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MPC8544E Overview

– Two key (K1, K2, K1) or three key (K1, K2, K3)
– ECB and CBC modes for both DES and 3DES

— AESU—Advanced Encryption Standard unit
– Implements the Rijndael symmetric key cipher
– ECB, CBC, CTR, and CCM modes
– 128-, 192-, and 256-bit key lengths

— AFEU—ARC four execution unit
–  Implements a stream cipher compatible with the RC4 algorithm 
–  40- to 128-bit programmable key

— MDEU—message digest execution unit
– SHA with 160- or 256-bit message digest 
– MD5 with 128-bit message digest
– HMAC with either algorithm

— KEU—Kasumi execution unit 
– Implements F8 algorithm for encryption and F9 algorithm for integrity checking
– Also supports A5/3 and GEA-3 algorithms

— RNG—random number generator
— XOR engine for parity checking in RAID storage applications

• Dual I2C controllers
— Two-wire interface
— Multiple master support
— Master or slave I2C mode support
— On-chip digital filtering rejects spikes on the bus

• Boot sequencer
— Optionally loads configuration data from serial ROM at reset via the I2C interface
— Can be used to initialize configuration registers and/or memory
— Supports extended I2C addressing mode
— Data integrity checked with preamble signature and CRC

• DUART
— Two 4-wire interfaces (SIN, SOUT, RTS, CTS)
— Programming model compatible with the original 16450 UART and the PC16550D

• Local bus controller (LBC)
— Multiplexed 32-bit address and data bus operating at up to 133 MHz
— Eight chip selects support eight external slaves
— Up to eight-beat burst transfers
— The 32-, 16-, and 8-bit port sizes are controlled by an on-chip memory controller.
— Two protocol engines available on a per chip select basis:
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MPC8544E Overview

• Three PCI Express interfaces
— Two ×4 link width interfaces and one ×1 link width interface
— PCI Express 1.0a compatible
— Auto-detection of number of connected lanes
— Selectable operation as root complex or endpoint
— Both 32- and 64-bit addressing
— 256-byte maximum payload size
— Virtual channel 0 only
— Traffic class 0 only
— Full 64-bit decode with 32-bit wide windows

• Power management
— Supports power saving modes: doze, nap, and sleep
— Employs dynamic power management, which automatically minimizes power consumption of 

blocks when they are idle
• System performance monitor 

— Supports eight 32-bit counters that count the occurrence of selected events
— Ability to count up to 512 counter-specific events
— Supports 64 reference events that can be counted on any of the 8 counters
— Supports duration and quantity threshold counting 
— Burstiness feature that permits counting of burst events with a programmable time between 

bursts
— Triggering and chaining capability
— Ability to generate an interrupt on overflow

• System access port
— Uses JTAG interface and a TAP controller to access entire system memory map
— Supports 32-bit accesses to configuration registers
— Supports cache-line burst accesses to main memory
— Supports large block (4-Kbyte) uploads and downloads
— Supports continuous bit streaming of entire block for fast upload and download

• IEEE Std 1149.1™-compliant, JTAG boundary scan
• 783 FC-PBGA package
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Power Characteristics

3 Power Characteristics
The estimated typical core power dissipation for the core complex bus (CCB) versus the core frequency 
for this family of PowerQUICC III devices is shown in Table 4.

4 Input Clocks
This section contains the following subsections:

• Section 4.1, “System Clock Timing”
• Section 4.2, “Real-Time Clock Timing”
• Section 4.3, “eTSEC Gigabit Reference Clock Timing”
• Section 4.4, “Platform to FIFO Restrictions”
• Section 4.5, “Other Input Clocks”

Table 4.  MPC8544ECore Power Dissipation

Power Mode
Core Frequency 

(MHz)
Platform Frequency 

(MHz)
VDD
(V)

Junction 
Temperature (°C)

Power
(W)

Notes

Typical 667 333 1.0 65 2.6 1, 2

Thermal 105 4.5 1, 3

Maximum 7.15 1, 4

Typical 800 400 1.0 65 2.9 1, 2

Thermal 105 4.8 1, 3

Maximum 7.35 1, 4

Typical 1000 400 1.0 65 3.6 1, 2

Thermal 105 5.3 1, 3

Maximum 7.5 1, 4

Typical 1067 533 1.0 65 3.9 1, 2

Thermal 
105

6.0 1, 3

Maximum 7.7 1, 4

Notes:
1. These values specify the power consumption at nominal voltage and apply to all valid processor bus frequencies and 

configurations. The values do not include power dissipation for I/O supplies.
2. Typical power is an average value measured at the nominal recommended core voltage (VDD) and 65°C junction temperature 

(see Table 2) while running the Dhrystone 2.1 benchmark. 
3. Thermal power is the average power measured at nominal core voltage (VDD) and maximum operating junction temperature 

