

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

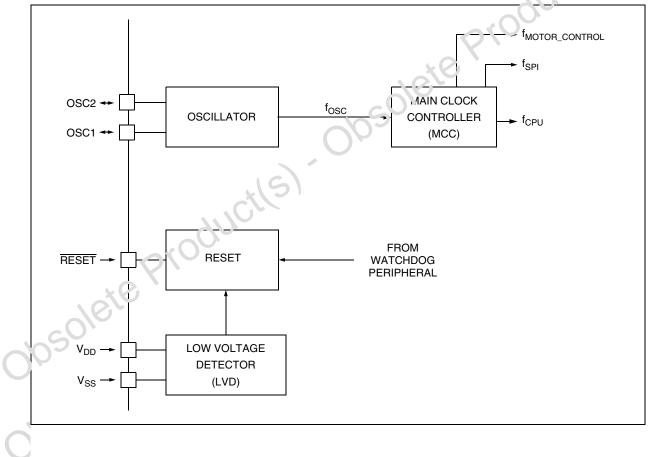
Details

Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	SPI
Peripherals	LVD, Motor Control PWM, POR, PWM, WDT
Number of I/O	14
Program Memory Size	8KB (8K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	34-BSOP (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st72t141k2m6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3 SUPPLY, RESET AND CLOCK MANAGEMENT

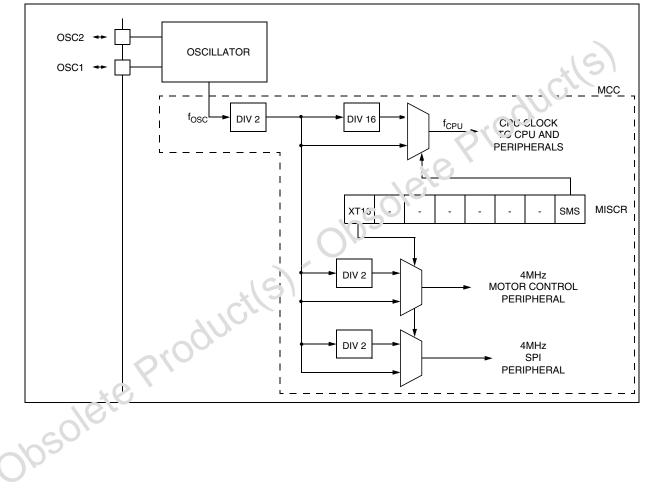

The ST72141K includes a range of utility features for securing the application in critical situations (for example in case of a power brown-out), and reducing the number of external components. An overview is shown in Figure 9.

Main Features

57

- Main supply low voltage detection (LVD)
- RESET Manager
- Low consumption resonator oscillator
- Main clock controller (MCC)

Figure 9. Clock, RESET, Option and Supply Management Overview



3.4 MAIN CLOCK CONTROLLER (MCC)

The MCC block supplies the clock for the ST7 CPU and its internal peripherals. It allows the SLOW power saving mode and the Motor Contral and SPI peripheral clocks to be managed independently. The MCC functionality is controlled by two bits of the MISCR register: SMS and XT16. The XT16 bit acts on the clock of the motor control and SPI peripherals while the SMS bit acts on the CPU and the other peripherals.

<u>ل</u>رک

INTERRUPTS (Cont'd)

57

Table 5. Interrupt Mapping

	Source Block	Description	Register Label	Priority Order	Exit from HALT	Address Vector
	RESET	Reset	N1/A	Highest	yes	FFFEh-FFFFh
	TRAP	Software Interrupt	N/A	Priority	no	FFFCh-FFFDh
0		Not used				FFFAh-FFFBh
1	EIO	External Interrupt Port A70 (C50*)	N1/A		yes	FFFAh-FFFBh
2	El1	External Interrupt Port B70 (C50*)	N/A		yes	FFF8h-F5F9h
3		Motor Control Interrupt (events: R, Z)			no	FFI-411-FFI-5h
4	мтс	Motor Control Interrupt (events: C, D)	MISR		no	FF52h-FFF3h
5		Motor Control Interrupt (events: E, O)	-		r. ว	FFF0h-FFF1h
6	SPI	SPI Peripheral Interrupts	SPISR		25	FFEEh-FFEFh
7	TIMER A	TIMER A Peripheral Interrupts	TASR		no	FFECh-FFEDh
8	TIMER B	TIMER B Peripheral Interrupts	TBSR		no	FFEAh-FFEBh
9		Not used		$\hat{\mathbf{v}}$		FFE8h-FFE9h
10		Not used	70,			FFE6h-FFE7h
11		Not used	Θ	1 ↓		FFE4h-FFE5h
12		Not Used	 	Lowest		FFE2h-FFE3h
13		Not Used		Priority		FFE0h-FFE1h
QS	olete	Not Used				

I/O PORTS (Cont'd)

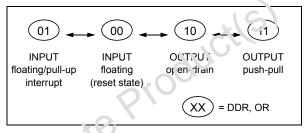
CAUTION: The alternate function must not be activated as long as the pin is configured as input with interrupt, in order to avoid generating spurious interrupts.

