

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	AVR
Core Size	8/16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	26
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-VQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atxmega32e5-mn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notes: 1. For full details on pinout and alternate pin functions refer to "Pinout and Pin Functions" on page 57.

3.

5. Resources

A comprehensive set of development tools, application notes and datasheets are available for download on http://www.atmel.com/avr.

5.1 Recommended Reading

- XMEGA E Manual
- XMEGA Application Notes

This device data sheet only contains part specific information with a short description of each peripheral and module. The XMEGA E Manual describes the modules and peripherals in depth. The XMEGA application notes contain example code and show applied use of the modules and peripherals.

All documentations are available from www.atmel.com/avr.

6. Capacitive Touch Sensing

The Atmel QTouch[®] library provides a simple to use solution to realize touch sensitive interfaces on most Atmel AVR[®] microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and includes fully debounced reporting of touch keys and includes Adjacent Key Suppression[™] (AKS[™]) technology for unambiguous detection of key events. The QTouch library includes support for the QTouch and QMatrix acquisition methods.

Touch sensing can be added to any application by linking the appropriate Atmel QTouch library for the AVR Microcontroller. This is done by using a simple set of APIs to define the touch channels and sensors, and then calling the touch sensing API's to retrieve the channel information and determine the touch sensor states.

The Atmel QTouch library is FREE and downloadable from the Atmel website at the following location: http://www.atmel.com/tools/QTOUCHLIBRARY.aspx. For implementation details and other information, refer to the Atmel QTouch library user guide - also available for download from the Atmel website.

16.3 Output Driver

All port pins (Pxn) have programmable output configuration. The port pins also have configurable slew rate limitation to reduce electromagnetic emission.

16.3.1 Push-pull

Figure 16-1. I/O Configuration - Totem-pole

16.3.2 Pull-down

Figure 16-2. I/O Configuration - Totem-pole with Pull-down (on input)

16.3.3 Pull-up

Figure 16-3. I/O Configuration - Totem-pole with Pull-up (on input)

17. Timer Counter Type 4 and 5

17.1 Features

- Three 16-bit timer/counter
 - One timer/counter of type 4
 - Two timer/counter of type 5
- 32-bit timer/counter support by cascading two timer/counters
- Up to four compare or capture (CC) channels
 - Four CC channels for timer/counters of type 4
 - Two CC channels for timer/counters of type 5
- Double buffered timer period setting
- Double buffered CC channels
- Waveform generation modes:
 - Frequency generation
 - Single-slope pulse width modulation
 - Dual-slope pulse width modulation
- Input capture:
 - Input capture with noise cancelling
 - Frequency capture
 - Pulse width capture
 - 32-bit input capture
- Timer overflow and error interrupts/events
- One compare match or input capture interrupt/event per CC channel
- Can be used with event system for:
 - Quadrature decoding
 - Count and direction control
 - Input capture
- Can be used with EDMA and to trigger EDMA transactions
- High-resolution extension
 - Increases frequency and waveform resolution by 4x (2-bit) or 8x (3-bit)
- Waveform extension
 - Low- and high-side output with programmable dead-time insertion (DTI)
- Fault extention
 - Event controlled fault protection for safe disabling of drivers

17.2 Overview

Atmel AVR XMEGA devices have a set of flexible, 16-bit timer/counters (TC). Their capabilities include accurate program execution timing, frequency and waveform generation, and input capture with time and frequency measurement of digital signals. Two timer/counters can be cascaded to create a 32-bit timer/counter with optional 32-bit input capture.

A timer/counter consists of a base counter and a set of compare or capture (CC) channels. The base counter can be used to count clock cycles or events. It has direction control and period setting that can be used for timing. The CC channels can be used together with the base counter to do compare match control, frequency generation, and pulse width modulation (PWM) generation, as well as various input capture operations. A timer/counter can be configured for either capture, compare, or capture and compare function.

A timer/counter can be clocked and timed from the peripheral clock with optional prescaling, or from the event system. The event system can also be used for direction control, input capture trigger, or to synchronize operations.

