall time LV_{DD} , $TV_{DD} = 2.5 V$ LV_{DD} , $TV_{DD} = 3.3 V$	t _{G125R} /t _{G125F}	_	_	0.75 1.0	ns	1
EC_GTX_CLK125 duty cycle GMII, TBI 1000Base-T for RGMII, RTBI	t _{G125H} /t _{G125}	45 47	—	55 53	%	2

Table 7. EC_GTX_CLK125 AC Timing Specifications

Notes:

1. Rise and fall times for EC_GTX_CLK125 are measured from 0.5 and 2.0 V for L/TV_{DD} = 2.5 V, and from 0.6 and 2.7 V for L/TVDD = 3.3 V.

 EC_GTX_CLK125 is used to generate the GTX clock for the eTSEC transmitter with 2% degradation. EC_GTX_CLK125 duty cycle can be loosened from 47%/53% as long as the PHY device can tolerate the duty cycle generated by the eTSEC GTX_CLK. See Section 8.7.4, "RGMII and RTBI AC Timing Specifications," for duty cycle for 10Base-T and 100Base-T reference clock.

4.4 Platform to FIFO Restrictions

Please note the following FIFO maximum speed restrictions based on platform speed.

For FIFO GMII mode:

FIFO TX/RX clock frequency \leq platform clock frequency \div 4.2

For example, if the platform frequency is 533 MHz, the FIFO Tx/Rx clock frequency should be no more than 127 MHz.

For FIFO encoded mode:

FIFO TX/RX clock frequency \leq platform clock frequency \div 3.2

For example, if the platform frequency is 533 MHz, the FIFO Tx/Rx clock frequency should be no more than 167 MHz.

6.1 DDR SDRAM DC Electrical Characteristics

Table 10 provides the recommended operating conditions for the DDR SDRAM component(s) of the MPC8544E when $GV_{DD}(typ) = 1.8 V_{.}$

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
I/O supply voltage	GV _{DD}	1.71	1.89	V	1
I/O reference voltage	MV _{REF}	$0.49 \times GV_{DD}$ $0.51 \times GV_{DD}$		V	2
I/O termination voltage	V _{TT}	MV _{REF} – 0.04	MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	MV _{REF} + 0.26	GV _{DD} + 0.3	V	_
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.24	V	_
Output high current (V _{OUT} = 1.26 V)	I _{OH}	-13.4	_	mA	_
Output low current (V _{OUT} = 0.33 V)	I _{OL}	13.4	_	mA	_

Table 10. DDR2 SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 1.8 V

Notes:

1. GV_{DD} is expected to be within 50 mV of the DRAM GV_{DD} at all times.

2. MV_{REF} is expected to be equal to 0.5 × GV_{DD} , and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} may not exceed ±2% of the DC value.

3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{REF}. This rail should track variations in the DC level of MV_{REF}.

Table 11 provides the DDR2 I/O capacitance when $GV_{DD}(typ) = 1.8 V$.

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Input/output capacitance: DQ, DQS, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS, \overline{DQS}	C _{DIO}	_	0.5	pF	1

Note:

1. This parameter is sampled. $GV_{DD} = 1.8 \text{ V} \pm 0.090 \text{ V}$, f = 1 MHz, T_A = 25°C, V_{OUT} = $GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.2 V.

Table 12 provides the recommended operating conditions for the DDR SDRAM component(s) when $GV_{DD}(typ) = 2.5 \text{ V}.$

Table 12. DDR SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 2.5 V

Parameter/Condition	Symbol	Min Max		Unit	Notes
I/O supply voltage	GV _{DD}	2.375	2.625	V	1
I/O reference voltage	MV _{REF}	$0.49 imes GV_{DD}$	$0.51 imes GV_{DD}$	V	2
I/O termination voltage	V _{TT}	MV _{REF} – 0.04	MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	MV _{REF} + 0.31	GV _{DD} + 0.3	V	
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.3	V	
Output high current (V _{OUT} = 1.8 V)	I _{OH}	-16.2	—	mA	

DDR and DDR2 SDRAM

Table 12. DDR SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 2.5 V (continued)

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Output low current (V _{OUT} = 0.42 V)	I _{OL}	16.2	_	mA	

Notes:

1. GV_{DD} is expected to be within 50 mV of the DRAM GV_{DD} at all times.

2. MV_{REF} is expected to be equal to 0.5 × GV_{DD} , and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} may not exceed ±2% of the DC value.