Analog alternate function

When the pin is used as an ADC input, the I/O must be configured as floating input. The analog multiplexer (controlled by the ADC registers) switches the analog voltage present on the selected pin to the common analog rail which is connected to the ADC input.

It is recommended not to change the voltage level or loading on any port pin while conversion is in progress. Furthermore it is recommended not to have clocking pins located close to a selected analog pin.

WARNING: The analog input voltage level must be within the limits stated in the absolute maximum ratings.


6.3 I/O PORT IMPLEMENTATION

The hardware implementation on each I/O port depends on the settings in the DDR and OR registers yosolete Productls

and specific feature of the I/O port such as ADC Input or true open drain.

Switching these I/O ports from one state to another should be done in a sequence that prevents unwanted side effects. Recommended safe transitions are illustrated in Figure 24 Other transitions are potentially risky and should be avoided, since they are likely to present unwanted side-effects such as spurious interrupt generation.

Figure 24. Interrupt I/O Port State Transitions

The I/O our register configurations are summarized r.s fullows.

J.

I/O PORTS (Cont'd)

Interrupt Ports

PA7:0, PB5:3 (with pull-up)

MODE	DDR	OR
floating input	0	0
pull-up interrupt input	0	1
open drain output	1	0
push-pull output	1	1

True Open Drain Interrupt Ports

MODE	DDR	OR
floating input	0	0
floating interrupt input	0	1
true open drain (high sink ports)	1	Х

Table 8. Port Configuration

True Open Drain Interrupt Ports PB2:0 (without pull-up) DDR OR floating input 0 0 floating input 0 1 floating interrupt input 0 1 true open drain (high sink ports) 1 X Table 8. Port Configuration Port Pin name Input Other of the oth	I	NODE	DDR	OR			(C)~~
Table 8. Port Configuration Port Pin name Input Output OR = 0 OF - 1 OR = 0 OR = Port A PA7:0 floating pul-up interrupt open drain push-p Port B PB5:3 floating pul-up interrupt open drain push-p PB2:0 floating floating interrupt true open drain push-p				0		-0	
Table 8. Port Configuration Port Pin name Input Output OR = 0 OR = 1 OR = 0 OR = Port A PA7:0 floating pul-up interrupt open drain push-p Port B PB5:3 floating pul-up interrupt open drain push-p PB2:0 floating floating interrupt true open drain push-p	floating interrupt input 0 1				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Port Pin name Input Output Port A PA7:0 floating pull-up interrupt open drain push-p Port B PB5:3 floating pull-up interrupt open drain push-p Port B PB2:0 floating floating interrupt true open drain	-		1	Х]	- Y I	
Port Pin name OR = 0 OF = 1 OR = 0 OR = Port A PA7:0 floating pull-up interrupt open drain push-p Port B PB5:3 floating pull-up interrupt open drain push-p PB2:0 floating floating interrupt true open drain push-p	Table 8. Port	Configuration				e	
OR = 0 OF: -1 OR = 0 OR = Port A PA7:0 floating pu'l-up interrupt open drain push-p Port B PB5:3 floating pu'l-up interrupt open drain push-p PB2:0 floating floating interrupt true open drain push-p	Port	Pin name		Inp	out	Out	put
Port BPB5:3floatingpul-up interruptopen drainpush-pul-upPB2:0floatingfloating interrupttrue open drain	i on		OR = (0	OF: = 1	OR = 0	OR =
Port B PB2:0 floating floating interrupt true open drain	Dort A	ΡΔ7·Ο	floating			an an drain	
PB2:0 floating floating interrupt true open drain	FULLA	1 71.0	noanny	g	pu - pu interrupt	open drain	pusn-µ
osolete Productle	Port B	PB5:3 PB2:0	floating	g	pull-up interrupt	open drain	push-
	Port B	PB5:3 PB2:0	floating	g	pull-up interrupt	open drain	push-p
	Port B	PB5:3 PB2:0	floating	g	pull-up interrupt	open drain	push-p

57

Demagnetization (D) Event

At the end of the demagnetization phase, current no longer goes through the free-wheeling diodes. The voltage on the non-excited winding terminal goes from one of the power rail voltages to the common star connection voltage plus the BEMF voltage. In some cases (if the BEMF voltage is positive and the free-wheeling diodes are at ground for example) this end of demagnetization can be seen as a voltage edge on the selected MCIx input and it is called a hardware demagnetization event $D_{\rm H}$. See Table 13.

If enabled by the HDM bit in the MCRB register, the current value of the MTIM timer is captured in register MDREG when this event occurs in order to be able to simulate the demagnetization phase for the next steps.