19. Hi-Res – High Resolution Extension

19.1 Features

- Increases waveform generator resolution up to 8x (three bits)
- Supports frequency, single-slope PWM, and dual-slope PWM generation
- Supports the WeX when this is used for the same timer/counter

19.2 Overview

The high-resolution (hi-res) extension can be used to increase the resolution of the waveform generation output from a timer/counter by four or eight. It can be used for a timer/counter doing frequency, single-slope PWM, or dual-slope PWM generation. It can also be used with the WeX if this is used for the same timer/counter.

The hi-res extension uses the peripheral 4x clock (ClkPER4). The system clock prescalers must be configured so the peripheral 4x clock frequency is four times higher than the peripheral and CPU clock frequency when the hi-res extension is enabled.

There is one hi-res extension that can be enabled for timer/counters pair on PORTC. The notation of this is HIRESC.

20. Fault Extension

20.1 Features

- Connected to timer/counter output and waveform extension input
- Event controlled fault protection for instant and predictable fault triggering
- Fast, synchronous and asynchronous fault triggering
- Flexible configuration with multiple fault sources
- Recoverable fault modes
 - Restart or halt the timer/counter on fault condition
 - Timer/counter input capture on fault condition
 - Waveform output active time reduction on fault condition
- Non-recoverable faults
 - Waveform output is forced to a pre-configured safe state on fault condition
 - Optional fuse output value configuration defining the output state during system reset
- Flexible fault filter selections
 - Digital filter to prevent false triggers from I/O pin glitches
 - Fault blanking to prevent false triggers during commutation
 - Fault input qualification to filter the fault input during the inactive output compare states

20.2 Overview

The fault extension enables event controlled fault protection by acting directly on the generated waveforms from timer/counter compare outputs. It can be used to trigger two types of faults with the following actions:

- Recoverable faults: the timer/counter can be restarted or halted as long as the fault condition is preset. The compare output pulse active time can be reduced as long as the fault condition is preset. This is typically used for current sensing regulation, zero crossing re-triggering, demagnetization re-triggering, and so on.
- Non-recoverable faults: the compare outputs are forced to a safe and pre-configured values that are safe for the application. This is typically used for instant and predictable shut down and to disable the high current or voltage drivers.

Events are used to trigger a fault condition. One or several simultaneous events are supported, both synchronously or asynchronously. By default, the fault extension supports asynchronous event operation, ensuring predictable and instant fault reaction, including system power modes where the system clock is stopped.

By using the input blanking, the fault input qualification or digital filter option in event system, the fault sources can be filtered to avoid false faults detection.

There are two fault extensions, one for each of the timer/counter 4 and timer/counter 5 on PORTC. The notation of these are FAULTC4 and FAULTC5, respectively.

It is possible to disable the TWI drivers in the device, and enable a four-wire digital interface for connecting to an external TWI bus driver. This can be used for applications where the device operates from a different V_{CC} voltage than used by the TWI bus.

It is also possible to enable the bridge mode. In this mode, the slave I/O pins are selected from an alternative port, enabling independent and simultaneous master and slave operation.

PORTC has one TWI. Notation of this peripheral is TWIC. Alternative TWI Slave location in bridge mode is on PORTD.

25. IRCOM – IR Communication Module

25.1 Features

- Pulse modulation/demodulation for infrared communication
- IrDA compatible for baud rates up to 115.2Kbps
- Selectable pulse modulation scheme
 - 3/16 of the baud rate period
 - Fixed pulse period, 8-bit programmable
 - Pulse modulation disabled
- Built-in filtering
- Can be connected to and used by any USART

25.2 Overview

Atmel AVR XMEGA devices contain an infrared communication module (IRCOM) that is IrDA compatible for baud rates up to 115.2Kbps. It can be connected to any USART to enable infrared pulse encoding/decoding for that USART.