3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{REF}. This rail should track variations in the DC level of MV_{REF}.

Table 13 provides the DDR I/O capacitance when $GV_{DD}(typ) = 2.5 \text{ V}$.

Table 13. DDR SDRAM Capacitance for GV_{DD}(typ) = 2.5 V

Parameter/Condition	Symbol	Min	Max	Unit	Notes
Input/output capacitance: DQ, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS	C _{DIO}	_	0.5	pF	1

Note:

1. This parameter is sampled. $GV_{DD} = 2.5 \text{ V} \pm 0.125 \text{ V}$, f = 1 MHz, T_A = 25°C, V_{OUT} = $GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.2 V.

Table 14 provides the current draw characteristics for MV_{REF} .

Table 14. Current Draw Characteristics for MV_{REF}

Parameter/Condition	Symbol	Min	Max	Unit	Notes
Current draw for MV _{REF}	I _{MVREF}		500	μA	1

Note:

1. The voltage regulator for MV_{REF} must be able to supply up to 500 μ A current.

6.2 DDR SDRAM AC Electrical Characteristics

This section provides the AC electrical characteristics for the DDR SDRAM interface.

6.2.1 DDR SDRAM Input AC Timing Specifications

Table 15 provides the input AC timing specifications for the DDR SDRAM when $GV_{DD}(typ) = 1.8 V$.

Table 15. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface

At recommended operating conditions.

Parameter	Symbol	Min	Мах	Unit	Notes
AC input low voltage	V _{IL}	—	MV _{REF} – 0.25	V	_
AC input high voltage	V _{IH}	MV _{REF} + 0.25	_	V	_

Figure 7 shows an example of a 4-wire AC-coupled SGMII serial link connection.

Figure 8 shows an SGMII transmitter DC measurement circuit.

Figure 8. SGMII Transmitter DC Measurement Circuit

Table 25 shows the DC receiver electrical characteristics.

Table 25. DC Receiver Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Supply Voltage	V _{DD_SRDS2}	0.9	1.0	1.05	V	_
DC input voltage range	—			_	—	1

Enhanced Three-Speed Ethernet (eTSEC), MII Management

Table 28. FIFO Mode Transmit AC Timing Specification (continued)

(continued)At recommended operating conditions with L/TVDD of 3.3 V \pm 5% or 2.5 V \pm 5%

Parameter/Condition	Symbol	Min	Тур	Мах	Unit	Notes
Fall time TX_CLK (80%–20%)	t _{FITF}	_	—	0.75	ns	—
GTX_CLK to FIFO data TXD[7:0], TX_ER, TX_EN hold time	t _{FITDX}	0.5	—	3.0	ns	1

Note:

1. Data valid $t_{\ensuremath{\mathsf{FITDV}}}$ to GTX_CLK Min setup time is a function of clock period and max hold time.

(Min setup = Cycle time - Max hold).

Table 29. FIFO Mode Receive AC Timing Specification

At recommended operating conditions with L/TVDD of 3.3 V \pm 5% or 2.5 V \pm 5%

Parameter/Condition	Symbol	Min	Тур	Мах	Unit	Notes
RX_CLK clock period	t _{FIR}	—	8.0	—	ns	—
RX_CLK duty cycle	t _{FIRH} /t _{FIRH}	45	50	55	%	—
RX_CLK peak-to-peak jitter	t _{FIRJ}	—	—	250	ps	—
Rise time RX_CLK (20%–80%)	t _{FIRR}	—	—	0.75	ns	—
Fall time RX_CLK (80%-20%)	t _{FIRF}	—	—	0.75	ns	—
RXD[7:0], RX_DV, RX_ER setup time to RX_CLK	t _{FIRDV}	1.5	—	—	ns	—
RX_CLK to RXD[7:0], RX_DV, RX_ER hold time	t _{FIRDX}	0.5	—	—	ns	—

Timing diagrams for FIFO appear in Figure 11 and Figure 12.