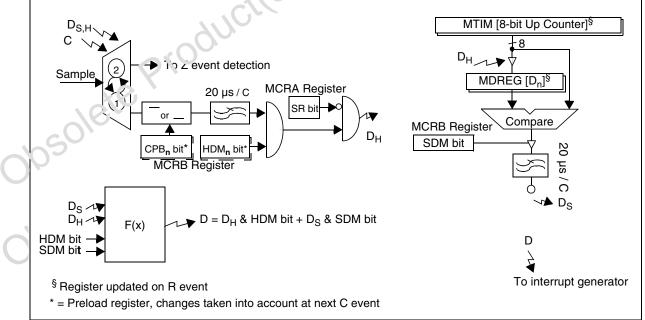
When enabled by the SDM bit in the MCRB register, demagnetization can also be simulated by comparing the MTIM timer with the MDREG register. This kind of demagnetization is called software demagnetization D_S .

If the HDM and SDM bits are both set, the first event that occurs, triggers a demagnetization event. For this to work correctly, a D_S event must

not precede a D_H event because the latter could be detected as a Z event.

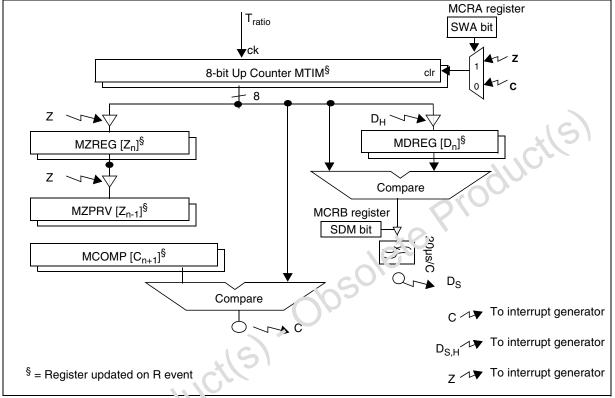
Software demagnetization can also be always used if the HDM bit is reset and the SDM bit is set. This mode works as a programmable masking time between the C and Z events. To drive the motor securely, the masking time must be always greater than the real demagnetization time in order to avoid a spurious Z event.

When an event occurs, (either D_H or D_S) the DI bit in the MISR register is set and an interrupt request is generated if the DIM bit of register MIN P is set.


Warning 1: Due to the alternate automatic capture and compare of the MTIM timer with MDREG register by D_H and D_S events, the MDREG register should be manipulated with special care.

Warning 2: To avc $d \in s$ (seem stop, the value written to the MDREG register in Soft Demagnetization Mode (SDM = 1) should always be:

- Greater toan the MCOMP value of the commutation before the related demagnetization
- Greater than the value in the MTIM counter at that moment (when writing to the MDREG register).



<u>لرک</u>

MOTOR CONTROLLER (Cont'd) 8.1.4.2 Delay Manager

Figure 33. Overview of MTIM Timer

This part of the MTC contains an the time-related functions, its architecture is based on an 8-bit shift left/shift right timer shown in Figure 33. The MTIM timer includes:

- An auto-updated prescaler
- A capture/compare register for software demagnetization simulation (MDREG)

MVD cascaded capture register (MZREG and MZPRV) for storing the times between two consecutive BEMF zero crossings (Z events)

- An 8x8 bit multiplier for auto computing the next commutation time
- One compare register for phase commutation generation (MCOMP)

The MTIM timer module can work in two main modes. In switched mode the user must process the step duration and commutation time by software, in autoswitched mode the commutation action is performed automatically depending on the rotor position information and register contents.
 Table 17. Switched and Autoswitched Modes

SWA bit	Commutation Type	MCOMP User access
0	Switched mode	Read/Write
1	Autoswitched mode	Read only

Switched Mode

This feature allows the motor to be run step-bystep. This is useful when the rotor speed is still too low to generate a BEMF. It can also run other kinds of motor without BEMF generation such as induction motors or switch reluctance motors. This mode can also be used for autoswitching with all computation for the next commutation time done by software (hardware multiplier not used) and using the powerful interrupt set of the peripheral.

In this mode, the step time is directly written by software in the commutation compare register MCOMP. When the MTIM timer reaches this value a commutation occurs (C event) and the MTIM timer is reset.

57

Table 21. Step Frequency/Period Range

Step Ratio Bits ST[3:0]	Maximum Step Frequency	Minimum Step Frequency	Minimum Step Period	Maximum Step Period
0000	23.5 kHz	7.85 kHz	42.5 μs	127.5 μs
0001	11.7 kHz	3.93 kHz	85 µs	255 μs
0010	5.88 kHz	1.96 kHz	170 μs	510 μs
0011	2.94 kHz	980 Hz	340 μs	1.02 ms
0100	1.47 kHz	490 Hz	680 µs	2.04 ms
0101	735 Hz	245 Hz	1.36 ms	4.08 ms
0110	367 Hz	123 Hz	2.72 ms	8.16 ms
0111	183 Hz	61.3 Hz	5.44 ms	16.32 m·,
1000	91.9 Hz	30.7 Hz	10.9 ms	3∠ 5 ms
1001	45.9 Hz	15.4 Hz	21.8 ms	o5.2 ms
1010	22.9 Hz	7.66 Hz	43.6 ms	130 ms
1011	11.4 Hz	3.83 Hz	87.50	261 ms
1100	5.74 Hz	1.92 Hz	174 ns	522 ms
1101	2.87 Hz	0.958 Hz	5∕49 ms	1.04 s
1110	1.43 Hz	0.479 Hz	697 ms	2.08 s
1111	0.718 Hz	0.240 Hz	1.40 s	4.17 s

