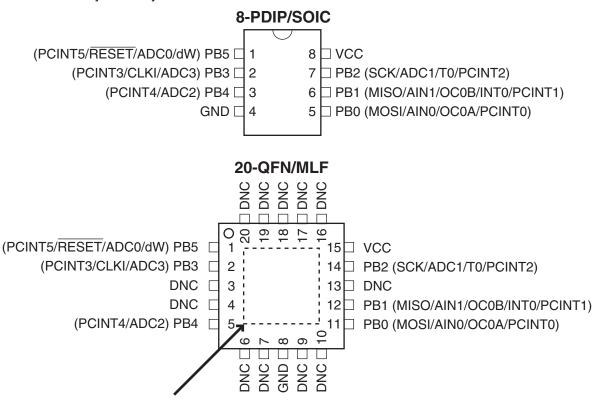





Welcome to **E-XFL.COM** 

What is "Embedded - Microcontrollers"?

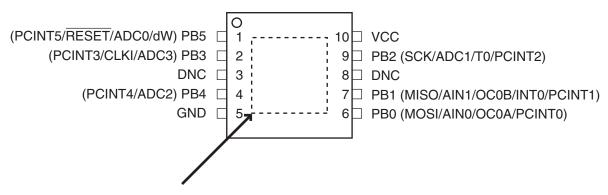
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded - Microcontrollers</u>"

| Details                    |                                                                          |
|----------------------------|--------------------------------------------------------------------------|
|                            |                                                                          |
| Product Status             | Active                                                                   |
| Core Processor             | AVR                                                                      |
| Core Size                  | 8-Bit                                                                    |
| Speed                      | 10MHz                                                                    |
| Connectivity               | -                                                                        |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                    |
| Number of I/O              | 6                                                                        |
| Program Memory Size        | 1KB (512 x 16)                                                           |
| Program Memory Type        | FLASH                                                                    |
| EEPROM Size                | 64 x 8                                                                   |
| RAM Size                   | 64 x 8                                                                   |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 5.5V                                                              |
| Data Converters            | A/D 4x10b                                                                |
| Oscillator Type            | Internal                                                                 |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                        |
| Mounting Type              | Through Hole                                                             |
| Package / Case             | 8-DIP (0.300", 7.62mm)                                                   |
| Supplier Device Package    | 8-PDIP                                                                   |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/attiny13v-10pu |



# 1. Pin Configurations


Figure 1-1. Pinout ATtiny13/ATtiny13V



NOTE: Bottom pad should be soldered to ground.

**DNC: Do Not Connect** 

# 10-QFN/MLF



NOTE: Bottom pad should be soldered to ground.

**DNC: Do Not Connect** 

# 1.1 Pin Descriptions

#### 1.1.1 VCC

Digital supply voltage.

#### 1.1.2 GND

Ground.

### 1.1.3 Port B (PB5:PB0)

Port B is a 6-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

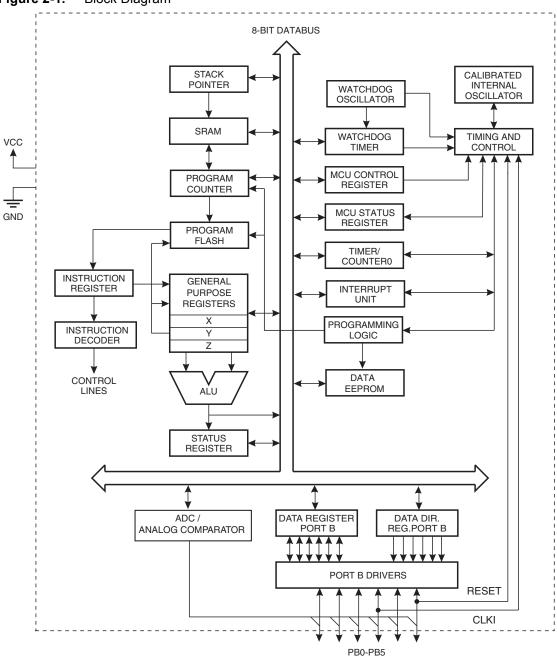
Port B also serves the functions of various special features of the ATtiny13 as listed on page 54.

### 1.1.4 **RESET**

Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 18-1 on page 115. Shorter pulses are not guaranteed to generate a reset.

The reset pin can also be used as a (weak) I/O pin.






