

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Not For New Designs
Core Processor	HCS12X
Core Size	16-Bit
Speed	80MHz
Connectivity	CANbus, I ² C, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	119
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3.15V ~ 5.5V
Data Converters	A/D 24x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s912xdt256f1cagr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The MC9S12 \ D Family will feature an enhanced MSCAN module which, when used in conjunction with XGATE, delivers FullCAN performance with virtually unlimited number of mailboxes and retains backwards compatibility with the MSCAN module featured on previous S12 products.

Memory options will range from 64 Kbytes to 512 Kbytes of Freescale's industry-leading, full automotive spec SG-Flash with additional integrated EEPROM.

In addition to the rich S12 peripheral set, the MC9S12 D Family will feature more RAM, extra A/D channels, new timer features and additional LIN-compatible SCI ports compared with the original S12 D-Family. The MC9S12XD Family also features a new flexible interrupt handler which allows multilevel nested interrupts.

The MC9S12XD Family has full 16-bit data paths throughout. The non-multiplexed expanded bus interface available on the 144-pin versions allows an easy interface to external memories. The inclusion of a PLL circuit allows power consumption and performance to be adjusted to suit operational requirements. System power consumption is further improved with the new "fast exit from STOP mode" feature and an ultra low power wakeup timer.

In addition to the I/O ports available in each module, up to 25 further I/O ports are available with interrupt capability allowing wakeup from STOP or WAIT mode.

The MC9S12 ND Family will be available in 144-pin LQFP (with optional external bus), 112-pin, and 80-pin options.

Features

Features of the MC9S12XD Family are listed here. Please see Table 1 for memory options and Table 2 for the peripheral features that are available on the different family members.

16-bit CPU12X

Enhanced Interrupt

Module

- Upward compatible with MC9S12 instruction set
- Enhanced indexed addressing
- Additional (superset) instructions to improve 32-bit calculations and semaphore handling
- Access large data segments independent of PPAGE

One non-maskable high priority interrupt (XIRQ)

- Eight levels of nested interrupt
- Flexible assignment of interrupt sources to each interrupt level.
- Wakeup interrupt inputs
 - IRQ and non-maskable XIRQ

- Programmable, high performance I/O co-processor module up to 80 MIPS RISC performance
- Transfers data to or from all peripherals and RAM without CPU intervention or CPU wait states
- Performs logical, shifts, arithmetic, and bit operations on data

XGATE

- Enables FullCAN capability when used in conjunction with MSCAN module
- Full LIN master or slave capability when used in conjunction with the six integrated LIN SCI modules
- Can interrupt the HCS12X CPU signalling transfer completion
- Triggers from any hardware module as well as from the CPU possible
- 64K, 128K, 256K, 384K and 512K byte Flash
- 128K and 256K ROM
- Flash General Features
 - Automated program and erase algorithm
 - Fast sector erase and word program operation
 - 2-stage command pipeline for faster multi-word program times
 - Sector erase abort feature for critical interrupt response
 - Protection scheme to prevent accidental program or erase
 - Automated program and erase algorithm
 - Fast sector erase and word program operation
 - 2-stage command pipeline for faster multi-word program times
 - Sector erase abort feature for critical interrupt response
 - Protection scheme to prevent accidental program or erase
- 4K, 8K, 12K, 14K, 16K, 20K, 32K Byte RAM
- Loop control Pierce oscillator using a 0.5 MHz to 16 MHz crystal
- Option for full-swing Pierce without internal feedback resistor using a 0.5 MHz to 40 MHz crystal
- Current gain control on amplitude output
 - Signal with low harmonic distortion
 - Low power
 - Good noise immunity
 - Eliminates need for external current limiting resistor
- Transconductance sized for optimum start-up margin for typical crystals
- Clock monitor

Memory Options

Oscillator (OSC_LCP)