Table 22. Modes of Accessing MTIM Timer-Related' Begisters

	State of MCRA Register Bits			Access to MTIM Timer Related Registers		
RST bit	SWA bit	MOE bit	Mode	Read Only Access	Read / Write Access	
0	0	0	Configuration Mode		MTIM, MZPRV, MZREG, MCOMP, MDREG, ST[3:0]	
					MCOMP, MDREG,	
0	0		Switched Mode	MTIM, MZPRV, MZREG, ST[3:0]	RMI bit of MISR: 0: No action 1: Decrement ST[3:0]	
	ete				RPI bit of MISR: 0: No action 1: Increment ST[3:0]	
0	1	0	Emergency Stop		MTIM, MZPRV, MZREG, MCOMP, MDREG, ST[3:0]	
0	1	1	Autoswitched Mode	MTIM, MZPRV, MZREG, MCOMP, ST[3:0]	MDREG,RMI, RPI bit of MISR: Set by hardware, (increment ST[3:0]) Cleared by software	

Table 32. Multiplier Result

DCB bit	Commutation Delay				
0	MCOMP = MWGHT x MZPRV / 32				
1	MCOMP = MWGHT x MZREG / 32				

CONTROL REGISTER B (MCRB) Read/Write

Reset Value: 0000 0000 (00h)

7							0
VR1	VR0	CPB*	HDM*	SDM*	OS2*	OS1	OS0

Bits 7:6 = **VR[1:0]**: *BEMF/demagnetization Reference threshold*

These bits select the V_{REF} value as shown in the following table.

VR1	VR0	V _{REF} Voltage threshold	
0	0	0.2V	
0	1	0.6V	
1	0	1.2V	
1	1	2.5V	

Bit 5 = **CPB***: Compare Bit for Zero-c.ossing detection.

0: Zero crossing detection on falling edge

1: Zero crossing detection or rising edge

Bit 4 = **HDM***: *Hardware Demagnetization event Mask bit*

0: Hardware Demagnetization disabled

1: Hardwa: - Demagnetization enabled

Sit S = **SDM***: Software Demagnetization event Niask bit

0: Software Demagnetization disabled

1: Software Demagnetization enabled

Bits 2:0 = **OS2*,OS[1:0]**: Operating output mode Selection bits

Refer to the Step behaviour diagrams (Figure 40, Figure 41, Figure 42) and Table 33.

These bits are used to configure the various PWM output configurations.

Note: The OS2 bit is the only one with a preload register.

Table 33. Step Behaviour Summary

Мо	Mode OS bit		PWM after C and before D	OS [1:0] bits	PWM after D and before C	
				00	On even channels	
		0	Same as after D and	01	On odd channels	
	=0		before C	10	Continuous	
	SR			11	All active	
ô	SS (chaimels	
0C1=	Sensorless (SR=0)			00	O.1 even criannels	
S [●]	Ser			01	On odd	
por		1	Alternate		channels	
еπ			0\`	10	Alternate odd/even	
Voltage mode(V0C1=0)			<u>.e</u>	11	All active channels	
ĺ	=1)	16		00	On even channels	
	SF	Sensor SF=1		x Unused	01	On odd channels
	Sensor			10	Alternate odd/even	
				11	All active channels	
					On even	
				00	channels	
	0			01	On odd	
	Β=	0	On even Channels	01	channels	
	s (S		onamiolo	10	Alternate odd/even	
_	Sensorless (SR=0)			11	All active channels	
)C1=1	Sens			00	On even channels	
urrent mode (V0C1=1)		1	On odd	01	On odd channels	
шŏ			channels	10	Alternate odd/even	
snt					All active	
urre				11	channels	
Ō	=1)			00	On even channels	
	Sensor (SR=	x	Unused	01	On odd channels	
	sor			10	Alternate odd/even	
	Sen			11	All active channels	

Note: For more details, see Step behaviour diagrams (Figure 40, Figure 41, and Figure 42).

* Preload bits, new value taken into account at next C event.

Note: The CPB, HDM, SDM, OS2 bits in the MCRB and the bits OE[5:0] are marked with *. It means that these bits are taken into account at the following commutation event (in normal mode) or when a value is written in the MPHST register when in direct access mode. For more details, refer to the description of the DAC bit in the MCRA register. The use of a Preload register allows all the registers to be updated at the same time.

Warning: Access to Preload registers

Special care has to be taken with Preload registers, especially when using the ST7 BSET and BRES instructions on MTC registers.

For instance, while writing to the MPHST register, you will write the value in the preload register. However, while reading at the same address, you will get the current value in the register and not the value of the preload register.

