E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	AVR
Core Size	8/16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	26
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atxmega8e5-m4u

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The EDMA controller supports extended features such as double buffering, data match for peripherals and data search for SRAM or EEPROM.

The EDMA controller supports two types of channel. Each channel type can be selected individually.

Atmel

Figure 10-1. Event System Overview and Connected Peripherals

The event routing network consists of eight software-configurable multiplexers that control how events are routed and used. These are called event channels, and allow up to eight parallel event configurations and routing. The maximum routing latency of an external event is two peripheral clock cycles due to re-synchronization, but several peripherals can directly use the asynchronous event without any clock delay. The event system works in all power sleep modes, but only asynchronous events can be routed in sleep modes where the system clock is not available.

The LUT works in all sleep modes. Combined with event system and one I/O pin, the LUT can wake-up the system if, and only if, condition on up to three input pins is true.

A block diagram of the programmable logic unit with extensions and closely related peripheral modules (in grey) is shown in Figure 26-1.

Figure 26-1. XMEGA Custom Logic Module and Closely Related Peripherals

31. Programming and Debugging

31.1 Features

- Programming
 - External programming through PDI interface
 - Minimal protocol overhead for fast operation
 - Built-in error detection and handling for reliable operation
 - Boot loader support for programming through any communication interface
- Debugging
 - Nonintrusive, real-time, on-chip debug system
 - No software or hardware resources required from device except pin connection
 - Program flow control
 - Go, Stop, Reset, Step Into, Step Over, Step Out, Run-to-Cursor
 - Unlimited number of user program breakpoints
 - Unlimited number of user data breakpoints, break on:
 - Data location read, write, or both read and write
 - Data location content equal or not equal to a value
 - Data location content is greater or smaller than a value
 - Data location content is within or outside a range
 - No limitation on device clock frequency
- Program and Debug Interface (PDI)
 - Two-pin interface for external programming and debugging
 - Uses the Reset pin and a dedicated pin
 - No I/O pins required during programming or debugging

31.2 Overview

The Program and Debug Interface (PDI) is an Atmel proprietary interface for external programming and on-chip debugging of a device. The PDI supports fast programming of nonvolatile memory (NVM) spaces; flash, EEPOM, fuses, lock bits, and the user signature row.

Debug is supported through an on-chip debug system that offers nonintrusive, real-time debug. It does not require any software or hardware resources except for the device pin connection. Using the Atmel tool chain, it offers complete program flow control and support for an unlimited number of program and complex data breakpoints. Application debug can be done from a C or other high-level language source code level, as well as from an assembler and disassemble level.

Programming and debugging can be done through the PDI physical layer. This is a two-pin interface that uses the Reset pin for the clock input (PDI_CLK) and one other dedicated pin for data input and output (PDI_DATA). Any external programmer or on-chip debugger/emulator can be directly connected to this interface.

32. Pinout and Pin Functions

The device pinout is shown in "Pinout and Block Diagram" on page 4. In addition to general purpose I/O functionality, each pin can have several alternate functions. This will depend on which peripheral is enabled and connected to the actual pin. Only one of the pin functions can be used at time.

32.1 Alternate Pin Function Description

The tables below show the notation for all pin functions available and describe its function.

32.1.1 Operation/Power Supply

V _{CC}	Digital supply voltage
AV_{CC}	Analog supply voltage
GND	Ground

32.1.2 Port Interrupt Functions

SYNC	Port pin with full synchronous and limited asynchronous interrupt function
ASYNC	Port pin with full synchronous and full asynchronous interrupt function

32.1.3 Analog Functions

ACn	Analog Comparator input pin n
ACnOUT	Analog Comparator n Output
ADCn	Analog to Digital Converter input pin n
DACn	Digital to Analog Converter output pin n
A _{REF}	Analog Reference input pin

32.1.4 Timer/Counter and WEX Functions

OCnx	Output Compare Channel x for timer/counter n
OCnxLS	Output Compare Channel x Low Side for Timer/Counter n
OCnxHS	Output Compare Channel x High Side for Timer/Counter n

32.1.5 Communication Functions

SCL	Serial Clock for TWI
SDA	Serial Data for TWI
SCLIN	Serial Clock In for TWI when external driver interface is enabled
SCLOUT	Serial Clock Out for TWI when external driver interface is enabled
SDAIN	Serial Data In for TWI when external driver interface is enabled
SDAOUT	Serial Data Out for TWI when external driver interface is enabled