 Phase-locked-loop clock frequency multiplier Reference divider Automatic bandwidth control mode for low-jitter operation Automatic frequency lock detector Fast wakeup from STOP in self clock mode for power saving an immediate program execution 	
Glock and Reset immediate program execution Generator (CRG)	_i d
 Computer operating properly (COP) watchdog with optional safe window to initialize timeout counter 	∍ty
 Real time interrupt for task scheduling purposes or cyclic wakeu from low power modes 	ıp
System reset generation	
16 bit data	
 Support for external WAIT input or internal wait cycles to adapt N speed to peripheral speed requirements 	/ICU
Non-Multiplexed External Bus (144 Pin package only) • Up to four chip select outputs to select 16K, 1M, 2M and 4M byt address spaces	e
 Supports glue-less interface to popular asynchronous RAMs and Flash devices 	d
External address space 4M byte for data and program space	
Programmable sample time	
Left/right, signed/unsigned result data Analog-to-Digital	
Converter (ATD) • Continuous conversion mode	
Multiple channel scans	
Pins can also be used as digital I/O	
 Eight 16-bit channels for input capture or output compare 	
 One 16-bit free-running counter with 8-bit precision prescaler 	
One 16-bit modulus down counter with 8-bit precision prescaler Full and 4 Counter	
Enhanced Capture • Four 8-bit or two 16-bit pulse accumulators Timer (ECT)	
 Four channels have enhanced input capture capabilities: Delay counter for noise immunity 	
 16-bit capture buffer 	
 8-bit pulse accumulator buffer 	
 Four channel x 24-bit modulus down-count timers 	
Periodic Interrupt – Timeout interrupt	

Pulse Width Modulator (PWM)

- Eight channel x 8-bit or four channel x 16-bit pulse width modulator
- Programmable period and duty cycle per channel
- Center-aligned or left-aligned outputs
- Programmable clock select logic with a wide range of frequencies
- Up to five MSCAN modules (see)
- CAN 2.0 A, B software compatible
 - Standard and extended data frames
 - 0–8 bytes data length
 - Programmable bit rate up to 1 Mbps
- Five receive buffers with FIFO storage scheme
- Three transmit buffers with internal prioritization

Multi-scalable Controller Area Networks (MSCAN)

- Flexible identifier acceptance filter programmable as:
 - 2 x 32-bit
 - 4 x 16-bit
 - 8 x 8-bit
- Wakeup with integrated low-pass filter option
- Loop back for self test
- Listen-only mode to monitor CAN bus
- Bus-off recovery by software intervention or automatically
- 16-bit time stamp of transmitted/received messages
- FullCAN capability when used in conjunction with XGATE
- Up to three SPI modules (see)
- Full-duplex or single-wire bidirectional

Serial Peripheral Interface (SPI)

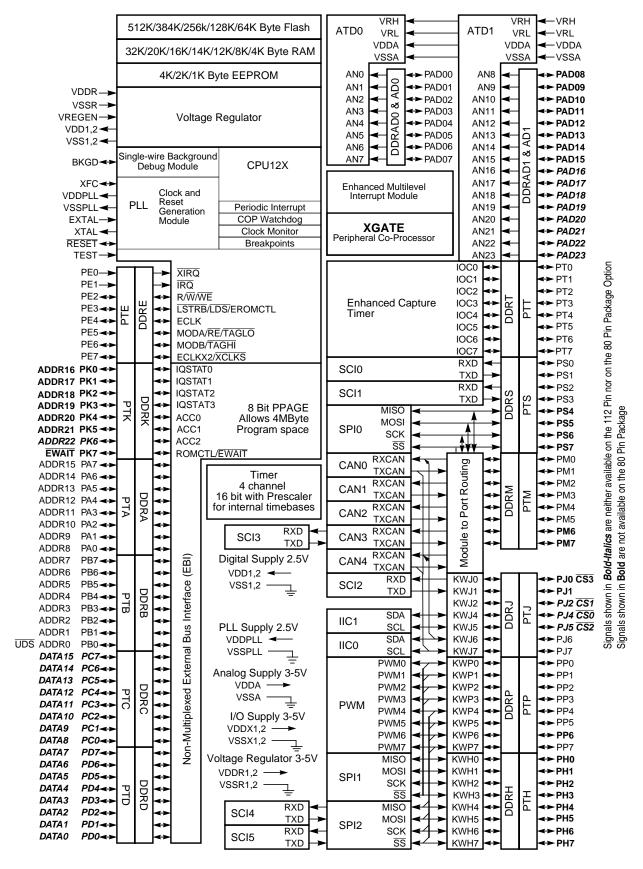
- Double-buffered transmit and receive
- Master or slave mode
- MSB-first or LSB-first shifting
- Serial clock phase and polarity options
- Up to six SCI modules (see)
- Full-duplex or single wire operation
- Standard mark/space non-return-to-zero (NRZ) format
- Selectable IrDA 1.4 return-to-zero-inverted (RZI) format with programmable pulse widths

Serial Communication Interfaces (SCI)