26. XCL – XMEGA Custom Logic Module

26.1 Features

- Two independent 8-bit timer/counter with:
 - Period and compare channel for each timer/counter
 - Input Capture for each timer
 - Serial peripheral data length control for each timer
 - Timeout support for each timer
 - Timer underflow interrupt/event
 - Compare match or input capture interrupt/event for each timer
- One 16-bit timer/counter by cascading two 8-bit timer/counters with:
 - Period and compare channel
 - Input capture
 - Timeout support
 - Timer underflow interrupt/event
 - Compare match or input capture interrupt/event
- Programmable lookup table supporting multiple configurations:
 - Two 2-input units
 - One 3-input unit
 - RS configuration
 - Duplicate input with selectable delay on one input or output
 - Connection to external I/O pins, event system or one selectable USART
- Combinatorial Logic Functions using programmable truth table:
 - AND, NAND, OR, NOR, XOR, XNOR, NOT, MUX
- Sequential Logic Functions:
 - D-Flip-Flop, D Latch, RS Latch
- Input sources:
 - From external pins or the event system
 - One input source includes selectable delay or synchronizing option
 - Can be shared with selectable USART pin locations
- Outputs:
 - Available on external pins or event system
 - Includes selectable delay or synchronizing option
 - Can override selectable USART pin locations
- Operates in active mode and all sleep modes

26.2 Overview

The XMEGA Custom Logic module (XCL) consists of two sub-units, each including 8-bit timer/counter with flexible settings, peripheral counter working with one software selectable USART module, delay elements, glue logic with programmable truth table and a global logic interconnect array.

The timer/counter configuration allows for two 8-bits timer/counters. Each timer/counter supports normal, compare and input capture operation, with common flexible clock selections and event channels for each timer. By cascading the two 8-bit timer/counters, the XCL can be used as a 16-bit timer/counter.

The peripheral counter (PEC) configuration, the XCL is connected to one software selectable USART. This USART controls the counter operation, and the PEC can optionally control the data length within the USART frame.

The glue logic configuration, the XCL implements two programmable lookup tables (LUTs). Each defines the truth table corresponding to the logical condition between two inputs. Any combinatorial function logic is possible. The LUT inputs can be connected to I/O pins or event system channels. If the LUT is connected to the USART0 pin locations, the data lines (TXD/RXD) data encoding/decoding will be possible. Connecting together the LUT units, RS Latch, or any combinatorial logic between two operands or three inputs can be enabled.

28. ADC – 12-bit Analog to Digital Converter

28.1 Features

- 12-bit resolution
- Up to 300 thousand samples per second
 - Down to 2.3µs conversion time with 8-bit resolution
 - Down to 3.35µs conversion time with 12-bit resolution
- Differential and single-ended input
 - Up to 16 single-ended inputs
 - 16x8 differential inputs with optional gain
- Built-in differential gain stage
 - 1/2x, 1x, 2x, 4x, 8x, 16x, 32x, and 64x gain options
- Single, continuous and scan conversion options
- Four internal inputs
 - Internal temperature sensor
 - DAC output
 - AV_{CC} voltage divided by 10
 - 1.1V bandgap voltage
- Internal and external reference options
- Compare function for accurate monitoring of user defined thresholds
- Offset and gain correction
- Averaging
- Over-sampling and decimation
- Optional event triggered conversion for accurate timing
- Optional interrupt/event on compare result
- Optional EDMA transfer of conversion results

28.2 Overview

The ADC converts analog signals to digital values. The ADC has 12-bit resolution and is capable of converting up to 300 thousand samples per second (ksps). The input selection is flexible, and both single-ended and differential measurements can be done. For differential measurements, an optional gain stage is available to increase the dynamic range. In addition, several internal signal inputs are available. The ADC can provide both signed and unsigned results.

The ADC measurements can either be started by application software or an incoming event from another peripheral in the device. The ADC measurements can be started with predictable timing, and without software intervention. It is possible to use EDMA to move ADC results directly to memory or peripherals when conversions are done.

Both internal and external reference voltages can be used. An integrated temperature sensor is available for use with the ADC. The output from the DAC, $AV_{CC}/10$, and the bandgap voltage can also be measured by the ADC.

The ADC has a compare function for accurate monitoring of user defined thresholds with minimum software intervention required.

When operation in noisy conditions, the average feature can be enabled to increase the ADC resolution. Up to 1024 samples can be averaged, enabling up to 16-bit resolution results. In the same way, using the over-sampling and decimation mode, the ADC resolution is increased up to 16-bits, which results in up to 4-bit extra lsb resolution. The ADC includes various calibration options. In addition to standard production calibration, the user can enable the offset and gain correction to improve the absolute ADC accuracy.

Figure 30-1. Analog Comparator Overview

The window function is realized by connecting the external inputs of the two analog comparators in a pair as shown in Figure 30-2.