# 2. Overview

The ATtiny13 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny13 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

# 2.1 Block Diagram

Figure 2-1. Block Diagram



The AVR core combines a rich instruction set with 32 general purpose working registers. All 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATtiny13 provides the following features: 1K byte of In-System Programmable Flash, 64 bytes EEPROM, 64 bytes SRAM, 6 general purpose I/O lines, 32 general purpose working registers, one 8-bit Timer/Counter with compare modes, Internal and External Interrupts, a 4-channel, 10-bit ADC, a programmable Watchdog Timer with internal Oscillator, and three software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counter, ADC, Analog Comparator, and Interrupt system to continue functioning. The Power-down mode saves the register contents, disabling all chip functions until the next Interrupt or Hardware Reset. The ADC Noise Reduction mode stops the CPU and all I/O modules except ADC, to minimize switching noise during ADC conversions.

The device is manufactured using Atmel's high density non-volatile memory technology. The On-chip ISP Flash allows the Program memory to be re-programmed In-System through an SPI serial interface, by a conventional non-volatile memory programmer or by an On-chip boot code running on the AVR core.

The ATtiny13 AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, and Evaluation kits.





# 3. General Information

# 3.1 Resources

A comprehensive set of drivers, application notes, data sheets and descriptions on development tools are available for download at http://www.atmel.com/avr.