- 13-bit baud rate selection
- Programmable character length
- Programmable polarity for transmitter and receiver
- Receive wakeup on active edge
- Break detect and transmit collision detect supporting LIN

MC9S12XD Family, Rev. 2.16

	Up to two IIC modules (see)
	Compatible with I2C Bus standard
	Multi-master operation
	 Software programmable for one of 256 different serial clock frequencies
	Software selectable acknowledge bit
	 Interrupt driven byte-by-byte data transfer
Inter IC Module (IIC)	 Arbitration lost interrupt with automatic mode switching from master to slave
	Calling address identification interrupt
	Start and stop signal generation/detection
	Repeated start signal generation
	Acknowledge bit generation/detection
	Bus busy detection
	supports 400 Kbps
•	•
Background Debug (BDM)	 Non-intrusive memory access commands Supports in-circuit programming of on-chip non-volatile memory Supports security
Debugger (XDBG)	 Each can monitor CPU or XGATE busses A and C compares 23-bit address bus and 16-bit data bus with mask register Three modes: simple address/data match, inside address range
	or outside address range
System Protection	Power-on reset (POR)
	with interrupt or reset
lamut/Outaut	 up to 117 general-purpose input/output (I/O) pins depending on the package option and 2 input-only pins
Input/Output	 Hysteresis and configurable pullup/pulldown device on all input pins
	Configurable drive strength on all output pins
	144-pin low-profile quad flat-pack (LQFP)
Package Options	 112-pin low-profile quad flat-pack (LQFP)
	80-pin quad flat-pack (QFP)
•	


Operating Conditions

- Ambient temperature range -40°C to 125°C
- Temperature options:
 - -40°C to 85°C
 - -40°C to 105°C
 - -40°C to 125°C
- Supply voltage 3.15V to 5.5V
- Internal voltage regulator providing 2.5 V logic supply
 - 40 MHz maximum CPU bus frequency in single chip mode
 - 80 MHz maximum XGATE bus frequency

MC9S12 D Family Block Diagram

MC9S12XD Family, Rev. 2.16

Table 1. Package and Memory Options of MC9S12XD Family Members

Device	Package	Flash	RAM	EEPROM	ROM
9S12XDP512	144 LQFP		32K		
9512707512	112 LQFP				
	144 LQFP	512K			
9S12XDT512	112 LQFP		20K		
	80 QFP				
	144 LQFP				
9S12XDT384	112 LQFP	384K	20K		
	80 QFP				
	144 LQFP			4K	
9S12XDQ256	112 LQFP		16K		
	80 QFP				
9S12XDT256	144 LQFP				
	112 LQFP	256K			
	80 QFP				
	144 LQFP				
9S12XD256	112 LQFP		14K		
	80 QFP				
	144 LQFP				
3S12XDT256	112 LQFP		16K	(1)	256K
	80 QFP				
0040VD0400	112 LQFP	40016		014	
9S12XDG128	80 QFP	128K	401/	2K	
2042VDC420	112 LQFP		12K	(1)	42016
3S12XDG128	80 QFP			(1)	128K
0C12VD120	112 LQFP	1201/	01/	214	
9S12XD128	80 QFP	128K	8K	2K	
9S12XD64	80 QFP	64K	4K	1K	

NOTES:

^{1.} No EEPROM is available on ROM versions.

Pinout explanations:

- A/D is the number of modules/total number of A/D channels.
- I/O is the sum of ports capable to act as digital input or output.
 - 144 Pin Packages:
 Port A = 8, B = 8, C=8, D=8, E = 6 + 2 input only,
 H = 8, J = 7, K = 8, M = 8, P = 8, S = 8, T = 8, PAD = 24
 25 inputs provide Interrupt capability (H = 8, P = 8, J = 7, IRQ, XIRQ)
 - 112 Pin Packages:
 Port A = 8, B = 8, E = 6 + 2 input only, H = 8, J = 4, K = 7, M = 8, P = 8, S = 8, T = 8, PAD = 16
 22 inputs provide Interrupt capability (H = 8, P = 8, J = 4, IRQ, XIRQ)
 - 80 Pin Packages:
 Port A = 8, B = 8, E = 6 + 2 input only, J = 2, M = 6, P = 7, S = 4, T = 8, PAD = 8
 11 inputs provide Interrupt capability (P= 7, J = 2, IRQ, XIRQ)
- CANO can be routed under software control from PM[1:0] to pins PM[3:2] or PM[5:4] or PJ[7:6].
- CAN4 pins are shared between IIC0 pins.
- CAN4 can be routed under software control from PJ[7:6] to pins PM[5:4] or PM[7:6].
- Versions with 5 CAN modules will have CAN0, CAN1, CAN2, CAN3 and CAN4
- Versions with 4 CAN modules will have CAN0, CAN1, CAN2 and CAN4
- Versions with 3 CAN modules will have CAN0, CAN1 and CAN4.
- Versions with 2 CAN modules will have CAN0 and CAN4.
- Versions with 1 CAN modules will have CAN0
- Versions with 2 SPI modules will have SPI0 and SPI1.
- Versions with 4 SCI modules will have SCI0, SCI1, SCI2 and SCI4.
- Versions with 2 SCI modules will have SCI0 and SCI1.
- Versions with 1 IIC module will have IIC0.
- SPI0 can be routed to either Ports PS[7:4] or PM[5:2].
- SPI1 pins are shared with PWM[3:0]; In 144 and 112-pin versions, SPI1 can be routed under software control to PH[3:0].
- SPI2 pins are shared with PWM[7:4]; In 144 and 112-pin versions, SPI2 can be routed under software control to PH[7:4]. In 80-pin packages, SS-signal of SPI2 is not bonded out!

Table 4. Peripheral–Port Cross Reference⁽¹⁾

	CANO	CAN1	CAN2	CAN3	CAN4	SCIO	SC11	SC12	SCI3	SC14	SCI5	SPIO	SPI1	SP12	IIC0	IIC1
PH5:4										Х				0		
PH7:6											Х			0		
PP3:0													Х			
PP7:4														Х		

NOTES:

Table 5. Pin-Out Summary⁽¹⁾

LQFP 144	LQFP 112	QFP 80	Pin	2nd Function	3rd Function	4th Function	5th Function
1	1	1	PP3	KWP3	PWM3	SS1	
2	2	2	PP2	KWP2	PWM2	SCK1	
3	3	3	PP1	KWP1	PWM1	MOSI1	
4	4	4	PP0	KWP0	PWM0	MISO1	
5			PJ2	KWJ2	CS1		
6			PK6	ADDR22	NOACC		
7	5		PK3	ADDR19			
8	6		PK2	ADDR18	IQSTAT2		
9	7		PK1	ADDR17	IQSTAT1		
10	8		PK0	ADDR16	IQSTAT0		
11	9	5	PT0	IOC0			
12	10	6	PT1	IOC1			
13	11	7	PT2	IOC2			
14	12	8	PT3	IOC3			
15	13	9	VDD1				
16	14	10	VSS1				
17	15	11	PT4	IOC4			
18	16	12	PT5	IOC5			
19	17	13	PT6	IOC6			
20	18	14	PT7	IOC7			
21	19		PK5	ADDR21			
22	20		PK4	ADDR20			
23	21		PJ1	KWJ1	TXD2		
24	22		PJ0	KWJ0	RXD2		

^{1.} X denotes the reset condition and O denotes a possible rerouting under software control

Table 5. Pin-Out Summary⁽¹⁾

LQFP 144	LQFP 112	QFP 80	Pin	2nd Function	3rd Function	4th Function	5th Function
62	50		PH2	KWH2	SCK1	RXD7	
63	51		PH1	KWH1	MOSI1	TXD6	
64	52		PH0	KWH0	MISO1	RXD6	
65			PD0	DATA0			
66			PD1	DATA1			
67			PD2	DATA2			
68			PD3	DATA3			
69	53	37	PE3	LSTRB	LDS	EROMCTL	
70	54	38	PE2	RW	WE		
71	55	39	PE1	ĪRQ			
72	56	40	PE0	XIRQ			
73	57	41	PA0	ADDR8			
74	58	42	PA1	ADDR9			
75	59	43	PA2	ADDR10			
76	60	44	PA3	ADDR11			
77	61	45	PA4	ADDR12			
78	62	46	PA5	ADDR13			
79	63	47	PA6	ADDR14			
80	64	48	PA7	ADDR15			
81			VDDX3				
82			VDDX3				
83			PD4	DATA4			
84			PD5	DATA5			
85			PD6	DATA6			
86			PD7	DATA7			
87	65	49	VDD2				
88	66	50	VSS2				
89	67	51	PAD00	AN0			
90	68		PAD08	AN8			
91	69	52	PAD01	AN1			
92	70		PAD09	AN9			
93	71	53	PAD02	AN2			
94	72		PAD10	AN8			
95	73	54	PAD03	AN3			
96	74		PAD11	AN11			
97	75	55	PAD04	AN4			
98	76		PAD12	AN12			