Base Address	Name	Description
0x07E0	PORTR	Port R
0x0800	TCC4	Timer/Counter 4 on port C
0x0840	TCC5	Timer/Counter 5 on port C
0x0880	FAULTC4	Fault Extension on TCC4
0x0890	FAULTC5	Fault Extensionon TCC5
0x08A0	WEXC	Waveform Extension on port C
0x08B0	HIRESC	High Resolution Extension on port C
0x08C0	USARTC0	USART 0 on port C
0x08E0	SPIC	Serial Peripheral Interface on port C
0x08F8	IRCOM	Infrared Communication Module
0x0940	TCD5	Timer/Counter 5 on port D
0x09C0	USARTD0	USART 0 on port D

Mnemonics	Operands	Description	Opera	ation		Flags	#Clocks
LDS	Rd, k	Load Direct from data space	Rd	←	(k)	None	2 ⁽¹⁾⁽²⁾
LD	Rd, X	Load Indirect	Rd	←	(X)	None	1 ⁽¹⁾⁽²⁾
LD	Rd, X+	Load Indirect and Post-Increment	Rd X	← ←	(X) X + 1	None	1 ⁽¹⁾⁽²⁾
LD	Rd, -X	Load Indirect and Pre-Decrement	$X \leftarrow X - 1,$ Rd $\leftarrow (X)$	← ←	X - 1 (X)	None	2(1)(2)
LD	Rd, Y	Load Indirect	$Rd \gets (Y)$	←	(Y)	None	1 ⁽¹⁾⁽²⁾
LD	Rd, Y+	Load Indirect and Post-Increment	Rd Y	← ←	(Y) Y + 1	None	1 ⁽¹⁾⁽²⁾
LD	Rd, -Y	Load Indirect and Pre-Decrement	Y Rd	← ←	Y - 1 (Y)	None	2 ⁽¹⁾⁽²⁾
LDD	Rd, Y+q	Load Indirect with Displacement	Rd	←	(Y + q)	None	2 ⁽¹⁾⁽²⁾
LD	Rd, Z	Load Indirect	Rd	←	(Z)	None	1 ⁽¹⁾⁽²⁾
LD	Rd, Z+	Load Indirect and Post-Increment	Rd Z	← ←	(Z), Z+1	None	1 ⁽¹⁾⁽²⁾
LD	Rd, -Z	Load Indirect and Pre-Decrement	Z Rd	← ←	Z - 1, (Z)	None	2 ⁽¹⁾⁽²⁾
LDD	Rd, Z+q	Load Indirect with Displacement	Rd	←	(Z + q)	None	2 ⁽¹⁾⁽²⁾
STS	k, Rr	Store Direct to Data Space	(k)	←	Rd	None	2 ⁽¹⁾
ST	X, Rr	Store Indirect	(X)	←	Rr	None	1 ⁽¹⁾
ST	X+, Rr	Store Indirect and Post-Increment	(X) X	← ←	Rr, X + 1	None	1 ⁽¹⁾
ST	-X, Rr	Store Indirect and Pre-Decrement	X (X)	← ←	X - 1, Rr	None	2 ⁽¹⁾
ST	Y, Rr	Store Indirect	(Y)	←	Rr	None	1 ⁽¹⁾
ST	Y+, Rr	Store Indirect and Post-Increment	(Y) Y	$\stackrel{\leftarrow}{\leftarrow}$	Rr, Y + 1	None	1 ⁽¹⁾
ST	-Y, Rr	Store Indirect and Pre-Decrement	Y (Y)	← ←	Y - 1, Rr	None	2 ⁽¹⁾
STD	Y+q, Rr	Store Indirect with Displacement	(Y + q)	←	Rr	None	2 ⁽¹⁾
ST	Z, Rr	Store Indirect	(Z)	←	Rr	None	1 ⁽¹⁾
ST	Z+, Rr	Store Indirect and Post-Increment	(Z) Z	\leftarrow	Rr Z + 1	None	1 ⁽¹⁾
ST	-Z, Rr	Store Indirect and Pre-Decrement	Z	←	Z - 1	None	2 ⁽¹⁾
STD	Z+q,Rr	Store Indirect with Displacement	(Z + q)	←	Rr	None	2 ⁽¹⁾
LPM		Load Program Memory	R0	←	(Z)	None	3
LPM	Rd, Z	Load Program Memory	Rd	←	(Z)	None	3
LPM	Rd, Z+	Load Program Memory and Post-Increment	Rd Z	← ←	(Z), Z + 1	None	3
ELPM		Extended Load Program Memory	R0	~	(RAMPZ:Z)	None	3
ELPM	Rd, Z	Extended Load Program Memory	Rd	←	(RAMPZ:Z)	None	3
ELPM	Rd, Z+	Extended Load Program Memory and Post- Increment	Rd Z	← ←	(RAMPZ:Z), Z + 1	None	3
SPM		Store Program Memory	(RAMPZ:Z)	←	R1:R0	None	-