(see Table 2) while running the Dhrystone 2.1 benchmark. 
4. Maximum power is the maximum power measured at nominal core voltage (VDD) and maximum operating junction 

temperature (see Table 2) while running a smoke test which includes an entirely L1-cache-resident, contrived sequence of 
instructions which keep the execution unit maximally busy.
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Input Clocks

4.1 System Clock Timing
Table 5 provides the system clock (SYSCLK) AC timing specifications for the MPC8544E.

4.1.1 SYSCLK and Spread Spectrum Sources
Spread spectrum clock sources are an increasingly popular way to control electromagnetic interference 
emissions (EMI) by spreading the emitted noise to a wider spectrum and reducing the peak noise 
magnitude in order to meet industry and government requirements. These clock sources intentionally add 
long-term jitter in order to diffuse the EMI spectral content. The jitter specification given in Table 5 
considers short-term (cycle-to-cycle) jitter only and the clock generator’s cycle-to-cycle output jitter 
should meet the MPC8544E input cycle-to-cycle jitter requirement. Frequency modulation and spread are 
separate concerns, and the MPC8544E is compatible with spread spectrum sources if the recommendations 
listed in Table 6 are observed.

It is imperative to note that the processor’s minimum and maximum SYSCLK, core, and VCO frequencies 
must not be exceeded regardless of the type of clock source. Therefore, systems in which the processor is 
operated at its maximum rated e500 core frequency should avoid violating the stated limits by using 
down-spreading only.

Table 5. SYSCLK AC Timing Specifications
At recommended operating conditions (see Table 2) with OVDD = 3.3 V ± 165 mV.

Parameter/Condition Symbol Min Typical Max Unit Notes

SYSCLK frequency fSYSCLK 33 — 133 MHz 1

SYSCLK cycle time tSYSCLK 7.5 — 30.3 ns —

SYSCLK rise and fall time tKH, tKL 0.6 1.0 2.1 ns 2

SYSCLK duty cycle tKHK/tSYSCLK 40 — 60 % —

SYSCLK jitter — — — ±150 ps 3, 4

Notes:
1. Caution: The CCB clock to SYSCLK ratio and e500 core to CCB clock ratio settings must be chosen such that the resulting 

SYSCLK frequency, e500 (core) frequency, and CCB clock frequency do not exceed their respective maximum or minimum 
operating frequencies. Refer to Section 19.2, “CCB/SYSCLK PLL Ratio,” and Section 19.3, “e500 Core PLL Ratio,” for ratio 
settings.

2. Rise and fall times for SYSCLK are measured at 0.6 and 2.7 V.
3. This represents the total input jitter—short- and long-term.
4. The SYSCLK driver’s closed loop jitter bandwidth should be <500 kHz at –20 dB. The bandwidth must be set low to allow 

cascade-connected PLL-based devices to track SYSCLK drivers with the specified jitter.

Table 6. Spread Spectrum Clock Source Recommendations
At recommended operating conditions. See Table 2.

Parameter Min Max Unit Notes

Frequency modulation 20 60 kHz —

Frequency spread 0 1.0 % 1

Note: 
1. SYSCLK frequencies resulting from frequency spreading, and the resulting core and VCO frequencies, must meet the 

minimum and maximum specifications given in Table 5.
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DDR and DDR2 SDRAM

6.2.2 DDR SDRAM Output AC Timing Specifications

Table 18 provides the output AC timing specifications for the DDR SDRAM interface.
Table 18. DDR SDRAM Output AC Timing Specifications

At recommended operating conditions.

Parameter Symbol1 Min Max Unit Notes

MCK[n] cycle time, MCK[n]/MCK[n] crossing tMCK 3.75 6 ns 2

ADDR/CMD output setup with respect to MCK tDDKHAS ns 3

533 MHz
400 MHz
333 MHz

1.48
1.95
2.40

—
—
—

7

ADDR/CMD output hold with respect to MCK tDDKHAX ns 3

533 MHz
400 MHz
333 MHz

1.48
1.95
2.40

—
—
—

7
—
—

MCS[n] output setup with respect to MCK tDDKHCS ns 3

533 MHz
400 MHz
333 MHz

1.48
1.95
2.40

—
—
—

7
—
—

MCS[n] output hold with respect to MCK tDDKHCX ns 3

533 MHz
400 MHz
333 MHz

1.48
1.95
2.40

—
—
—

7
—
—

MCK to MDQS Skew tDDKHMH –0.6 0.6 ns 4

MDQ/MECC/MDM output setup with respect 
to MDQS

tDDKHDS,
tDDKLDS

ps 5

533 MHz
400 MHz
333 MHz

538
700
900

—
—
—

7
—
—

MDQ/MECC/MDM output hold with respect to 
MDQS

tDDKHDX,
tDDKLDX

ps 5

533 MHz
400 MHz
333 MHz

538
700
900

—
—
—

7
—
—

MDQS preamble tDDKHMP 0.75 x tMCK — ns 6
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Enhanced Three-Speed Ethernet (eTSEC), MII Management

7.2 DUART AC Electrical Specifications
Table 20 provides the AC timing parameters for the DUART interface.

8 Enhanced Three-Speed Ethernet (eTSEC), 
MII Management

This section provides the AC and DC electrical characteristics for enhanced three-speed and MII 
management.