All preload registers are loaded in the real registers are loaded in the real registers are loaded in the real registers are loaded as soon as a value is written in the MPHST register.

Table 38. MTC Register Map and Reset Values

	-	-							
Address (Hex.)	Register Name	7	6	5	4	3	2	1	0
0060h	MTIM	T7	T6	T5	T4	T3	T2	T1	Т0
	Reset Value	0	0	0	0	0	0	0	0
0061h	MZPRV	ZP7	ZP6	ZP5	ZP4	ZP3	ZP2	ZP1	ZP0
	Reset Value	0	0	0	0	0	0	0	0
0062h	MZREG Reset Value	ZC7 0	ZC6 0	ZC5 0	ZC4 0	ZC3 0	ZC2 0	ZC1 0	ZC0
0063h	MCOMP Reset Value	DC7 0	DC6 0	DC5 0	DC4 0	DC3 0	DC2 0	DC1	00C0 0
0064h	MDREG	DN7	DN6	DN5	DN4	DN3	DN2	DN1	DN0
	Reset Value	0	0	0	0	0	C	0	0
0065h	MWGHT	AN7	AN6	AN5	AN4	AN3	A.\\2	AN1	AN0
	Reset Value	0	0	0	0	0	0	0	0
0066h	MPRSR	SA3	SA2	SA1	SA0	ध्राउ	ST2	ST1	ST0
	Reset Value	0	0	0	0	0	0	0	0
0067h	MIMR Reset Value	HST 0	CL 0	RIM 0	C)IV4	EIM 0	ZIM 0	DIM 0	CIM 0
0068h	MISR Reset Value	0	RPI 0	RMi J	OI 0	El 0	ZI 0	DI 0	CI 0
0069h	MCRA	MOE	RST	SR	DAC	V0C1	SWA	CFF	DCB
	Reset Value	0	0	0	0	0	0	0	0
006Ah	MCRB Reset Value	VF1	·VR0 0	CPB 0	HDM 0	SDM 0	OS2 0	OS1 0	OS0 0
006Bh	MPHST Reset Value	U31 0	IS0 0	OO5 0	004 0	OO3 0	002 0	001 0	000
006Ch	איי:	ZVD	REO	OE5	OE4	OE3	OE2	OE1	OE0
	רופניפו Value	0	0	0	0	0	0	0	0
(JUAL)h	MPOL	OT1	OT0	OP5	OP4	OP3	OP2	OP1	OP0
	Reset Value	0	0	0	0	0	0	0	0

Related Documentation

AN1082: Description of the ST72141 Motor Control Peripherals

AN1083: ST72141 BLDC Motor Control Software and Flowchart Example

AN1129: PWM Management for BLDC Motor Drives Using the ST72141

AN1130: An Introduction to Sensorless Brushless DC Motor Drive Applications with the ST72141

AN1276: BLDC Motor Start Routine for the ST72141 Microcontroller

AN1321: Using the ST72141 Motor Control MCU in Sensor Mode

WATCHDOG TIMER (Cont'd)

8.2.3 Functional Description

The counter value stored in the CR register (bits T6:T0), is decremented every 12288 machine cycles, and the length of the timeout period can be programmed by the user in 64 increments.

If the watchdog is activated (the WDGA bit is set) and when the 7-bit timer (bits T6:T0) rolls over from 40h to 3Fh (T6 become cleared), it initiates a reset cycle pulling low the reset pin for typically 500ns.

The application program must write in the CR register at regular intervals during normal operation to prevent an MCU reset. The value to be stored in the CR register must be between FFh and C0h (see Table 39 . Watchdog Timing (fCPU = 8 MHz)):

- The WDGA bit is set (watchdog enabled)
- The T6 bit is set to prevent generating an immediate reset
- The T5:T0 bits contain the number of increments which represents the time delay before the watchdog produces a reset.

Table 39. Watchdog Timing (f_{CPU} = 8 MHz)

	CR Register initial value	WDG timeout period (rns)
Max	FFh	53.204
Min	C0h	1.536

Notes: Following a reset, the watchdog is disabled. Once activated it. cannot be disabled, except by a reset.

The T6 bit can be used to generate a software reset (the NCGA bit is set and the T6 bit is cleared).

If the valendog is activated, the HALT instruction va^{μ}_{a} generate a Reset.

8.2.4 Low Power Modes

Mode	Description
WAIT	No effect on Watchdog.
HALT	Immediate reset generation as soon as the HALT instruction is executed if the Watchdog is activated (WDGA bit is set).

8.2.5 Interrupts

None.

8.2.6 Register Description CONTROL REGISTER (CR)

Read/Write

Reset Value: 0111 1111 (7Fh)

7							0
WDGA	Т6	T5	T4	Т3	T2	T1	то

Bit 7= WDGA Activation bit.