Table 5. Pin-Out Summary⁽¹⁾

LQFP 144	LQFP 112	QFP 80	Pin	2nd Function	3rd Function	4th Function	5th Function
99	77	56	PAD05	AN5			
100	78		PAD13	AN13			
101	79	57	PAD06	AN6			
102	80		PAD14	AN14			
103	81	58	PAD07	AN7			
104	82		PAD15	AN15			
105			PAD16	AN16			
106			PAD17	AN17			
107	83	59	VDDA				
108	84	60	VRH				
109	85	61	VRL				
110	86	62	VSSA				
111			PAD18	AN18			
112			PAD19	AN19			
113			PAD20	AN20			
114			PAD21	AN21			
115			PAD22	AN22			
116			PAD23	AN23			
117	87		PM7	TXCAN3	TXCAN4	TXD3	
118	88		PM6	RXCAN3	RXCAN4	RXD3	
119	89	63	PS0	RXD0			
120	90	64	PS1	TXD0			
121	91	65	PS2	RXD1			
122	92	66	PS3	TXD1			
123	93		PS4	MISO0			
124	94		PS5	MOSI0			
125	95		PS6	SCK0			
126	96		PS7	SS0			
127	97	67	VREGEN				
128	98	68	PJ7	KWJ7	TXCAN4	SCL0	
129	99	69	PJ6	KWJ6	RXCAN4	SDA0	
130			PJ5	KWJ5	SCL1	CS2	
131			PJ4	KWJ4	SDA1	CS0	
132	100	70	PM5	TXCAN2	TXCAN0	TXCAN4	SCK0
133	101	71	PM4	RXCAN2	RXCAN0	RXCAN4	MOSI0
134	102	72	PM3	TXCAN1	TXCAN0	SS0	
135	103	73	PM2	RXCAN1	RXCAN0	MISO0	

Table 5. Pin-Out Summary⁽¹⁾

LQFP 144	LQFP 112	QFP 80	Pin	2nd Function	3rd Function	4th Function	5th Function
136	104	74	PM1	TXCAN0			
137	105	75	PM0	RXCAN0			
138	106	76	VSSX1				
139	107	77	VDDX1				
140	108		PK7	ROMCTL	EWAIT		
141	109	78	PP7	KWP7	PWM7	SCK2	
142	110		PP6	KWP6	PWM6	SS2	
143	111	79	PP5	KWP5	PWM5	MOSI2	
144	112	80	PP4	KWP4	PWM4	MISO2	

NOTES:
1. Table shows a superset of pin functions. Not all functions are available on all derivatives