8.1 Enhanced Three-Speed Ethernet Controller (eTSEC) 
(10/100/1000 Mbps)—SGMII/GMII/MII/TBI/RGMII/RTBI/RMII/FIFO 
Electrical Characteristics

The electrical characteristics specified here apply to all gigabit media independent interface (GMII), 8-bit 
FIFO interface (FIFO), serial gigabit media independent interface (SGMII), media independent interface 
(MII), ten-bit interface (TBI), reduced gigabit media independent interface (RGMII), reduced ten-bit 
interface (RTBI), and reduced media independent interface (RMII) signals except management data 
input/output (MDIO) and management data clock (MDC). The 8-bit FIFO interface can operate at 3.3 or 
2.5 V. The RGMII and RTBI interfaces are defined for 2.5 V, while the MII, GMII, TBI, and RMII 
interfaces can be operated at 3.3 or 2.5 V. Whether the GMII, MII, or TBI interface is operated at 3.3 or 
2.5 V, the timing is compliant with IEEE 802.3. The RGMII and RTBI interfaces follow the Reduced 
Gigabit Media-Independent Interface (RGMII) Specification Version 1.3 (12/10/2000). The RMII 
interface follows the RMII Consortium RMII Specification Version 1.2 (3/20/1998). The SGMII interfaces 
follow the Serial Gigabit Media-Independent Interface (SGMII) Specification Version 1.8. The electrical 
characteristics for MDIO and MDC are specified in Section 9, “Ethernet Management Interface Electrical 

Low-level output voltage (OVDD = min, IOL = 2 mA) VOL — 0.4 V —

Note:
1. Note that the symbol VIN, in this case, represents the OVIN symbol referenced in Table 1 and Table 2.

Table 20. DUART AC Timing Specifications

Parameter Value Unit Notes

Minimum baud rate CCB clock/1,048,576 baud 1

Maximum baud rate CCB clock/16 baud 2

Oversample rate 16 — 3

Notes:
1. CCB clock refers to the platform clock.
2. Actual attainable baud rate will be limited by the latency of interrupt processing.
3. The middle of a start bit is detected as the eighth sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values 

are sampled each sixteenth sample.

Table 19. DUART DC Electrical Characteristics (continued)

Parameter Symbol Min Max Unit Notes
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Enhanced Three-Speed Ethernet (eTSEC), MII Management

8.3 SGMII Interface Electrical Characteristics
Each SGMII port features a 4-wire AC-coupled serial link from the dedicated SerDes 2 interface of 
MPC8544E as shown in Figure 7, where CTX is the external (on board) AC-coupled capacitor. Each output 
pin of the SerDes transmitter differential pair features 50-Ω output impedance. Each input of the SerDes 
receiver differential pair features 50-Ω on-die termination to SGND_SRDS2 (xcorevss). The reference 
circuit of the SerDes transmitter and receiver is shown in Figure 7.

When an eTSEC port is configured to operate in SGMII mode, the parallel interface’s output signals of 
this eTSEC port can be left floating. The input signals should be terminated based on the guidelines 
described in Section 21.5, “Connection Recommendations,” as long as such termination does not violate 
the desired POR configuration requirement on these pins, if applicable.

When operating in SGMII mode, the eTSEC EC_GTX_CLK125 clock is not required for this port. 
Instead, SerDes reference clock is required on SD2_REF_CLK and SD2_REF_CLK pins.

8.3.1 AC Requirements for SGMII SD2_REF_CLK and SD2_REF_CLK

Table 23 lists the SGMII SerDes reference clock AC requirements. Please note that SD2_REF_CLK and 
SD2_REF_CLK are not intended to be used with, and should not be clocked by, a spread spectrum clock 
source.

8.3.2 SGMII Transmitter and Receiver DC Electrical Characteristics

Table 24 and Table 25 describe the SGMII SerDes transmitter and receiver AC-coupled DC electrical 
characteristics. Transmitter DC characteristics are measured at the transmitter outputs (SD2_TX[n] and 
SD2_TX[n]) as depicted in Figure 8.

Table 23. SD2_REF_CLK and SD2_REF_CLK AC Requirements

Symbol Parameter Description Min Typical Max Units Notes

tREF REFCLK cycle time — 10 (8) — ns 1

tREFCJ REFCLK cycle-to-cycle jitter. Difference in the period of any 
two adjacent REFCLK cycles

— — 100 ps —

tREFPJ Phase jitter. Deviation in edge location with respect to 
mean edge location

–50 — 50 ps —

Note:
1. 8 ns applies only when 125 MHz SerDes2 reference clock frequency is selected via cfg_srds_sgmii_refclk during POR.