This bit is set by software and only cleared by hardware after a reset. When WDGA = 1, the watchdog can generate a reset 0: Watchdog disabled

1: Watchdog enabled

Bit 6:0 = **T[6:0]** / bit timer (MSB to LSB). These bits contain the decremented value. A reset is produced when it rolls over from 40h to 3Fh (T6 becomes cleared) if WDGA=1.

STATUS REGISTER (SR)

Read/Write

Reset Value*: xxxx xxxx0

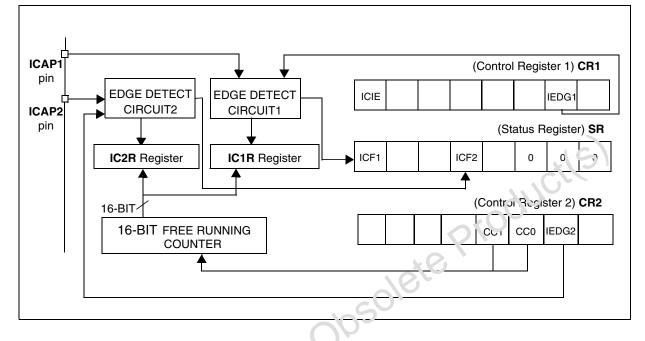
7							0
-	-	-	-	-	-	-	WDOGF

Bit 0 = WDOGF Watchdog flag.

This bit is set by a watchdog reset and cleared by software or a power on/off reset. This bit is useful for distinguishing power/on off or external reset and watchdog reset.

0: No Watchdog reset occurred

1: Watchdog reset occurred


* Only by software and power on/off reset

76/133

16-BIT TIMER (Cont'd)

Figure 49. Input Capture Block Diagram

Figure 50. Input Capture Timing Diagram

TIMEF	RCLOCK	JCILS		 1	
COUNTER RE	EG.STER -	F01 X	FF02	FF03	X
10	CAPI PIN —				
15°	APi FLAG				
	EGISTER ——			 X	FF03
Note: A	ctive edge is r	ising edge.			

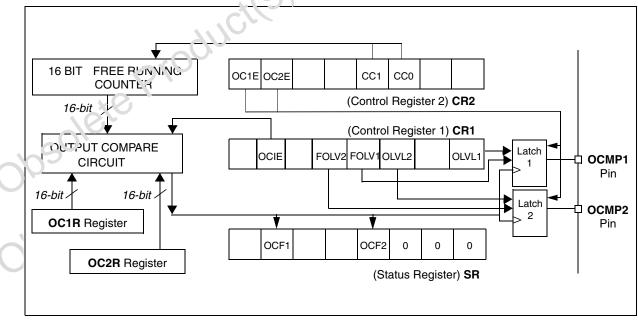
57

16-BIT TIMER (Cont'd)

Notes:

<u>ل</u>رک

- 1. After a processor write cycle to the OC*i*HR register, the output compare function is inhibited until the OC*i*LR register is also written.
- If the OC*i*E bit is not set, the OCMP*i* pin is a general I/O port and the OLVL*i* bit will not appear when a match is found but an interrupt could be generated if the OCIE bit is set.
- 3. When the timer clock is $f_{CPU}/2$, OCF*i* and OCMP*i* are set while the counter value equals the OC*i*R register value (see Figure 52). This behaviour is the same in OPM or PWM mode. When the timer clock is $f_{CPU}/4$, $f_{CPU}/8$ or in external clock mode, OCF*i* and OCMP*i* are set while the counter value equals the OC*i*R register value plus 1 (see Figure 53).
- 4. The output compare functions can be used both for generating external events on the OCMP*i* pins even if the input capture mode is also used.
- 5. The value in the 16-bit OC*i*R register and the OLV*i* bit should be changed after each successful comparison in order to control an output waveform or establish a new elapsed timeout.


Figure 51. Output Compare Block Diagram

Forced Compare Output capability

When the FOLV*i* bit is set by software, the OLVL*i* bit is copied to the OCMP*i* pin. The OLV*i* bit has to be toggled in order to toggle the OCMP*i* pin when it is enabled (OC*i*E bit=1). The OCF*i* bit is then not set by hardware, and thus no interrupt request is generated.

FOLVL*i* bits have no effect in either One-Pulse mode or PWM mode.

16-BIT TIMER (Cont'd) **8.3.4 Low Power Modes**

Mode	Description
WAIT	No effect on 16-bit Timer. Timer interrupts cause the device to exit from WAIT mode.
	16-bit Timer registers are frozen.
HALT	In HALT mode, the counter stops counting until Halt mode is exited. Counting resumes from the previous count when the MCU is woken up by an interrupt with "exit from HALT mode" capability or from the counter reset value when the MCU is woken up by a RESET.
	If an input capture event occurs on the ICAP <i>i</i> pin, the input capture detection circuitry is armed. Consequently, when the MCU is woken up by an interrupt with "exit from HALT mode" capability, the ICF <i>i</i> bit is set, and the counter value present when exiting from HALT mode is captured into the IC <i>i</i> R register.