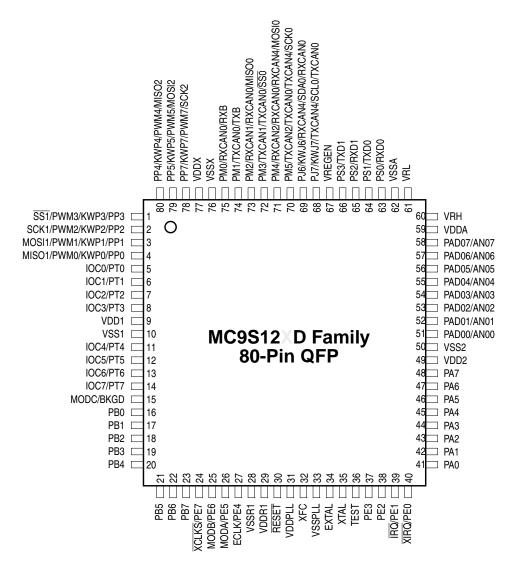


Figure 3. MC9S12XD Family Pin Assignments for 80-pin QFP Package

Memory Maps

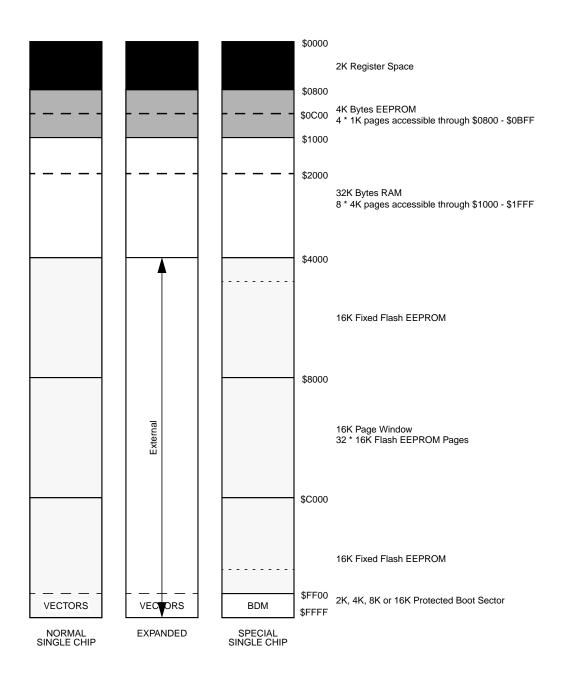
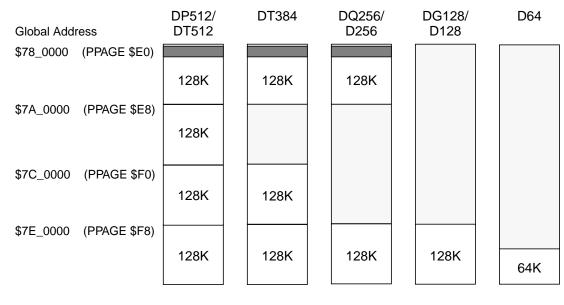



Figure 4. MC9S12XD-Family Memory Map¹

^{1.} The memory Map shows the memory sizes of DP512 part. For memory configuration of other parts see Table 1.

Shared XGATE/CPU area

Not implemented

Figure 5. MC9S12XD-Family Flash Configuration^{1, 2, 3, 4, 5}

MC9S12XD Family, Rev. 2.16

^{1.} XGATE read access to Flash not possible on DG128/D128 and D64

^{2.} Program Pages available on DT384 are \$E0 - \$E7 and \$F0 - \$FF

^{3.} Program Pages available on DQ256/D256 are \$E0 - \$E7 and \$F8 - \$FF

^{4.} Shared XGATE/CPU area on DP512/DT512/DT384 at global address \$78_0800 to \$78_FFFF (30Kbyte)

^{5.} Shared XGATE/CPU area on DQ256/D256 at global address \$78_0800 to \$79_3FFF (46Kbyte)

Mechanical Package Dimensions

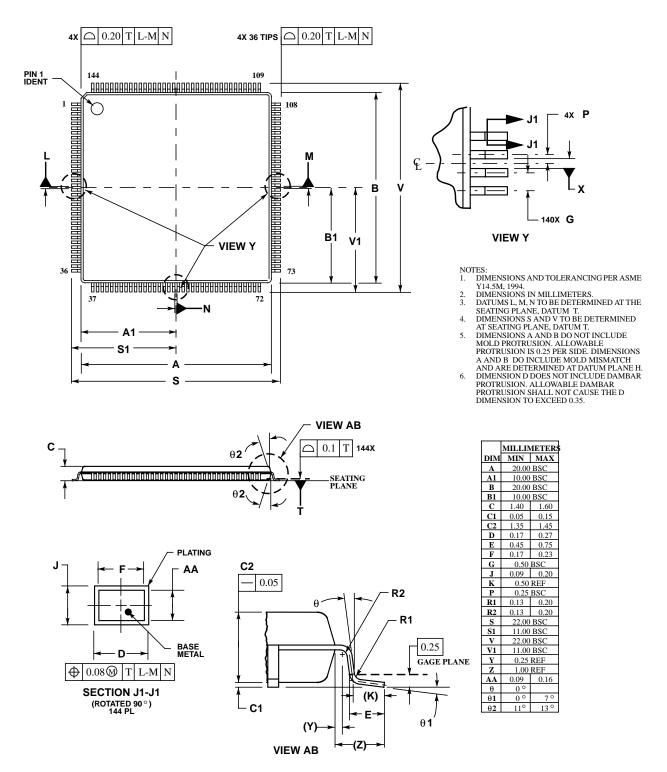


Figure 6. 144-pin LQFP Mechanical Dimensions (case no. 918-03)

MC9S12XD Family, Rev. 2.16

How to Reach Us:

Home Page:

www.freescale.com

E-mail:

support@freescale.com

USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH **Technical Information Center** Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. **Technical Information Center** 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2005. All rights reserved.