Figure 30-2. Analog Comparator Window Function

34. Instruction Set Summary

Mnemonics	Operands	Description	Opera	ation		Flags	#Clocks	
Arithmetic and Logic Instructions								
ADD	Rd, Rr	Add without Carry	Rd	←	Rd + Rr	Z,C,N,V,S,H	1	
ADC	Rd, Rr	Add with Carry	Rd	←	Rd + Rr + C	Z,C,N,V,S,H	1	
ADIW	Rd, K	Add Immediate to Word	Rd	~	Rd + 1:Rd + K	Z,C,N,V,S	2	
SUB	Rd, Rr	Subtract without Carry	Rd	←	Rd - Rr	Z,C,N,V,S,H	1	
SUBI	Rd, K	Subtract Immediate	Rd	←	Rd - K	Z,C,N,V,S,H	1	
SBC	Rd, Rr	Subtract with Carry	Rd	←	Rd - Rr - C	Z,C,N,V,S,H	1	
SBCI	Rd, K	Subtract Immediate with Carry	Rd	←	Rd - K - C	Z,C,N,V,S,H	1	
SBIW	Rd, K	Subtract Immediate from Word	Rd + 1:Rd	←	Rd + 1:Rd - K	Z,C,N,V,S	2	
AND	Rd, Rr	Logical AND	Rd	←	Rd • Rr	Z,N,V,S	1	
ANDI	Rd, K	Logical AND with Immediate	Rd	←	Rd • K	Z,N,V,S	1	
OR	Rd, Rr	Logical OR	Rd	←	Rd v Rr	Z,N,V,S	1	
ORI	Rd, K	Logical OR with Immediate	Rd	←	Rd v K	Z,N,V,S	1	
EOR	Rd, Rr	Exclusive OR	Rd	←	$Rd \oplus Rr$	Z,N,V,S	1	
СОМ	Rd	One's Complement	Rd	~	\$FF - Rd	Z,C,N,V,S	1	
NEG	Rd	Two's Complement	Rd	←	\$00 - Rd	Z,C,N,V,S,H	1	
SBR	Rd,K	Set Bit(s) in Register	Rd	←	Rd v K	Z,N,V,S	1	
CBR	Rd,K	Clear Bit(s) in Register	Rd	←	Rd • (\$FFh - K)	Z,N,V,S	1	
INC	Rd	Increment	Rd	~	Rd + 1	Z,N,V,S	1	
DEC	Rd	Decrement	Rd	←	Rd - 1	Z,N,V,S	1	
TST	Rd	Test for Zero or Minus	Rd	~	Rd • Rd	Z,N,V,S	1	
CLR	Rd	Clear Register	Rd	←	$Rd \oplus Rd$	Z,N,V,S	1	
SER	Rd	Set Register	Rd	~	\$FF	None	1	
MUL	Rd,Rr	Multiply Unsigned	R1:R0	←	Rd x Rr (UU)	Z,C	2	
MULS	Rd,Rr	Multiply Signed	R1:R0	~	Rd x Rr (SS)	Z,C	2	
MULSU	Rd,Rr	Multiply Signed with Unsigned	R1:R0	←	Rd x Rr (SU)	Z,C	2	
FMUL	Rd,Rr	Fractional Multiply Unsigned	R1:R0	←	Rd x Rr<<1 (UU)	Z,C	2	
FMULS	Rd,Rr	Fractional Multiply Signed	R1:R0	←	Rd x Rr<<1 (SS)	Z,C	2	
FMULSU	Rd,Rr	Fractional Multiply Signed with Unsigned	R1:R0	~	Rd x Rr<<1 (SU)	Z,C	2	
DES	к	Data Encryption	if (H = 0) then R15:R0 else if (H = 1) then R15:R0	← ←	Encrypt(R15:R0, K) Decrypt(R15:R0, K)		1/2	
Branch instructions								
RJMP	k	Relative Jump	PC	←	PC + k + 1	None	2	
IJMP		Indirect Jump to (Z)	PC(15:0) PC(21:16)	← ←	Z, 0	None	2	
EIJMP		Extended Indirect Jump to (Z)	PC(15:0) PC(21:16)	← ←	Z, EIND	None	2	
JMP	k	Jump	PC	←	k	None	3	
RCALL	k	Relative Call Subroutine	PC	←	PC + k + 1	None	2 / 3 ⁽¹⁾	