Table 24. DC Transmitter Electrical Characteristics

Parameter Symbol Min Typ Max Unit Notes

Supply Voltage VDD_SRDS2 0.95 1.0 1.05 V —

Output high voltage VOH — — VOS-max + |VOD|–max/2 mV
1

Output low voltage VOL VOS-min –|VOD|-max/2 — — mV

Output ringing VRING — — 10 % —
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Enhanced Three-Speed Ethernet (eTSEC), MII Management

8.4 SGMII AC Timing Specifications
This section describes the SGMII transmit and receive AC timing specifications. Transmitter and receiver 
characteristics are measured at the transmitter outputs (SD2_TX[n] and SD2_TX[n]) or at the receiver 
inputs (SD2_RX[n] and SD2_RX[n]) as depicted in Figure 10, respectively.

8.4.1 SGMII Transmit AC Timing Specifications
Table 26 provides the SGMII transmit AC timing targets. A source synchronous clock is not provided.

Input differential voltage LSTS = 0 Vrx_diffpp 100 — 1200 mV 2, 4

LSTS = 1 175 —

Loss of signal threshold LSTS = 0 Vlos 30 — 100 mV 3, 4

LSTS = 1 65 — 175

Input AC common mode voltage Vcm_acpp — — 100 mV 5.

Receiver differential input impedance Zrx_diff 80 — 120 Ω —

Receiver common mode input impedance Zrx_cm 20 — 35 Ω —

Common mode input voltage Vcm xcorevss — xcorevss V 6

Notes:
1. Input must be externally AC-coupled.
2. VRX_DIFFp-p is also referred to as peak-to-peak input differential voltage
3. The concept of this parameter is equivalent to the electrical idle detect threshold parameter in PCI Express. Refer to 

Section 17.4.3, “Differential Receiver (RX) Input Specifications,” for further explanation.
4. The LSTS shown in this table refers to the LSTSCD bit field of MPC8544E SerDes 2 control register 1.
5. VCM_ACp-p is also referred to as peak-to-peak AC common mode voltage.
6. On-chip termination to SGND_SRDS2 (xcorevss).

Table 26. SGMII Transmit AC Timing Specifications
At recommended operating conditions with XVDD_SRDS2 = 1.0 V ± 5%.

Parameter Symbol Min Typ Max Unit Notes

Deterministic jitter JD — — 0.17 UI p-p —

Total jitter JT — — 0.35 UI p-p —

Unit interval UI 799.92 800 800.08 ps 2

VOD fall time (80%–20%) tfall 50 — 120 ps —

VOD rise time (20%–80%) trise 50 — 120 ps —

Notes;
1. Source synchronous clock is not supported.
2. Each UI value is 800 ps ± 100 ppm.

Table 25. DC Receiver Electrical Characteristics (continued)

Parameter Symbol Min Typ Max Unit Notes
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Local Bus

Table 46 describes the general timing parameters of the local bus interface at BVDD = 2.5 V.

Local bus clock to output high impedance for LAD/LDP tLBKHOZ2 — 2.5 ns 5

Notes:
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for 

inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tLBIXKH1 symbolizes local bus 
timing (LB) for the input (I) to go invalid (X) with respect to the time the tLBK clock reference (K) goes high (H), in this case for 
clock one (1). Also, tLBKHOX symbolizes local bus timing (LB) for the tLBK clock reference (K) to go high (H), with respect to 
the output (O) going invalid (X) or output hold time. 

2. All timings are in reference to LSYNC_IN for PLL enabled and internal local bus clock for PLL bypass mode.
3. All signals are measured from BVDD/2 of the rising edge of LSYNC_IN for PLL enabled or internal local bus clock for PLL 

bypass mode to 0.4 × BVDD of the signal in question for 3.3-V signaling levels.
4. Input timings are measured at the pin.
5. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered 

through the component pin is less than or equal to the leakage current specification.
6. tLBOTOT is a measurement of the minimum time between the negation of LALE and any change in LAD. tLBOTOT is 

programmed with the LBCR[AHD] parameter.
7. Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between 

complementary signals at BVDD/2.

Table 46. Local Bus General Timing Parameters (BVDD = 2.5 V)—PLL Enabled

Parameter Symbol1 Min Max Unit Notes

Local bus cycle time tLBK 7.5 12 ns 2

Local bus duty cycle tLBKH/tLBK 43 57 % —

LCLK[n] skew to LCLK[m] or LSYNC_OUT tLBKSKEW — 150 ps 7

Input setup to local bus clock (except LUPWAIT) tLBIVKH1 2.4 — ns 3, 4

LUPWAIT input setup to local bus clock tLBIVKH2 1.8 — ns 3, 4

Input hold from local bus clock (except LUPWAIT) tLBIXKH1 1.1 — ns 3, 4

LUPWAIT input hold from local bus clock tLBIXKH2 1.1 — ns 3, 4

LALE output transition to LAD/LDP output transition 
(LATCH setup and hold time)