# 3.2 Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details.

# 3.3 Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C.

# 4. Register Summary

| Address      | Name              | Bit 7   | Bit 6  | Bit 5           | Bit 4           | Bit 3            | Bit 2           | Bit 1           | Bit 0           | Page               |
|--------------|-------------------|---------|--------|-----------------|-----------------|------------------|-----------------|-----------------|-----------------|--------------------|
| 0x3F         | SREG              | 1       | T      | Н               | S               | V                | N               | Z               | С               | page 9             |
| 0x3E         | Reserved          | -       | -      | -               | -               | -                | -               | -               | -               |                    |
| 0x3D         | SPL               |         |        |                 | SP              | [7:0]            |                 |                 |                 | page 11            |
| 0x3C         | Reserved          |         |        | ,               | 1               | -                |                 |                 | _               |                    |
| 0x3B         | GIMSK             | -       | INT0   | PCIE            | -               | -                | _               | _               | -               | page 46            |
| 0x3A         | GIFR              | -       | INTF0  | PCIF            | -               | _                |                 | -               | -               | page 47            |
| 0x39         | TIMSK0            | -       | -      | -               | -               | OCIE0B           | OCIE0A          | TOIE0           | -               | page 74            |
| 0x38         | TIFR0             | -       |        | -               | -               | OCF0B            | OCF0A           | TOV0            | -               | page 75            |
| 0x37         | SPMCSR            | -       | -      | -               | СТРВ            | RFLB             | PGWRT           | PGERS           | SELFPR-         | page 97            |
| 0x36         | OCR0A             |         |        |                 |                 | ut Compare Reg   |                 |                 |                 | page 74            |
| 0x35         | MCUCR             | -       | PUD    | SE              | SM1             | SM0              | -               | ISC01           | ISC00           | page 32            |
| 0x34         | MCUSR             | -       | -      | -               | -               | WDRF             | BORF            | EXTRF           | PORF            | page 41            |
| 0x33         | TCCR0B            | FOC0A   | FOC0B  | -               |                 | WGM02            | CS02            | CS01            | CS00            | page 72            |
| 0x32         | TCNT0             |         |        |                 |                 | unter (8-bit)    |                 |                 |                 | page 73            |
| 0x31         | OSCCAL            |         |        |                 | Oscillator Cali | bration Register |                 |                 |                 | page 27            |
| 0x30         | Reserved          |         |        | T               |                 | _                |                 |                 |                 |                    |
| 0x2F         | TCCR0A            | COM0A1  | COM0A0 | COM0B1          | COM0B0          | _                | -               | WGM01           | WGM00           | page 69            |
| 0x2E         | DWDR              |         |        |                 |                 | PR[7:0]          |                 |                 |                 | page 96            |
| 0x2D         | Reserved          |         |        |                 |                 |                  |                 |                 |                 |                    |
| 0x2C         | Reserved          |         |        |                 |                 |                  |                 |                 |                 |                    |
| 0x2B         | Reserved          |         |        |                 |                 |                  |                 |                 |                 |                    |
| 0x2A         | Reserved          |         |        |                 | 10 1 2          |                  |                 |                 |                 |                    |
| 0x29         | OCR0B             | TC:-    |        |                 |                 | ut Compare Reg   |                 |                 | D05 15          | page 74            |
| 0x28         | GTCCR             | TSM     | -      | -               | -               | _                | -               | -               | PSR10           | page 77            |
| 0x27         | Reserved          | 011/202 |        | ı               |                 | -                | 211/222         |                 | 2111722         |                    |
| 0x26         | CLKPR             | CLKPCE  | -      | _               | -               | CLKPS3           | CLKPS2          | CLKPS1          | CLKPS0          | page 28            |
| 0x25         | Reserved          |         |        |                 |                 | -                |                 |                 |                 |                    |
| 0x24         | Reserved          |         |        |                 |                 | _                |                 |                 |                 |                    |
| 0x23         | Reserved          |         |        |                 |                 | -                |                 |                 |                 |                    |
| 0x22         | Reserved          |         |        | 1               |                 | -<br>I           |                 |                 |                 |                    |