Figure 12. FIFO Receive AC Timing Diagram

Table 35. TBI Receive AC Timing Specifications (continued)

At recommended operating conditions with L/TVDD of 3.3 V \pm 5% or 2.5 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit	Notes
PMA_RX_CLK[0:1] duty cycle	t _{TRXH} /t _{TRX}	40	—	60	%	—
RCG[9:0] setup time to rising PMA_RX_CLK	t _{TRDVKH}	2.5	_	_	ns	—
PMA_RX_CLK to RCG[9:0] hold time	t _{TRDXKH}	1.5	_	_	ns	—
PMA_RX_CLK[0:1] clock rise time (20%-80%)	t _{TRXR}	0.7	—	2.4	ns	—
PMA_RX_CLK[0:1] clock fall time (80%-20%)	t _{TRXF}	0.7	_	2.4	ns	_

Note:

1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state)} for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{TRDVKH} symbolizes TBI receive timing (TR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{TRX} clock reference (K) going to the high (H) state or setup time. Also, t_{TRDXKH} symbolizes TBI receive timing (TR) with respect to the time data input signals (D) went invalid (X) relative to the t_{TRX} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{TRX} represents the TBI (T) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall). For symbols representing skews, the subscript is skew (SK) followed by the clock that is being skewed (TRX).

Figure 20 shows the TBI receive AC timing diagram.

Figure 20. TBI Receive AC Timing Diagram

8.7.3 TBI Single-Clock Mode AC Specifications

When the eTSEC is configured for TBI modes, all clocks are supplied from external sources to the relevant eTSEC interface. In single-clock TBI mode, when TBICON[CLKSEL] = 1, a 125-MHz TBI receive clock is supplied on the TSEC n_RX_CLK pin (no receive clock is used on TSEC n_TX_CLK in this mode, whereas for the dual-clock mode this is the PMA1 receive clock). The 125-MHz transmit clock is applied on the TSEC_GTX_CLK125 pin in all TBI modes.

Table 45. Local Bus General Timing Parameters (BV_{DD} = 3.3 V)—PLL Enabled (continued)

Parameter	Symbol ¹	Min	Мах	Unit	Notes
Local bus clock to output high impedance for LAD/LDP	t _{LBKHOZ2}	_	2.5	ns	5

Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one (1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the t_{LBK} clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.
</sub>

2. All timings are in reference to LSYNC_IN for PLL enabled and internal local bus clock for PLL bypass mode.

3. All signals are measured from $BV_{DD}/2$ of the rising edge of LSYNC_IN for PLL enabled or internal local bus clock for PLL bypass mode to $0.4 \times BV_{DD}$ of the signal in question for 3.3-V signaling levels.

4. Input timings are measured at the pin.

5. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

- 6. t_{LBOTOT} is a measurement of the minimum time between the negation of LALE and any change in LAD. t_{LBOTOT} is programmed with the LBCR[AHD] parameter.
- 7. Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between complementary signals at BV_{DD}/2.

Table 46 describes the general timing parameters of the local bus interface at $BV_{DD} = 2.5$ V.

Table 46. Local Bus General Timing Parameters (BV_{DD} = 2.5 V)—PLL Enabled

Parameter	Symbol ¹	Min	Мах	Unit	Notes
Local bus cycle time	t _{LBK}	7.5	12	ns	2
Local bus duty cycle	t _{LBKH/} t _{LBK}	43	57	%	—
LCLK[n] skew to LCLK[m] or LSYNC_OUT	t _{lbkskew}	—	150	ps	7
Input setup to local bus clock (except LUPWAIT)	t _{LBIVKH1}	2.4	—	ns	3, 4
LUPWAIT input setup to local bus clock	t _{LBIVKH2}	1.8	—	ns	3, 4
Input hold from local bus clock (except LUPWAIT)	t _{LBIXKH1}	1.1	—	ns	3, 4
LUPWAIT input hold from local bus clock	t _{LBIXKH2}	1.1	—	ns	3, 4
LALE output transition to LAD/LDP output transition (LATCH setup and hold time)	t _{lbotot}	1.5	—	ns	6
Local bus clock to output valid (except LAD/LDP and LALE)	t _{LBKHOV1}	_	2.8	ns	_
Local bus clock to data valid for LAD/LDP	t _{LBKHOV2}	—	2.8	ns	3
Local bus clock to address valid for LAD	t _{LBKHOV3}	—	2.8	ns	3
Local bus clock to LALE assertion	t _{LBKHOV4}	—	2.8	ns	3
Output hold from local bus clock (except LAD/LDP and LALE)	t _{LBKHOX1}	0.8	—	ns	3
Output hold from local bus clock for LAD/LDP	t _{LBKHOX2}	0.8	—	ns	3
Local bus clock to output high Impedance (except LAD/LDP and LALE)	t _{LBKHOZ1}	—	2.6	ns	5

Figure 28 through Figure 33 show the local bus signals.