tLBOTOT 1.5 — ns 6

Local bus clock to output valid (except LAD/LDP and LALE) tLBKHOV1 — 2.8 ns —

Local bus clock to data valid for LAD/LDP tLBKHOV2 — 2.8 ns 3

Local bus clock to address valid for LAD tLBKHOV3 — 2.8 ns 3

Local bus clock to LALE assertion tLBKHOV4 — 2.8 ns 3

Output hold from local bus clock (except LAD/LDP and 
LALE)

tLBKHOX1 0.8 — ns 3

Output hold from local bus clock for LAD/LDP tLBKHOX2 0.8 — ns 3

Local bus clock to output high Impedance (except 
LAD/LDP and LALE)

tLBKHOZ1 — 2.6 ns 5

Table 45. Local Bus General Timing Parameters (BVDD = 3.3 V)—PLL Enabled (continued)

Parameter Symbol1 Min Max Unit Notes
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I2C

Figure 37 provides the boundary-scan timing diagram.

Figure 37. Boundary-Scan Timing Diagram

13 I2C 
This section describes the DC and AC electrical characteristics for the I2C interfaces of the MPC8544E.

13.1 I2C DC Electrical Characteristics
Table 51 provides the DC electrical characteristics for the I2C interfaces.

Table 51. I2C DC Electrical Characteristics
At recommended operating conditions with OVDD of 3.3 V ± 5%.

Parameter Symbol Min Max Unit Notes

Input high voltage level VIH 0.7 × OVDD OVDD + 0.3 V —

Input low voltage level VIL –0.3 0.3 × OVDD V —

Low level output voltage VOL 0 0.2 × OVDD V 1

Pulse width of spikes which must be suppressed by the 
input filter

tI2KHKL 0 50 ns 2

Input current each I/O pin (input voltage is between 
0.1 × OVDD and 0.9 × OVDD(max)

II –10 10 μA 3

Capacitance for each I/O pin CI — 10 pF —

Notes:
1. Output voltage (open drain or open collector) condition = 3 mA sink current.
2. Refer to the MPC8544EPowerQUICC III Integrated Communications Host Processor Reference Manual for information on 

the digital filter used.
3. I/O pins will obstruct the SDA and SCL lines if OVDD is switched off.

VM = Midpoint Voltage (OVDD/2)

VM VM

tJTDVKH
tJTDXKH

Boundary
Data Outputs

Boundary
Data Outputs

JTAG
External Clock

Boundary
Data Inputs

Output Data Valid

tJTKLDX

tJTKLDZ

tJTKLDV

Input
Data Valid

Output Data Valid
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PCI

15.2 PCI AC Electrical Specifications
This section describes the general AC timing parameters of the PCI bus. Note that the SYSCLK signal is 
used as the PCI input clock. Table 56 provides the PCI AC timing specifications at 66 MHz. 

Figure 41 provides the AC test load for PCI. 

Figure 41. PCI AC Test Load

Table 56. PCI AC Timing Specifications at 66 MHz

Parameter Symbol1 Min Max Unit Notes

SYSCLK to output valid tPCKHOV — 7.4 ns 2, 3

Output hold from SYSCLK tPCKHOX 2.0 — ns 2

SYSCLK to output high impedance tPCKHOZ — 14 ns 2, 4

Input setup to SYSCLK tPCIVKH 3.7 — ns 2, 5

Input hold from SYSCLK tPCIXKH 0.5 — ns 2, 5

REQ64 to HRESET9 setup time tPCRVRH 10 × tSYS — clocks 6, 7

HRESET to REQ64 hold time tPCRHRX 0 50 ns 7

HRESET high to first FRAME assertion tPCRHFV 10 — clocks 8

Rise time (20%–80%) tPCICLK 0.6 2.1 ns —

Fall time (20%–80%) tPCICLK 0.6 2.1 ns —

Notes:
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for 

inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tPCIVKH symbolizes PCI timing 
(PC) with respect to the time the input signals (I) reach the valid state (V) relative to the SYSCLK clock, tSYS, reference (K) 
going to the high (H) state or setup time. Also, tPCRHFV symbolizes PCI timing (PC) with respect to the time hard reset (R) 
went high (H) relative to the frame signal (F) going to the valid (V) state.

2. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.
3. All PCI signals are measured from OVDD/2 of the rising edge of PCI_SYNC_IN to 0.4 × OVDD of the signal in question for 

3.3-V PCI signaling levels.
4. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered 

through the component pin is less than or equal to the leakage current specification.
5. Input timings are measured at the pin.
6. The timing parameter tSYS indicates the minimum and maximum CLK cycle times for the various specified frequencies. The 

system clock period must be kept within the minimum and maximum defined ranges. For values see Section 19, “Clocking.”
7. The setup and hold time is with respect to the rising edge of HRESET.
8. The timing parameter tPCRHFV is a minimum of 10 clocks rather than the minimum of 5 clocks in the PCI 2.2 Local Bus 

Specifications.
9. The reset assertion timing requirement for HRESET is 100 μs.