Mnemonics	Operands	Description	Operation		Flags	#Clocks	
LDS	Rd, k	Load Direct from data space	Rd	←	(k)	None	2 ⁽¹⁾⁽²⁾
LD	Rd, X	Load Indirect	Rd	←	(X)	None	1 ⁽¹⁾⁽²⁾
LD	Rd, X+	Load Indirect and Post-Increment	Rd X	← ←	(X) X + 1	None	1 ⁽¹⁾⁽²⁾
LD	Rd, -X	Load Indirect and Pre-Decrement	$X \leftarrow X - 1,$ Rd $\leftarrow (X)$	← ←	X - 1 (X)	None	2(1)(2)
LD	Rd, Y	Load Indirect	$Rd \gets (Y)$	←	(Y)	None	1 ⁽¹⁾⁽²⁾
LD	Rd, Y+	Load Indirect and Post-Increment	Rd Y	← ←	(Y) Y + 1	None	1 ⁽¹⁾⁽²⁾
LD	Rd, -Y	Load Indirect and Pre-Decrement	Y Rd	← ←	Y - 1 (Y)	None	2 ⁽¹⁾⁽²⁾
LDD	Rd, Y+q	Load Indirect with Displacement	Rd	←	(Y + q)	None	2 ⁽¹⁾⁽²⁾
LD	Rd, Z	Load Indirect	Rd	←	(Z)	None	1 ⁽¹⁾⁽²⁾
LD	Rd, Z+	Load Indirect and Post-Increment	Rd Z	← ←	(Z), Z+1	None	1 ⁽¹⁾⁽²⁾
LD	Rd, -Z	Load Indirect and Pre-Decrement	Z Rd	← ←	Z - 1, (Z)	None	2 ⁽¹⁾⁽²⁾
LDD	Rd, Z+q	Load Indirect with Displacement	Rd	←	(Z + q)	None	2 ⁽¹⁾⁽²⁾
STS	k, Rr	Store Direct to Data Space	(k)	←	Rd	None	2 ⁽¹⁾
ST	X, Rr	Store Indirect	(X)	←	Rr	None	1 ⁽¹⁾
ST	X+, Rr	Store Indirect and Post-Increment	(X) X	← ←	Rr, X + 1	None	1 ⁽¹⁾
ST	-X, Rr	Store Indirect and Pre-Decrement	X (X)	← ←	X - 1, Rr	None	2 ⁽¹⁾
ST	Y, Rr	Store Indirect	(Y)	←	Rr	None	1 ⁽¹⁾
ST	Y+, Rr	Store Indirect and Post-Increment	(Y) Y	$\stackrel{\leftarrow}{\leftarrow}$	Rr, Y + 1	None	1 ⁽¹⁾
ST	-Y, Rr	Store Indirect and Pre-Decrement	Y (Y)	← ←	Y - 1, Rr	None	2 ⁽¹⁾
STD	Y+q, Rr	Store Indirect with Displacement	(Y + q)	←	Rr	None	2 ⁽¹⁾
ST	Z, Rr	Store Indirect	(Z)	←	Rr	None	1 ⁽¹⁾
ST	Z+, Rr	Store Indirect and Post-Increment	(Z) Z	\leftarrow	Rr Z + 1	None	1 ⁽¹⁾
ST	-Z, Rr	Store Indirect and Pre-Decrement	Z	←	Z - 1	None	2 ⁽¹⁾
STD	Z+q,Rr	Store Indirect with Displacement	(Z + q)	←	Rr	None	2 ⁽¹⁾
LPM		Load Program Memory	R0	←	(Z)	None	3
LPM	Rd, Z	Load Program Memory	Rd	~	(Z)	None	3
LPM	Rd, Z+	Load Program Memory and Post-Increment	Rd Z	← ←	(Z), Z + 1	None	3
ELPM		Extended Load Program Memory	R0	~	(RAMPZ:Z)	None	3
ELPM	Rd, Z	Extended Load Program Memory	Rd	←	(RAMPZ:Z)	None	3
ELPM	Rd, Z+	Extended Load Program Memory and Post- Increment	Rd Z	← ←	(RAMPZ:Z), Z + 1	None	3
SPM		Store Program Memory	(RAMPZ:Z)	←	R1:R0	None	-