Table 48 describes the general timing parameters of the local bus interface at V_{DD} = 3.3 V DC with PLL disabled.

Parameter	Symbol ¹	Min	Max	Unit	Notes
Local bus cycle time	t _{LBK}	12	_	ns	2
Local bus duty cycle	t _{LBKH/} t _{LBK}	43	57	%	_
Internal launch/capture clock to LCLK delay	t _{LBKHKT}	1.2	4.9	ns	_
Input setup to local bus clock (except LUPWAIT)	t _{LBIVKH1}	7.4	_	ns	4, 5
LUPWAIT input setup to local bus clock	t _{LBIVKL2}	6.75	_	ns	4, 5
Input hold from local bus clock (except LUPWAIT)	t _{LBIXKH1}	-0.2	_	ns	4, 5
LUPWAIT input hold from local bus clock	t _{LBIXKL2}	-0.2	_	ns	4, 5
LALE output transition to LAD/LDP output transition (LATCH hold time)	t _{lbotot}	1.5	—	ns	6
Local bus clock to output valid (except LAD/LDP and LALE)	t _{LBKLOV1}	—	1.6	ns	_

Table 48. Local Bus General Timing Parameters—PLL Bypassed

Figure 33. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 8 or 16 (PLL Bypass Mode)

11 Programmable Interrupt Controller

In IRQ edge trigger mode, when an external interrupt signal is asserted (according to the programmed polarity), it must remain the assertion for at least 3 system clocks (SYSCLK periods).

Figure 38 provides the AC test load for the I^2C .

Figure 38. I²C AC Test Load

Figure 39 shows the AC timing diagram for the I^2C bus.

Figure 39. I²C Bus AC Timing Diagram

14 GPIO

This section describes the DC and AC electrical specifications for the GPIO interface of the MPC8544E.

14.1 GPIO DC Electrical Characteristics

Table 53 provides the DC electrical characteristics for the GPIO interface.

Table 53. GPIO DO	Electrical	Characteristics
-------------------	------------	-----------------

Parameter	Symbol	Min	Мах	Unit	Notes
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V	—
Low-level input voltage	V _{IL}	-0.3	0.8	V	—
Input current ($V_{IN} = 0 V \text{ or } V_{IN} = V_{DD}$)	I _{IN}	—	±5	μA	1
High-level output voltage ($OV_{DD} = mn, I_{OH} = -2 mA$)	V _{OH}	2.4	—	V	—
Low-level output voltage ($OV_{DD} = min, I_{OL} = 2 mA$)	V _{OL}	—	0.4	V	

Note:

1. Note that the symbol V_{IN} , in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

PCI

15.2 PCI AC Electrical Specifications

This section describes the general AC timing parameters of the PCI bus. Note that the SYSCLK signal is used as the PCI input clock. Table 56 provides the PCI AC timing specifications at 66 MHz.

Parameter	Symbol ¹	Min	Max	Unit	Notes
SYSCLK to output valid	t _{PCKHOV}	_	7.4	ns	2, 3
Output hold from SYSCLK	t _{PCKHOX}	2.0	_	ns	2
SYSCLK to output high impedance	t _{PCKHOZ}	_	14	ns	2, 4
Input setup to SYSCLK	t _{PCIVKH}	3.7	_	ns	2, 5
Input hold from SYSCLK	t _{PCIXKH}	0.5	_	ns	2, 5
REQ64 to HRESET ⁹ setup time	t _{PCRVRH}	$10 \times t_{SYS}$	_	clocks	6, 7
HRESET to REQ64 hold time	t _{PCRHRX}	0	50	ns	7
HRESET high to first FRAME assertion	t _{PCRHFV}	10	_	clocks	8
Rise time (20%–80%)	t _{PCICLK}	0.6	2.1	ns	
Fall time (20%–80%)	t _{PCICLK}	0.6	2.1	ns	

Table 56. PCI AC Timin	g Specifications at 66 MHz
------------------------	----------------------------

Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the SYSCLK clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
</sub></sub>

- 2. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.
- 3. All PCI signals are measured from $OV_{DD}/2$ of the rising edge of PCI_SYNC_IN to $0.4 \times OV_{DD}$ of the signal in question for 3.3-V PCI signaling levels.
- 4. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 5. Input timings are measured at the pin.
- The timing parameter t_{SYS} indicates the minimum and maximum CLK cycle times for the various specified frequencies. The system clock period must be kept within the minimum and maximum defined ranges. For values see Section 19, "Clocking."
- 7. The setup and hold time is with respect to the rising edge of HRESET.
- 8. The timing parameter t_{PCRHFV} is a minimum of 10 clocks rather than the minimum of 5 clocks in the PCI 2.2 Local Bus Specifications.
- 9. The reset assertion timing requirement for $\overline{\text{HRESET}}$ is 100 $\mu\text{s}.$

Figure 41 provides the AC test load for PCI.