Output Z0 = 1 KΩ OVDD/2
RL = 50 Ω
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High-Speed Serial Interfaces (HSSI)

Using this waveform, the definitions are as follows. To simplify illustration, the following definitions 
assume that the SerDes transmitter and receiver operate in a fully symmetrical differential signaling 
environment.

1. Single-Ended Swing
The transmitter output signals and the receiver input signals SDn_TX, SDn_TX, SDn_RX and 
SDn_RX each have a peak-to-peak swing of A - B Volts. This is also referred as each signal wire’s 
Single-Ended Swing.

2. Differential Output Voltage, VOD (or Differential Output Swing):
The Differential Output Voltage (or Swing) of the transmitter, VOD, is defined as the difference of 
the two complimentary output voltages: VSDn_TX – VSDn_TX. The VOD value can be either positive 
or negative.

3. Differential Input Voltage, VID (or Differential Input Swing):
The Differential Input Voltage (or Swing) of the receiver, VID, is defined as the difference of the 
two complimentary input voltages: VSDn_RX – VSDn_RX. The VID value can be either positive or 
negative.

4. Differential Peak Voltage, VDIFFp
The peak value of the differential transmitter output signal or the differential receiver input signal 
is defined as Differential Peak Voltage, VDIFFp = |A – B| Volts.

5. Differential Peak-to-Peak, VDIFFp-p
Since the differential output signal of the transmitter and the differential input signal of the receiver 
each range from A – B to –(A – B) Volts, the peak-to-peak value of the differential transmitter 
output signal or the differential receiver input signal is defined as Differential Peak-to-Peak 
Voltage, VDIFFp-p = 2*VDIFFp = 2 * |(A – B)| Volts, which is twice of differential swing in 
amplitude, or twice of the differential peak. For example, the output differential peak-peak voltage 
can also be calculated as VTX-DIFFp-p = 2*|VOD|.

6. Differential Waveform
The differential waveform is constructed by subtracting the inverting signal (SDn_TX, for 
example) from the non-inverting signal (SDn_TX, for example) within a differential pair. There is 
only one signal trace curve in a differential waveform. The voltage represented in the differential 
waveform is not referenced to ground. Refer to Figure 44 as an example for differential waveform.

7. Common Mode Voltage, Vcm
The Common Mode Voltage is equal to one half of the sum of the voltages between each conductor 
of a balanced interchange circuit and ground. In this example, for SerDes output, Vcm_out = 
VSDn_TX + VSDn_TX = (A + B) / 2, which is the arithmetic mean of the two complimentary output 
voltages within a differential pair. In a system, the common mode voltage may often differ from 
one component’s output to the other’s input. Sometimes, it may be even different between the 
receiver input and driver output circuits within the same component. It is also referred as the DC 
offset in some occasions.
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High-Speed Serial Interfaces (HSSI)

Figure 49 shows the SerDes reference clock connection reference circuits for HCSL type clock driver. It 
assumes that the DC levels of the clock driver chip is compatible with MPC8544E SerDes reference clock 
input’s DC requirement.

Figure 49. DC-Coupled Differential Connection with HCSL Clock Driver (Reference Only)

Figure 50 shows the SerDes reference clock connection reference circuits for LVDS type clock driver. 
Since LVDS clock driver’s common mode voltage is higher than the MPC8544E SerDes reference clock 
input’s allowed range (100 to 400mV), AC-coupled connection scheme must be used. It assumes the 
LVDS output driver features 50-Ω termination resistor. It also assumes that the LVDS transmitter 
establishes its own common mode level without relying on the receiver or other external component.

Figure 50. AC-Coupled Differential Connection with LVDS Clock Driver (Reference Only)

Figure 51 shows the SerDes reference clock connection reference circuits for LVPECL type clock driver. 
Since LVPECL driver’s DC levels (both common mode voltages and output swing) are incompatible with 
MPC8544E SerDes reference clock input’s DC requirement, AC-coupling has to be used. Figure 51 
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CLK_Out

MPC8544E
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PCI Express

VTX-RCV-DETECT Amount of voltage 
change allowed during 
receiver detection

— — 600 mV The total amount of voltage change that a 
transmitter can apply to sense whether a 
low impedance receiver is present. See 
Note 6.

VTX-DC-CM TX DC common mode 
voltage

0 — 3.6 V The allowed DC common mode voltage 
under any conditions. See Note 6.

ITX-SHORT TX short circuit current 
limit

— — 90 mA The total current the transmitter can 
provide when shorted to its ground.

TTX-IDLE-MIN Minimum time spent in 
electrical idle

50 — — UI Minimum time a transmitter must be in 
electrical idle utilized by the receiver to 
start looking for an electrical idle exit after 
successfully receiving an electrical idle 
ordered set.