36. Electrical Characteristics

All typical values are measured at $T = 25^{\circ}C$ unless other temperature condition is given. All minimum and maximum values are valid across operating temperature and voltage unless other conditions are given.

Symbol	Parameter	Min.	Тур.	Max.	Units
V _{CC}	Power supply voltage	-0.3		4	V
I _{VCC}	Current into a V _{CC} pin			200	m۸
I _{GND}	Current out of a Gnd pin			200	- IIIA
V _{PIN}	Pin voltage with respect to Gnd and V_{CC}	-0.5		V _{CC} +0.5	V
I _{PIN}	I/O pin sink/source current	-25		25	mA
T _A	Storage temperature	-65		150	°C
Tj	Junction temperature			150	U U

36.1 Absolute Maximum Ratings

36.2 General Operating Ratings

The device must operate within the ratings listed in Table 36-1 in order for all other electrical characteristics and typical characteristics of the device to be valid.

Table 36-1.	General	Operating	Conditions
-------------	---------	-----------	------------

Symbol	Parameter	Min.	Тур.	Max.	Units	
V _{CC}	Power supply voltage	1.6		3.6	V	
AV _{CC}	Analog supply voltage	1.6		3.6	V	
T _A	Temperature range	-40		85	°C	
Tj	Junction temperature	-40		105	C	

Table 36-2. Operating Voltage and Frequency

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
Clk _{CPU}	CPU clock frequency	V _{CC} = 1.6V	0		12	MHz
		V _{CC} = 1.8V	0		12	
		V _{CC} = 2.7V	0		32	
		V _{CC} = 3.6V	0		32	

The maximum CPU clock frequency depends on V_{CC}. As shown in Figure 36-1 the frequency vs. V_{CC} curve is linear between $1.8V < V_{CC} < 2.7V$.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
	Gain error	0.5x gain		-1		%
		1x gain		-1		
		8x gain		-1		
		64x gain		-1.5		
	Offset error, input referred	0.5x gain		10		
		1x gain		5		
		8x gain		5		IIIV
		64x gain		5		

36.7 DAC Characteristics

Table 36-11. Power Supply, Reference, and Output Range

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
AV _{CC}	Analog supply voltage		V _{CC} - 0.3		V _{CC} + 0.3	
AV _{REF}	External reference voltage		1.0		V _{CC} - 0.6	V
R _{channel}	DC output impedance				50	Ω
	Linear output voltage range		0.15		V _{REF} -0.15	V
R _{AREF}	Reference input resistance			>10		MΩ
C _{AREF}	Reference input capacitance	Static load		7		pF
	Minimum Resistance load		1			kΩ
	Maximum capacitanco load				100	pF
		1000 Ω serial resistance			1	nF
	Output sink/source	Operating within accuracy specification			AV _{CC} /1000	mA
		Safe operation			10	

Table 36-12. Clock and Timing

Symbol	Parameter	Condition		Min.	Тур.	Max.	Units
f _{DAC}	Conversion C _{load} = rate maxin	C _{load} =100pF,	Normal mode	0		1000	ksps
		maximum step size	Low power mode	0		500	

36.13.5 Internal Phase Locked Loop (PLL) Characteristics

Table 36-24. Internal PLL Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
f _{IN}	Input frequency	Output frequency must be within \mathbf{f}_{OUT}	0.4		64	
f _{оит}	Output frequency ⁽¹⁾	V _{CC} = 1.6 - 1.8V	20		48	MHz
		V _{CC} = 2.7 - 3.6V	20		128	
	Start-up time			25		
	Re-lock time			25		μο

Note: 1. The maximum output frequency vs. supply voltage is linear between 1.8V and 2.7V, and can never be higher than four times the maximum CPU frequency.