Figure 41. PCI AC Test Load

High-Speed Serial Interfaces (HSSI)

Figure 54. Single-Ended Measurement Points for Rise and Fall Time Matching

The other detailed AC requirements of the SerDes reference clocks is defined by each interface protocol based on application usage. Refer to the following sections for detailed information:

- Section 8.3.1, "The DBWO Signal"
- Section 17.2, "AC Requirements for PCI Express SerDes Clocks"

16.2.4.1 Spread Spectrum Clock

SD1_REF_CLK/SD1_REF_CLK were designed to work with a spread spectrum clock (+0 to -0.5% spreading at 30–33 kHz rate is allowed), assuming both ends have same reference clock. For better results, a source without significant unintended modulation should be used.

SD2_REF_CLK/SD2_REF_CLK are not intended to be used with, and should not be clocked by, a spread spectrum clock source.

16.3 SerDes Transmitter and Receiver Reference Circuits

Figure 55 shows the reference circuits for SerDes data lane's transmitter and receiver.

Figure 55. SerDes Transmitter and Receiver Reference Circuits

The DC and AC specification of SerDes data lanes are defined in the section below (PCI Express or SGMII) in this document based on the application usage:

- Section 8.3, "SGMII Interface Electrical Characteristics"
- Section 17, "PCI Express"

Please note that external AC Coupling capacitor is required for the above serial transmission protocols with the capacitor value defined in specification of each protocol section.

17.4.1 Differential Transmitter (TX) Output

Table 59 defines the specifications for the differential output at all transmitters. The parameters are specified at the component pins.

Symbol	Parameter	Min	Nom	Max	Unit	Comments
UI	Unit interval	399.88	400	400.12	ps	Each UI is 400 ps ± 300 ppm. UI does not account for Spread Spectrum Clock dictated variations. See Note 1.
V _{TX-DIFFp-p}	Differential peak-to- peak output voltage	0.8		1.2	V	$V_{TX-DIFFp-p} = 2^{*} V_{TX-D+} - V_{TX-D-} .$ See Note 2.
V _{TX-DE-RATIO}	De- emphasized differential output voltage (ratio)	-3.0	-3.5	-4.0	dB	Ratio of the $V_{TX-DIFF_{p-p}}$ of the second and following bits after a transition divided by the $V_{TX-DIFF_{p-p}}$ of the first bit after a transition. See Note 2.
T _{TX-EYE}	Minimum TX eye width	0.70		—	UI	The maximum transmitter jitter can be derived as $T_{TX-MAX-JITTER} = 1 - T_{TX-EYE} = 0.3$ UI. See Notes 2 and 3.
T _{TX-EYE-MEDIAN-to-} MAX-JITTER	Maximum time between the jitter median and maximum deviation from the median.	_	_	0.15	UI	Jitter is defined as the measurement variation of the crossing points ($V_{TX-DIFFp-p}$ = 0 V) in relation to a recovered TX UI. A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. Jitter is measured using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the TX UI. See Notes 2 and 3.
T _{TX-RISE} , T _{TX-FALL}	D+/D- TX output rise/fall time	0.125	_	_	UI	See Notes 2 and 5.
V _{TX-CM-ACp}	RMS AC peak common mode output voltage			20	mV	$\begin{split} & V_{TX-CM-ACp} = RMS(IV_{TXD+} - \\ & V_{TXD-}I/2 - V_{TX-CM-DC}) \\ & V_{TX-CM-DC} = DC_{(avg)} \text{ of } IV_{TX-D+} - \\ & V_{TX-D-}I/2 \\ & See Note 2. \end{split}$
V _{TX-CM-DC-ACTIVE-} IDLE-DELTA	Absolute delta of DC common mode voltage during LO and electrical idle	0	_	100	mV	$\begin{split} & V_{TX-CM-DC (during LO)} - V_{TX-CM-Idle-DC} \\ &(During Electrical Idle) <= 100 mV \\ &V_{TX-CM-DC} = DC_{(avg)} \text{ of } V_{TX-D+} - \\ &V_{TX-D-} /2 \text{ [LO]} \\ &V_{TX-CM-Idle-DC} = DC_{(avg)} \text{ of } V_{TX-D+} - \\ &V_{TX-D-} /2 \text{ [Electrical Idle]} \\ &See Note 2. \end{split}$
V _{TX-CM-DC} -LINE-DELTA	Absolute delta of DC common mode between D+ and D–	0	_	25	mV	$\begin{split} & V_{TX-CM-DC-D+} - V_{TX-CM-DC-D-} <= 25 \text{ mV} \\ &V_{TX-CM-DC-D+} = DC_{(avg)} \text{ of } V_{TX-D+} \\ &V_{TX-CM-DC-D-} = DC_{(avg)} \text{ of } V_{TX-D-} \\ &\text{See Note 2.} \end{split}$
V _{TX-IDLE} -DIFFp	Electrical idle differential peak output voltage	0		20	mV	$V_{TX-IDLE-DIFF_p} = IV_{TX-IDLE-D_+} - V_{TX-IDLE-D}I$ <= 20 mV See Note 2.