TTX-IDLE-SET-TO-IDLE Maximum time to 
transition to a valid 
electrical idle after 
sending an electrical 
Idle ordered set

— — 20 UI After sending an electrical idle ordered set, 
the transmitter must meet all electrical idle 
specifications within this time. This is 
considered a debounce time for the 
transmitter to meet electrical idle after 
transitioning from LO.

TTX-IDLE-TO-DIFF-DATA Maximum time to 
transition to valid TX 
specifications after 
leaving an electrical 
idle condition

— — 20 UI Maximum time to meet all TX 
specifications when transitioning from 
electrical idle to sending differential data. 
This is considered a debounce time for the 
TX to meet all TX specifications after 
leaving electrical idle.

RLTX-DIFF Differential return loss 12 — — dB Measured over 50 MHz to 1.25 GHz. See 
Note 4.

RLTX-CM Common mode return 
loss

6 — — dB Measured over 50 MHz to 1.25 GHz. See 
Note 4.

ZTX-DIFF-DC DC differential TX 
impedance

80 100 120 Ω TX DC differential mode low impedance.

ZTX-DC Transmitter DC 
impedance

40 — — Ω Required TX D+ as well as D– DC 
Impedance during all states.

LTX-SKEW Lane-to-lane output 
skew

— — 500 + 
2 UI

ps Static skew between any two transmitter 
lanes within a single link.

CTX AC coupling capacitor 75 — 200 nF All transmitters shall be AC coupled. The 
AC coupling is required either within the 
media or within the transmitting component 
itself.

Table 59. Differential Transmitter (TX) Output Specifications (continued)

Symbol Parameter Min Nom Max Unit Comments
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Package Description

18.2 Mechanical Dimensions of the MPC8544E FC-PBGA
Figure 59 shows the mechanical dimensions and bottom surface nomenclature of the MPC8544E, 
783 FC-PBGA package without a lid.

Figure 59. Mechanical Dimensions and Bottom Surface Nomenclature 
of the MPC8544E FC-PBGA without a Lid

Notes:
1. All dimensions are in millimeters.
2. Dimensions and tolerances per ASME Y14.5M-1994.
3. Maximum solder ball diameter measured parallel to datum A.
4. Datum A, the seating plane, is determined by the spherical crowns of the solder balls.
5. Parallelism measurement shall exclude any effect of mark on top surface of package.
6. Capacitors may not be present on all parts. Care must be taken not to short exposed metal capacitor pads.
7. All dimensions are symmetric across the package center lines, unless dimensioned otherwise.
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Package Description

Ethernet Management Interface

EC_MDC AC7 O OVDD 4, 8, 14

EC_MDIO Y9 I/O OVDD —

Gigabit Reference Clock

EC_GTX_CLK125 T2 I LVDD —

Three-Speed Ethernet Controller (Gigabit Ethernet 1)

TSEC1_RXD[7:0] U10, U9, T10, T9, U8, T8, T7, T6 I LVDD —

TSEC1_TXD[7:0] T5, U5, V5, V3, V2, V1, U2, U1 O LVDD 4, 8, 14

TSEC1_COL R5 I LVDD —

TSEC1_CRS T4 I/O LVDD 16

TSEC1_GTX_CLK T1 O LVDD —

TSEC1_RX_CLK V7 I LVDD —

TSEC1_RX_DV U7 I LVDD —

TSEC1_RX_ER R9 I LVDD 4, 8

TSEC1_TX_CLK V6 I LVDD —

TSEC1_TX_EN U4 O LVDD 22

TSEC1_TX_ER T3 O LVDD —

Three-Speed Ethernet Controller (Gigabit Ethernet 3)

TSEC3_RXD[7:0] P11, N11, M11, L11, R8, N10, N9, P10 I LVDD —

TSEC3_TXD[7:0] M7, N7, P7, M8, L7, R6, P6, M6 O LVDD 4, 8, 14

TSEC3_COL M9 I LVDD —

TSEC3_CRS L9 I/O LVDD 16

TSEC3_GTX_CLK R7 O LVDD —

TSEC3_RX_CLK P9 I LVDD —

TSEC3_RX_DV P8 I LVDD —

TSEC3_RX_ER R11 I LVDD —

TSEC3_TX_CLK L10 I LVDD —

TSEC3_TX_EN N6 O LVDD 22

TSEC3_TX_ER L8 O LVDD 4, 8

DUART

UART_CTS[0:1] AH8, AF6 I OVDD —

UART_RTS[0:1] AG8, AG9 O OVDD —

Table 62. MPC8544E Pinout Listing (continued)

Signal Package Pin Number Pin Type
Power
Supply

Notes
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Thermal

Figure 60. System Level Thermal Model for MPC8544E (Not to Scale)

The Flotherm library files of the parts have a dense grid to accurately capture the laminar boundary layer 
for flow over the part in standard JEDEC environments, as well as the heat spreading in the board under 
the package. In a real system, however, the part will require a heat sink to be mounted on it. In this case, 
the predominant heat flow path will be from the die to the heat sink. Grid density lower than currently in 
the package library file will suffice for these simulations. The user will need to determine the optimal grid 
for their specific case. 