8.3.5 Interrupts

Interrupt Event		Event Flag	Enahle Control Fit	Exit from Wait	Exit from Halt
Input Capture 1 event/Counter reset in PWM mode		ICIE	Yes	No	
Input Capture 2 event	.	ICF2	ICIE	Yes	No
Output Compare 1 event (not available in PWM mode)	0	OCF1	OCIE	Yes	No
Output Compare 2 event (not available in PWM mode)		OCF2	OCIE	Yes	No
Timer Overflow event		TOF	TOIE	Yes	No

Note: The 16-bit Timer interrupt events are connected to the same interrupt vector (see Interrupts chapter). These events generate an interrupt if the corresponding Enable Control Bit is set and the interrupt mask in the CC register is reset (RIM instruction).

8.3.6 Summary of Timer modes

MODES	AVAILABLE RESOURCES							
MODES	Input Capture 1	Input Capture 2	Output Compare 1	Output Compare 2				
Input Capture (1 anc or 2)	Yes	Yes	Yes	Yes				
Output Compare (1 an 1/or 2)	Yes	Yes	Yes	Yes				
One Pulse mole	No	Not Recommended ¹⁾	No	Partially ²⁾				
PWM Mcd	No	Not Recommended ³⁾	No	No				

¹⁾ Ecc note 4 in Section 8.3.3.5 One Pulse Mode

²⁾ See note 5 in Section 8.3.3.5 One Pulse Mode

³⁾ See note 4 in Section 8.3.3.6 Pulse Width Modulation Mode

16-BIT TIMER (Cont'd)

Table 42. 16-Bit Timer Register Map and Reset Values

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
Timer A: 32	CR1	ICIE	OCIE	TOIE	FOLV2	FOLV1	OLVL2	IEDG1	OLVL1
Timer B: 42	Reset Value	0	0	0	0	0	0	0	0
Timer A: 31	CR2	OC1E	OC2E	OPM	PWM	CC1	CC0	IEDG2	EXEDG
Timer B: 41	Reset Value	0	0	0	0	0	0	0	0
Timer A: 33	SR	ICF1	OCF1	TOF	ICF2	OCF2	-	-	-
Timer B: 43	Reset Value	0	0	0	0	0	0	0	50
Timer A: 34 Timer B: 44	ICHR1 Reset Value	MSB -	-	-	-	-	- 2	JCL	LSB -
Timer A: 35 Timer B: 45		MSB -	-	-	-	-	<u> </u>	-	LSB -
Timer A: 36 Timer B: 46	OCHR1 Reset Value	MSB -	-	-	-	ete	-	-	LSB -
Timer A: 37 Timer B: 47	OCLR1 Reset Value	MSB -	-	-	50	-	-	-	LSB -
Timer A: 3E Timer B: 4E	OCHR2 Reset Value	MSB -	-	0	-	-	-	-	LSB -
Timer A: 3F Timer B: 4F	OCLR2 Reset Value	MSB -	cil.S	-	-	-	-	-	LSB -
Timer A: 38 Timer B: 48		MCB 1	1	1	1	1	1	1	LSB 1
Timer A: 39 Timer B: 49		MSB 1	1	1	1	1	1	0	LSB 0
Timer A. 3.4 Timer B: 4,1	ACHR Reset Value	MSB 1	1	1	1	1	1	1	LSB 1
hime: A: 3B Almer B: 4B		MSB 1	1	1	1	1	1	0	LSB 0
Timer A: 3C Timer B: 4C		MSB -	-	-	-	-	-	-	LSB -
Timer A: 3D Timer B: 4D		MSB -	-	-	-	-	-	-	LSB -

SERIAL PERIPHERAL INTERFACE (Cont'd)

8.4.4.4 Write Collision Error

A write collision occurs when the software tries to write to the DR register while a data transfer is taking place with an external device. When this happens, the transfer continues uninterrupted; and the software write will be unsuccessful.

Write collisions can occur both in master and slave mode.

Note: a "read collision" will never occur since the received data byte is placed in a buffer in which access is always synchronous with the MCU operation.

In Slave mode

When the CPHA bit is set:

The slave device will receive a clock (SCK) edge prior to the latch of the first data transfer. This first clock edge will freeze the data in the slave device DR register and output the MSBit on to the external MISO pin of the slave device.

The \overline{SS} pin low state enables the slave device but the output of the MSBit onto the MISO pin does not take place until the first data transfer clock edge. When the CPHA bit is reset:

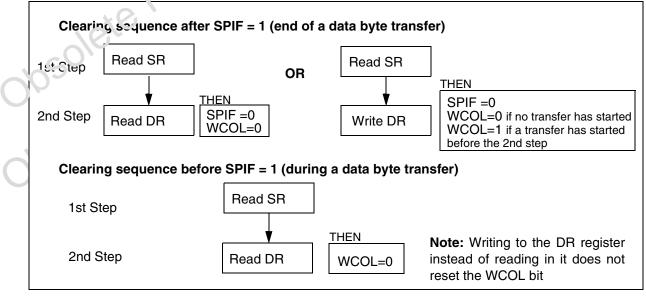
Data is latched on the occurrence of the first clock transition. The slave device does not have any way of knowing when that transition will occur; therefore, the slave device collision occurs when <u>software attempts to write the DR register after its</u> SS pin has been pulled low.