Table 59. Differential Transmitter (TX) Output Specifications

Table 59. Differential Transmitter (TX) Output Specifications (continued)

Symbol	Parameter	Min	Nom	Max	Unit	Comments
T _{crosslink}	Crosslink random timeout	0		1	ms	This random timeout helps resolve conflicts in crosslink configuration by eventually resulting in only one downstream and one upstream port. See Note 7.

Notes:

- 1. No test load is necessarily associated with this value.
- 2. Specified at the measurement point into a timing and voltage compliance test load as shown in Figure 58 and measured over any 250 consecutive TX UIs. (Also refer to the transmitter compliance eye diagram shown in Figure 56.)
- 3. A T_{TX-EYE} = 0.70 UI provides for a total sum of deterministic and random jitter budget of T_{TX-JITTER-MAX} = 0.30 UI for the transmitter collected over any 250 consecutive TX UIs. The T_{TX-EYE-MEDIAN-to-MAX-JITTER} median is less than half of the total TX jitter budget collected over any 250 consecutive TX UIs. It should be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value.
- 4. The transmitter input impedance shall result in a differential return loss greater than or equal to 12 dB and a common mode return loss greater than or equal to 6 dB over a frequency range of 50 MHz to 1.25 GHz. This input impedance requirement applies to all valid input levels. The reference impedance for return loss measurements is 50 Ω to ground for both the D+ and D- line (that is, as measured by a vector network analyzer with 50-Ω probes—see Figure 58.) Note that the series capacitors C_{TX} is optional for the return loss measurement.
- 5. Measured between 20%–80% at transmitter package pins into a test load as shown in Figure 58 for both V_{TX-D+} and V_{TX-D-} .
- 6. See Section 4.3.1.8 of the PCI Express Base Specifications, Rev 1.0a.
- 7. See Section 4.2.6.3 of the PCI Express Base Specifications, Rev 1.0a.

17.4.2 Transmitter Compliance Eye Diagrams

The TX eye diagram in Figure 56 is specified using the passive compliance/test measurement load (see Figure 58) in place of any real PCI Express interconnect +RX component.

There are two eye diagrams that must be met for the transmitter. Both eye diagrams must be aligned in time using the jitter median to locate the center of the eye diagram. The different eye diagrams will differ in voltage depending whether it is a transition bit or a de-emphasized bit. The exact reduced voltage level of the de-emphasized bit will always be relative to the transition bit.

The eye diagram must be valid for any 250 consecutive UIs.

A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. The eye diagram is created using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the TX UI.

NOTE

It is recommended that the recovered TX UI is calculated using all edges in the 3500 consecutive UI interval with a fit algorithm using a minimization merit function (that is, least squares and median deviation fits).

18.3 Pinout Listings

Table 62 provides the pinout listing for the MPC8544E 783 FC-PBGA package.

NOTE

The naming convention of TSEC1 and TSEC3 is used to allow the splitting voltage rails for the eTSEC blocks and to ease the port of existing PowerQUICC III software.

NOTE

The DMA_DACK[0:1] and TEST_SEL pins must be set to a proper state during POR configuration. Please refer to Table 62 for more details.