Solder and Air (29 × 29 × 0.58 mm)

Kx 0.034 W/m•K

Ky 0.034

Kz 12.1

Table 72. MPC8544EThermal Model (continued)

Conductivity Value Units

Bump Underfill

Section A-A

AA

Top View

Die

Substrate

Solder/Air
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Thermal

Figure 62 depicts the primary heat transfer path for a package with an attached heat sink mounted to a 
printed-circuit board.

Figure 62. Package with Heat Sink Mounted to a Printed-Circuit Board 

The heat sink removes most of the heat from the device. Heat generated on the active side of the chip is 
conducted through the silicon and through the heat sink attach material (or thermal interface material), and 
finally to the heat sink. The junction-to-case thermal resistance is low enough that the heat sink attach 
material and heat sink thermal resistance are the dominant terms.

20.3.2 Thermal Interface Materials
A thermal interface material is required at the package-to-heat sink interface to minimize the thermal 
contact resistance. For those applications where the heat sink is attached by spring clip mechanism, 
Figure 63 shows the thermal performance of three thin-sheet thermal-interface materials (silicone, 
graphite/oil, floroether oil), a bare joint, and a joint with thermal grease as a function of contact pressure. 
As shown, the performance of these thermal interface materials improves with increasing contact pressure. 
The use of thermal grease significantly reduces the interface thermal resistance. The bare joint results in a 
thermal resistance approximately six times greater than the thermal grease joint. 

External Resistance

External Resistance

Internal Resistance

Radiation Convection

Radiation Convection

Heat Sink

Printed-Circuit Board

Thermal Interface Material

Package/Leads
Die Junction
Die/Package

(Note the internal versus external package resistance.)
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Thermal

Heat sinks are attached to the package by means of a spring clip to holes in the printed-circuit board (see 
Figure 61). Therefore, the synthetic grease offers the best thermal performance, especially at the low 
interface pressure. 

Figure 63. Thermal Performance of Select Thermal Interface Materials

The system board designer can choose between several types of thermal interface. There are several 
commercially-available thermal interfaces provided by the following vendors:

Chomerics, Inc. 781-935-4850
77 Dragon Ct.
Woburn, MA 01801
Internet: www.chomerics.com
Dow-Corning Corporation800-248-2481
Corporate Center
P.O.Box 999
Midland, MI 48686-0997
Internet: www.dow.com
Shin-Etsu MicroSi, Inc.888-642-7674
10028 S. 51st St.
Phoenix, AZ 85044
Internet: www.microsi.com
The Bergquist Company800-347-4572
18930 West 78th St.
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System Design Information

21.2 PLL Power Supply Filtering
Each of the PLLs listed above is provided with power through independent power supply pins 
(AVDD_PLAT, AVDD_CORE, AVDD_PCI, AVDD_LBIU, and AVDD_SRDS, respectively). The AVDD 
level should always be equivalent to VDD, and preferably these voltages will be derived directly from VDD 
through a low frequency filter scheme such as the following.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to 
provide independent filter circuits per PLL power supply as illustrated in Figure 65, one to each of the 
AVDD pins. By providing independent filters to each PLL the opportunity to cause noise injection from 
one PLL to the other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz 
range. It should be built with surface mount capacitors with minimum Effective Series Inductance (ESL). 
Consistent with the recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook 
of Black Magic (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a 
single large value capacitor.

Each circuit should be placed as close as possible to the specific AVDD pin being supplied to minimize 
noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AVDD 
pin, which is on the periphery of 783 FC-PBGA the footprint, without the inductance of vias.

Figure 65 shows the PLL power supply filter circuit.

Figure 65. MPC8544E PLL Power Supply Filter Circuit

The AVDD_SRDSn signals provide power for the analog portions of the SerDes PLL. To ensure stability 
of the internal clock, the power supplied to the PLL is filtered using a circuit similar to the one shown in 
Figure 66. For maximum effectiveness, the filter circuit is placed as closely as possible to the 
AVDD_SRDSn balls to ensure it filters out as much noise as possible. The ground connection should be 
near the AVDD_SRDSn balls. The 0.003-µF capacitor is closest to the balls, followed by the 1-µF 
capacitor, and finally the 1-Ω resistor to the board supply plane. The capacitors are connected from 
AVDD_SRDSn to the ground plane. Use ceramic chip capacitors with the highest possible self-resonant 
frequency. All traces should be kept short, wide, and direct.

Figure 66. SerDes PLL Power Supply Filter Circuit

 VDD AVDD

 2.2 µF  2.2 µF

 GND
Low ESL Surface Mount Capacitors

10 Ω

 

 2.2 µF1 0.003 µF

 GND

1.0 Ω
AVDD_SRDS

Note:  
1. An 0805 sized capacitor is recommended for system initial bring-up.

SVDD

 2.2 µF1