For this reason, the \overline{SS} pin must be high, between each data byte transfer, to allow the CPU to write in the DR register without generating a write collision.

In Master mode

Collision in the master device is defined as a write of the DR register while the internal serial clock (SCK) is in the process of transfer.

The \overline{SS} pin signal must be always high on the master device.


WCOI. Lit

The v/COL bit in the SR register is set if a write collision occurs.

No SPI interrupt is generated when the WCOL bit is set (the WCOL bit is a status flag only).

Clearing the WCOL bit is done through a software sequence (see Figure 60).

Figure 60. Clearing the WCOL bit (Write Collision Flag) Software Sequence

ST7 ADDRESSING MODES (Cont'd)

9.1.6 Indirect Indexed (Short, Long)

This is a combination of indirect and short indexed addressing modes. The operand is referenced by its memory address, which is defined by the unsigned addition of an index register value (X or Y) with a pointer value located in memory. The pointer address follows the opcode.

The indirect indexed addressing mode consists of two sub-modes:

Indirect Indexed (Short)

The pointer address is a byte, the pointer size is a byte, thus allowing 00 - 1FE addressing space, and requires 1 byte after the opcode.

Indirect Indexed (Long)

The pointer address is a byte, the pointer size is a word, thus allowing 64 Kbyte addressing space, and requires 1 byte after the opcode.

Table48. InstructionsSupportingDirect,Indexed,IndirectandIndirectIndexedAddressingModesIndirectIndirectIndirect

Long and Short Instructions	Function					
LD	Load					
CP	Compare					
AND, OR, XOR	Logical Operationa					
ADC, ADD, SUB, SBC	Arithmetic Aduition/subtrac- tion operations					
BCP	Et Compare					

-×67	
Short Instructions Only	Function
CLP	Clear
INC, DEC	Increment/Decrement
ĨNZ	Test Negative or Zero
CPL, NEG	1 or 2 Complement
BSET, BRES	Bit Operations
BTJT, BTJF	Bit Test and Jump Opera- tions
SLL, SRL, SRA, RLC, RRC	Shift and Rotate Operations

SWAP	Swap Nibbles
CALL, JP	Call or Jump subroutine

9.1.7 Relative Mode (Direct, Indirect)

This addressing mode is used to modify the PC register value by adding an 8-bit signed offset to it.

Available Relative Direct/ Indirect Instructions	Function		
JRxx	Conditional Jump		
CALLR	Call Relative		

The relative addressing mode consists of two submodes:

Relative (Direct)

The offset follows the proude.

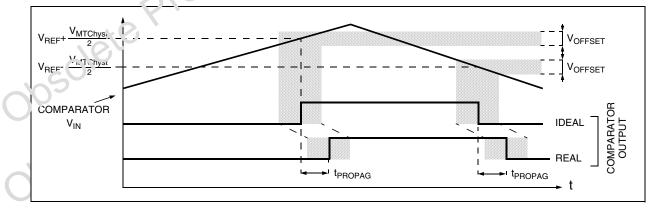
Relative (Indirect)

The offset is defined in memory, of which the address follows the opcode.

10.7 PERIPHERAL CHARACTERISTICS

WATCHDOG Symbol Parameter Conditions Min Тур Max 12,288 786,432 Watchdog time-out duration tw(WDG) f_{CPU}=8MHz 1.54 98.3 Watchdog RESET pulse width 500 t_{WDGRST}

Recommended operating conditions with T_A =-40 to +125°C and V_{DD} - V_{SS} =5V unless otherwise specified.


MOTOR CONTROL							
Symbol	Parameter	Conditions	Min	Typ ¹⁾	Mar	Unit	
V _{OFFSET}	Comparator offset error			<10	100	mV	
V _{MTChyst}	MCIA/B/C comparator hysteresis ²⁾		35	<u> </u>	130	mV	
t _{PROPAG}	Comparator propagation delay				1	μs	
$\frac{\Delta V_{REF}}{V_{REF}}$	Reference voltage tolerance		6		5	%	
R1	V _{CREF} resistance bridge	le		30		kΩ	
R2		c C		70		K22	
$\alpha = \frac{R2}{R1+R2}$		0,02		0.7			
Δα/α	α tolerance				5	%	

Note:

1) Unless otherwise specified, typical data is based on $T_A = 25^{\circ}$ C and V_{DD} - $V_{SS} = 5$ V. This data is provided only as design guidelines and are not tested.

2) The V_{MTChyst} hysteresis is conctant.

Figure 64. Motor Control Comparator Characteristics

Unit

t_{CPU}

ms

ns

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be used a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/ON GALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, SITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICT'ON, CR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR 'N PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OF SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMICT.VE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately rod any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatscever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy -Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

57