Signal	Package Pin Number	Pin Type	Power Supply	Notes		
PCI						
PCI1_AD[31:0]	AE8, AD8, AF8, AH12, AG12, AB9, AC9, AE9, AD10, AE10, AC11, AB11, AB12, AC12, AF12, AE11, Y14, AE15, AC15, AB15, AA15, AD16, Y15, AB16, AF18, AE18, AC17, AE19, AD19, AB17, AB18, AA16	I/O	OV _{DD}			
PCI1_C_BE[3:0]	AC10, AE12, AA14, AD17	I/O	OV _{DD}	—		
PCI1_GNT[4:1]	AE7, AG11,AH11, AC8	0	OV _{DD}	4, 8, 24		
PCI1_GNT0	AE6	I/O	OV _{DD}	—		
PCI1_IRDY	AF13	I/O	OV _{DD}	2		
PCI1_PAR	AB14	I/O	OV _{DD}	—		
PCI1_PERR	AE14	I/O	OV _{DD}	2		
PCI1_SERR	AC14	I/O	OV _{DD}	2		
PCI1_STOP	AA13	I/O	OV _{DD}	2		
PCI1_TRDY	AD13	I/O	OV _{DD}	2		
PCI1_REQ[4:1]	AF9, AG10, AH10, AD6	I	OV _{DD}	—		
PCI1_REQ0	AB8	I/O	OV _{DD}	—		
PCI1_CLK	AH26	I	OV _{DD}	—		
PCI1_DEVSEL	AC13	I/O	OV _{DD}	2		
PCI1_FRAME	AD12	I/O	OV _{DD}	2		
PCI1_IDSEL	AG6	l	OV _{DD}	—		

Table 62. MPC8544E Pinout Listing

Table 62. MPC8544E Pinout Listing (continued	Table 62	. MPC8544E	Pinout	Listing	(continued
--	----------	------------	--------	---------	------------

Signal	Package Pin Number	Pin Type	Power Supply	Notes	
UART_SIN[0:1]	AG7, AH6	I	OV _{DD}		
UART_SOUT[0:1]	AH7, AF7	0	OV _{DD}		
	I ² C interface			•	
IIC1_SCL	AG21	I/O	OV _{DD}	20	
IIC1_SDA	AH21	I/O	OV _{DD}	20	
IIC2_SCL	AG13	I/O	OV _{DD}	20	
IIC2_SDA	AG14	I/O	OV _{DD}	20	
	SerDes 1				
SD1_RX[0:7]	N28, P26, R28, T26, Y26, AA28, AB26, AC28	I	XV _{DD}	_	
SD1_RX[0:7]	N27, P25, R27, T25, Y25, AA27, AB25, AC27	I	XV _{DD}		
SD1_TX[0:7]	M23, N21, P23, R21, U21, V23, W21, Y23	0	XV _{DD}		
SD1_TX[0:7]	M22, N20, P22, R20, U20, V22, W20, Y22	0	XV _{DD}		
SD1_PLL_TPD	V28	0	XV _{DD}	17	
SD1_REF_CLK	U28	I	XV _{DD}	_	
SD1_REF_CLK	U27	I	XV _{DD}	_	
SD1_TST_CLK	T22		—	—	
SD1_TST_CLK	Т23		—	—	
SerDes 2					
SD2_RX[0]	AD25	I	xv _{DD}	—	
SD2_RX[2]	AD1	I	XV _{DD}	26	
SD2_RX[3]	AB2	I	XV _{DD}	26	
SD2_RX[0]	AD26	I	XV _{DD}	—	
SD2_RX[2]	AC1	I	XV _{DD}	26	
SD2_RX[3]	AA2	I	XV _{DD}	26	
SD2_TX[0]	AA21	0	XV _{DD}	—	
SD2_TX[2]	AC4	0	xv _{DD}	26	
SD2_TX[3]	AA5	0	XV _{DD}	26	
SD2_TX[0]	AA20	0	XV _{DD}	—	
SD2_TX[2]	AB4	0	XV _{DD}	26	
SD2_TX[3]	Y5	0	XV _{DD}	26	
SD2_PLL_TPD	AG3	0	XV _{DD}	17	
SD2_REF_CLK	AE2	I	XV _{DD}	—	

Clocking

Note that there is no default for this PLL ratio; these signals must be pulled to the desired values. Also note that the DDR data rate is the determining factor in selecting the CCB bus frequency, since the CCB frequency must equal the DDR data rate.