36.13.6 External Clock Characteristics

Table 36-25. External Clock used as System Clock without Prescaling

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
1/t _{CK}	Clock Frequency ⁽¹⁾	V _{CC} = 1.6 - 1.8V	0		12	
		V _{CC} = 2.7 - 3.6V	0		32	
	Clock Daried	V _{CC} = 1.6 - 1.8V	83.3			
ЧСК		V _{CC} = 2.7 - 3.6V	31.5			
t _{CH}	Clock High Time	V _{CC} = 1.6 - 1.8V	30.0			
		V _{CC} = 2.7 - 3.6V	12.5			
t _{CL}	Clock Low Time	V _{CC} = 1.6 - 1.8V	30.0			
		V _{CC} = 2.7 - 3.6V	12.5			115
+	Piso Time (for maximum frequency)	V _{CC} = 1.6 - 1.8V			10	
⁴ CR	Rise filme (for maximum requency)	V _{CC} = 2.7 - 3.6V			3	
t _{CF}	Fall Time (for maximum frequency)	V _{CC} = 1.6 - 1.8V			10	-
		V _{CC} = 2.7 - 3.6V			3	
Δt_{CK}	Change in period from one clock cycle to the next				10	%

Note: 1. The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.

Atmel

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
t _{LOW}	Low period of SCL Clock	f _{SCL} ≤ 100kHz	4.7			-
		f _{SCL} ≤ 400kHz	1.3			
		f _{SCL} ≤ 1MHz	0.5			
	High period of SCL Clock	f _{SCL} ≤ 100kHz	4			
t _{HIGH}		f _{SCL} ≤ 400kHz	0.6			
		f _{SCL} ≤ 1MHz	0.26			
t _{su;sta}		f _{SCL} ≤ 100kHz	4.7			μs
	Set-up time for a repeated START condition	f _{SCL} ≤ 400kHz	0.6			
		f _{SCL} ≤ 1MHz	0.26			
	Data hold time	f _{SCL} ≤ 100kHz	0		3.45	
t _{HD;DAT}		f _{SCL} ≤ 400kHz	0		0.9	
		f _{SCL} ≤ 1MHz	0		0.45	
	Data setup time	f _{SCL} ≤ 100kHz	250			ns
t _{SU;DAT}		f _{SCL} ≤ 400kHz	100			
		f _{SCL} ≤ 1MHz	50			
	Setup time for STOP condition	f _{SCL} ≤ 100kHz	4			_
t _{su;sто}		f _{SCL} ≤ 400kHz	0.6			
		f _{SCL} ≤ 1MHz	0.26			
t _{BUF}	Bus free time between a STOP and START condition	f _{SCL} ≤ 100kHz	4.7			μs
		f _{SCL} ≤ 400kHz	1.3			
		f _{SCL} ≤ 1MHz	0.5			

Notes:

Required only for f_{SCL} > 100kHz.
C_b = Capacitance of one bus line in pF.

3. f_{PER} = Peripheral clock frequency.

37.1.2 Idle Mode Supply Current

Figure 37-9. Idle Mode Supply Current vs. Frequency

Figure 37-11.Idle Mode Supply Current vs. $\rm V_{CC}$

Figure 37-12. Idle Mode Supply Current vs. V_{CC}

Figure 37-15.Idle Mode Supply Current vs. $\rm V_{CC}$

Figure 37-16.Idle Mode Supply Current vs. V_{CC}

37.1.5 Standby Mode Supply Current

Figure 37-21.Standby Supply Current vs. V_{CC}

Vcc [V]

Atmel

Figure 37-43. ADC Gain Error vs. Temperature $V_{CC} = 3.6V, V_{REF} = 1.0V, ADC$ sample rate = 300ksps

Figure 37-44. ADC Offset Error vs. V_{CC} T = 25 °C, V_{REF} = 1.0V, ADC sample rate = 300ksps

37.6 Internal 1.0V Reference Characteristics

Figure 37-59.ADC/DAC Internal 1.0V Reference vs. Temperature

37.7 BOD Characteristics

Figure 37-60.BOD Thresholds vs. Temperature

Figure 37-72. 32.768kHz Internal Oscillator Frequency vs. Calibration Value

Figure 37-78. 32MHz Internal Oscillator Frequency vs. Temperature

Figure 37-84. SDA Fall Time vs. V_{cc}

37.12 PDI Characteristics