36.4 Wake-up Time from Sleep Modes

Symbol	Parameter	Condition		Min.	Typ. ⁽¹⁾	Max.	Units
t _{wakeup}	Wake-up time from idle, standby, and extended standby mode	External 2MHz clock			0.2	0.2	
		32kHz internal oscillator			120		
		8MHz internal oscillator			0.5		
		32MHz internal oscillator			0.2		
	Wake-up time from power save mode	External 2MHz clock			4.5		
		32kHz internal oscillator			320		
		8MHz internal oscillator	Normal mode		4.5		μs
			Low power mode		0.5		
		32MHz internal oscillator			5.0		
	Wake-up time from power down mode	External 2MHz clock			4.5		
		32kHz internal oscillator			320		
		8MHz internal oscillator			4.5		
		32MHz internal oscillator		5.0			

Table 36-5	Device Wake-u	n Time from Slee	n Modes with V	arious Sveta	m Clock Sources
Table 30-5.	Device wake-u		p modes with va	anous syste	III CIOCK Sources

Notes: 1. The wake-up time is the time from the wake-up request is given until the peripheral clock is available on pin, see Figure 36-2. All peripherals and modules start execution from the first clock cycle, expect the CPU that is halted for four clock cycles before program execution starts.

Figure 36-2. Wake-up Time Definition

37. Typical Characteristics

37.1 Current Consumption

37.1.1 Active Mode Supply Current

Figure 37-1. Active Mode Supply Current vs. Frequency $f_{over} = 0 - 1MHz$ external clock $T = 25^{\circ}C$

Figure 37-3. Active Mode Supply Current vs. $\rm V_{CC}$

Figure 37-4. Active Mode Supply Current vs. $\rm V_{CC}$

Figure 37-7. Active mode Supply Current vs. $\rm V_{\rm CC}$

Figure 37-8. Active Mode Supply Current vs. $\rm V_{CC}$

37.1.5 Standby Mode Supply Current

Figure 37-21.Standby Supply Current vs. V_{CC}

Vcc [V]

Figure 37-43. ADC Gain Error vs. Temperature $V_{CC} = 3.6V, V_{REF} = 1.0V, ADC$ sample rate = 300ksps

Figure 37-44. ADC Offset Error vs. V_{CC} T = 25 °C, V_{REF} = 1.0V, ADC sample rate = 300ksps

38.2 Rev. A

- DAC: AREF on PD0 is not available for the DAC
- EDMA: Channel transfer never stops when double buffering is enabled on sub-sequent channels
- ADC: Offset correction fails in unsigned mode
- ADC: Averaging is failing when channel scan is enabled
- ADC: Averaging in single conversion requires multiple conversion triggers
- ADC accumulator sign extends the result in unsigned mode averaging
- ADC: Free running average mode issue
- ADC: Event triggered conversion in averaging mode
- AC: Flag can not be cleared if the module is not enabled
- USART: Receiver not functional when variable data length and start frame detector are enabled
- T/C: Counter does not start when CLKSEL is written
- EEPROM write and Flash write operations fails under 2.0V
- TWI master or slave remembering data
- Temperature Sensor not calibrated

Issue: DAC: AREF on PD0 is not available for the DAC

The AREF external reference input on pin PD0 is not available for the DAC.

Workaround:

No workaround. Only AREF on pin PA0 can be used as external reference input for the DAC.

Issue: EDMA: Channel transfer never stops when double buffering is enabled on sub-sequent channels

When the double buffering is enabled on two channels, the channels which are not set in double buffering mode are never disabled at the end of the transfer. A new transfer can start if the channel is not disabled by software.

Workaround:

• CHMODE = 00

Enable double buffering on all channels or do not use channels which are not set the double buffering mode.

• CHMODE = 01 or 10

Do not use the channel which is not supporting the double buffering mode.

Issue: ADC: Offset correction fails in unsigned mode

In single ended, unsigned mode, a problem appears in low saturation (zero) when the offset correction is activated. The offset is removed from result and when a negative result appears, the result is not correct.

Workaround:

No workaround, but avoid using this correction method to cancel ΔV effect.