Binary Value of LA[28:31] Signals	CCB:SYSCLK Ratio	Binary Value of LA[28:31] Signals	CCB:SYSCLK Ratio
0000	16:1	1000	8:1
0001	Reserved	1001	9:1
0010	Reserved	1010	10:1
0011	3:1	1011	Reserved
0100	4:1	1100	12:1
0101	5:1	1101	Reserved
0110	6:1	1110	Reserved
0111	Reserved	1111	Reserved

Table	65.	ССВ	Clock	Ratio
Table	00.	000	Olock	nauo

19.3 e500 Core PLL Ratio

Table 66 describes the clock ratio between the e500 core complex bus (CCB) and the e500 core clock. This ratio is determined by the binary value of LBCTL, LALE, and LGPL2 at power up, as shown in Table 66.

Table 6	6. e500	Core to	ССВ	Clock Ratio
	0.0000			

Binary Value of LBCTL, LALE, LGPL2 Signals	e500 core:CCB Clock Ratio	Binary Value of LBCTL, LALE, LGPL2 Signals	e500 core:CCB Clock Ratio
000	4:1	100	2:1
001	Reserved	101	5:2
010	Reserved	110	3:1
011	3:2	111	7:2

19.4 PCI Clocks

For specifications on the PCI_CLK, refer to the PCI 2.2 Local Bus Specifications.

The use of PCI_CLK is optional if SYSCLK is in the range of 33–66 MHz. If SYSCLK is outside this range then use of PCI_CLK is required as a separate PCI clock source, asynchronous with respect to SYSCLK.

System Design Information

been encoded such that a high voltage level puts the device into the default state and external resistors are needed only when non-default settings are required by the user.

Careful board layout with stubless connections to these pull-down resistors coupled with the large value of the pull-down resistor should minimize the disruption of signal quality or speed for output pins thus configured.

The platform PLL ratio and e500 PLL ratio configuration pins are not equipped with these default pull-up devices.

21.9 JTAG Configuration Signals

Correct operation of the JTAG interface requires configuration of a group of system control pins as demonstrated in Figure 69. Care must be taken to ensure that these pins are maintained at a valid deasserted state under normal operating conditions as most have asynchronous behavior and spurious assertion will give unpredictable results.

Boundary-scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the IEEE 1149.1 specification, but is provided on all processors built on Power ArchitectureTM technology. The device requires TRST to be asserted during reset conditions to ensure the JTAG boundary logic does not interfere with normal chip operation. While it is possible to force the TAP controller to the reset state using only the TCK and TMS signals, generally systems will assert TRST during the power-on reset flow. Simply tying TRST to HRESET is not practical because the JTAG interface is also used for accessing the common on-chip processor (COP) function.

The COP function of these processors allow a remote computer system (typically, a PC with dedicated hardware and debugging software) to access and control the internal operations of the processor. The COP interface connects primarily through the JTAG port of the processor, with some additional status monitoring signals. The COP port requires the ability to independently assert HRESET or TRST in order to fully control the processor. If the target system has independent reset sources, such as voltage monitors, watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be merged into these signals with logic. The arrangement shown in Figure 69 allows the COP port to independently assert HRESET or TRST, while ensuring that the target can drive HRESET as well.

The COP interface has a standard header, shown in Figure 68, for connection to the target system, and is based on the 0.025" square-post, 0.100" centered header assembly (often called a Berg header). The connector typically has pin 14 removed as a connector key.

The COP header adds many benefits such as breakpoints, watchpoints, register and memory examination/modification, and other standard debugger features. An inexpensive option can be to leave the COP header unpopulated until needed.

There is no standardized way to number the COP header; consequently, many different pin numbers have been observed from emulator vendors. Some are numbered top-to-bottom then left-to-right, while others use left-to-right then top-to-bottom, while still others number the pins counter clockwise from pin 1 (as with an IC). Regardless of the numbering, the signal placement recommended in Figure 68 is common to all known emulators.

21.9.1 Termination of Unused Signals

If the JTAG interface and COP header will not be used, Freescale recommends the following connections:

- TRST should be tied to HRESET through a 0-kΩ isolation resistor so that it is asserted when the system reset signal (HRESET) is asserted, ensuring that the JTAG scan chain is initialized during the power-on reset flow. Freescale recommends that the COP header be designed into the system as shown in Figure 69. If this is not possible, the isolation resistor will allow future access to TRST in case a JTAG interface may need to be wired onto the system in future debug situations.
- No pull-up/pull-down is required for TDI, TMS, or TDO.

Figure 68 shows the COP connector physical pinout.

Figure 68. COP Connector Physical Pinout