| 0x21         | WDTCR             | WDTIF   | WDTIE  | WDP3            | WDCE            | WDE              | WDP2            | WDP1            | WDP0            | page 41            |
| 0x20         | Reserved          |         |        |                 |                 |                  |                 |                 |                 |                    |
| 0x1F         | Reserved          |         |        | 1               |                 | - FERROM A di    | lanca Danieten  |                 |                 |                    |
| 0x1E         | EEARL             | -       | -      |                 | EEDDOM          | EEPROM Add       | iress Register  |                 |                 | page 20            |
| 0x1D         | EEDR              |         |        | EED144          |                 | ata Register     | FEMBE           | FEDE            | FEDE            | page 20            |
| 0x1C         | EECR              | -       | -      | EEPM1           | EEPM0           | EERIE            | EEMPE           | EEPE            | EERE            | page 21            |
| 0x1B         | Reserved          |         |        |                 |                 | <u>-</u>         |                 |                 |                 |                    |
| 0x1A         | Reserved          |         |        |                 |                 | _                |                 |                 |                 |                    |
| 0x19<br>0x18 | Reserved<br>PORTB |         |        | DODTES          | PORTB4          | PORTB3           | DODTDO          | DODTD4          | DODTRO          | none 50            |
|              |                   | -       | -      | PORTB5          |                 |                  | PORTB2          | PORTB1          | PORTB0          | page 56            |
| 0x17         | DDRB<br>PINB      | -       | -      | DDB5            | DDB4            | DDB3             | DDB2            | DDB1            | DDB0            | page 56            |
| 0x16<br>0x15 | PINB              | -       | -      | PINB5<br>PCINT5 | PINB4<br>PCINT4 | PINB3<br>PCINT3  | PINB2<br>PCINT2 | PINB1<br>PCINT1 | PINB0<br>PCINT0 | page 57<br>page 47 |
| 0x15<br>0x14 | DIDR0             | _       |        | ADC0D           | ADC2D           | ADC3D            | ADC1D           | AIN1D           | AIN0D           |                    |
| 0x14<br>0x13 | Reserved          | -       |        | ADCOD           |                 |                  | ADCID           | AINID           | AINUD           | page 80, page 94   |
| 0x13<br>0x12 | Reserved          |         |        |                 |                 |                  |                 |                 |                 |                    |
| 0x12<br>0x11 | Reserved          |         |        |                 |                 |                  |                 |                 |                 |                    |
| 0x11         | Reserved          |         |        |                 |                 | <u>-</u>         |                 |                 |                 |                    |
| 0x10<br>0x0F | Reserved          |         |        |                 |                 |                  |                 |                 |                 |                    |
| 0x0E         | Reserved          |         |        |                 |                 | _                |                 |                 |                 |                    |
| 0x0D         | Reserved          |         |        |                 |                 | <u>-</u>         |                 |                 |                 |                    |
| 0x0C         | Reserved          |         |        |                 |                 | _                |                 |                 |                 |                    |
| 0x0B         | Reserved          |         |        |                 |                 |                  |                 |                 |                 |                    |
| 0x0A         | Reserved          |         |        |                 |                 | _                |                 |                 |                 |                    |
| 0x09         | Reserved          |         |        |                 |                 | <u>-</u><br>-    |                 |                 |                 |                    |
| 0x08         | ACSR              | ACD     | ACBG   | ACO             | ACI             | ACIE             | _               | ACIS1           | ACIS0           | page 79            |
| 0x08<br>0x07 | ADMUX             | ACD -   | REFS0  | ADLAR           | ACI             | ACIE<br>-        | _               | MUX1            | MUX0            | page 79<br>page 91 |
| 0x07<br>0x06 | ADCSRA            | ADEN    | ADSC   | ADLAR           | ADIF            | ADIE             | ADPS2           | ADPS1           | ADPS0           | page 91            |
| 0x05         | ADCH              | ADLIN   | ADOU   | ADATE           | l .             | gister High Byte | ADF 02          | ADEGI           | ADI-00          | page 92<br>page 93 |
| 0x05<br>0x04 | ADCL              | 1       |        |                 |                 | gister Low Byte  |                 |                 |                 | page 93            |
| 0x04<br>0x03 | ADCSRB            | _       | ACME   | -               | ADC Data Re     | JISTEI LOW BYTE  | ADTS2           | ADTS1           | ADTS0           | page 93            |
|              | Reserved          | _       | AOIVIL |                 |                 |                  | ADIOL           | עטוטו           | ADTOU           | paye 34            |
| 0^02         |                   |         |        |                 |                 |                  |                 |                 |                 |                    |
| 0x02<br>0x01 | Reserved          |         |        |                 |                 | _                |                 |                 |                 |                    |





Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.ome of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operation the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.

# 5. Instruction Set Summary

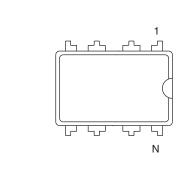
| APPLIED TO ADD LOCK INSTRUCTIONS  ADD  RS. FY  Add two Registers  Rd - Rd + Rf - RC  ZCN.VIH  ADD  RS. RY  Add with Carry two Registers  Rd - Rd + Rf - C  ZCN.VIH  ADD  RS. RY  ADD  RS. RY  Subtract two Registers  Rd - Rd - Rd - Rd - Rd - Rd - ZCN.VIH  SUB Rs. RY  Subtract two Registers  Rd - Rd - Rd - Rd - Rd - ZCN.VIH  SUB Rs. RY  Subtract two Registers  Rd - Rd - Rd - Rd - Rd - ZCN.VIH  SUB Rs. RY  Subtract two Registers  Rd - Rd - Rd - Rd - Rd - ZCN.VIH  SUB Rs. RY  Subtract two Registers  Rd - Rd - Rd - Rd - Rd - CC - ZCN.VIH  SUB Rs. RY  Subtract two Registers  Rd - Rd - Rd - Rd - Rd - CC - ZCN.VIH  SUB Rs. RY  Subtract two Registers  Rd - Rd - Rd - Rd - Rd - CC - ZCN.VIH  SUB Rs. RY  Subtract two Registers  Rd - Rd - Rd - Rd - Rd - CC - ZCN.VIH  SUB Rs. RY  Subtract two Registers  Rd - Rd - Rd - Rd - Rd - CC - ZCN.VIH  ADD  Rs. RY  Logical And Registers  Rd - Rd - Rd - Rd - Rd - Rd - ZCN.VIH  ADD  Rs. RY  Logical And Registers and Constant  Rd - Rd - Rd - Rd - Rd - ZCN.VIH  ADD  Rd - Rd - Rd - Rd - ZCN.VIH  ADD  Rd - Rd - Rd - Rd - Rd - ZCN.VIH  EDR  Rd - Rd - Rd - Rd - ZCN.VIH  Rd - Rd - Rd - Rd - Rd - ZCN.VIH  ADD  Rd - Rd - Rd - Rd - Rd - ZCN.VIH  ADD  Rd - Rd - Rd - Rd - Rd - ZCN.VIH  Rd - Rd - Rd - Rd - ZCN.VIH  Rd - Rd - Rd - Rd - ZCN.VIH  Rd - Rd - Rd - Rd - ZCN.VIH  Rd - Rd - Rd - Rd - ZCN.VIH  Rd - Rd - Rd - Rd - ZCN.VIH  Rd - Rd - Rd - Rd - ZCN.VIH  Rd - Rd - Rd - Rd - ZCN.VIH  Rd - Rd - Rd - Rd - Rd - ZCN.VIH  Rd - Rd - Rd - Rd - Rd - ZCN.VIH  Rd - Rd - Rd - Rd - Rd - ZCN.VIH  Rd - Rd - Rd - Rd - Rd - ZCN.VIH  Rd - Rd - Rd - Rd - Rd - Rd - ZCN.VIH  Rd - Rd - Rd - Rd - Rd - ZCN.VIH  Rd - Rd - Rd - Rd - Rd - ZCN.VIH  Rd - Rd - Rd - Rd - Rd - ZCN.VIH  Rd - Rd - Rd - Rd - Rd - Rd - ZCN.VIH  Rd - Rd - Rd - Rd - Rd - ZCN.VIH  Rd - Rd - Rd - Rd - Rd - ZCN.VIH  Rd - Rd - Rd - Rd - Rd - ZCN.VIH  Rd - Rd - Rd - Rd - Rd - ZCN.VIH  Rd - Rd - Rd - Rd - Rd - Rd - ZCN.VIH  Rd - Rd - Rd - Rd - Rd - ZCN.VIH  Rd - Rd - Rd - Rd - Rd - Rd - ZCN.VIH  Rd - Rd - Rd - Rd - Rd - Rd - ZCN.VIH  Rd - Rd - Rd - Rd - Rd - | Mnemonics | Operands | Description                            | Operation                               | Flags     | #Clocks |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|----------------------------------------|-----------------------------------------|-----------|---------|
| AOC Rd Rr Add with Carry how Registers Rd - Rd + Rd + Rd - Rd - C Z C.N.V. SUB Rd RR Rd - Rd Rd Rd Immediate by World Rd Rd - Rd - Rd Rd Rd - C Z C.N.V. SUB Rd Rd Rr Subtract with Registers Rd + Rd - Rd - Rd - C Z C.N.V. SUB Rd Rd Rr Subtract with Registers Rd + Rd - Rd - Rd - C Z C.N.V. SUB Rd Rd Rd Subtract with Construction Register Rd + Rd - Rd - Rd - C Z C.N.V. SUB Rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | ARITHMET | TIC AND LOGIC INSTRUCTIONS             |                                         | •         | •       |
| ADMY   Ralik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ADD       | Rd, Rr   | Add two Registers                      | Rd ← Rd + Rr                            | Z,C,N,V,H | 1       |
| SUB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ADC       | Rd, Rr   | Add with Carry two Registers           | $Rd \leftarrow Rd + Rr + C$             | Z,C,N,V,H | 1       |
| SUB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ADIW      | RdI,K    | Add Immediate to Word                  | Rdh:Rdl ← Rdh:Rdl + K                   | Z,C,N,V,S | 2       |
| SBC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SUB       | Rd, Rr   | Subtract two Registers                 | Rd ← Rd - Rr                            | Z,C,N,V,H | 1       |
| SSIC    Rd, K   Subteat with Carry Constant from Reg.   Rd - Rd - Rd - Rd - C   ZCN.VS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SUBI      | Rd, K    | Subtract Constant from Register        | $Rd \leftarrow Rd - K$                  | Z,C,N,V,H | 1       |
| SBW   Rdl K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SBC       | Rd, Rr   | Subtract with Carry two Registers      | $Rd \leftarrow Rd - Rr - C$             | Z,C,N,V,H | 1       |
| AND   Rd. Rr   Logical AND Registers   Rd ← Rd × Rr   Z.N.V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SBCI      | Rd, K    | Subtract with Carry Constant from Reg. | $Rd \leftarrow Rd - K - C$              | Z,C,N,V,H | 1       |
| AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SBIW      | RdI,K    | Subtract Immediate from Word           | Rdh:Rdl ← Rdh:Rdl - K                   | Z,C,N,V,S | 2       |
| OR         Rd. R         Logical OR Registers         Rd + Rd v K         Z.N.V           EOR         Rd. R         Logical OR Registers         Rd + Rd 8 Rv         Z.N.V           EOR         Rd. Rr         Exclusive OR Registers         Rd + Rd 8 Rv         Z.N.V           COM         Rd         One's Complement         Rd + O8 Rv         Z.C.N.V.           NEG         Rd         Tvo's Complement         Rd + O80 - Rd         Z.C.N.V.H           SSR         Rd. Rd         Vivo's Complement         Rd + O80 - Rd         Z.C.N.V.H           SSR         Rd. Rd.K         Set 88(1) in Register         Rd + Rd + W.K         Z.N.V           CGR         Rd.K         Close 88(1) in Register         Rd + Rd + W.K         Z.N.V           DEC         Rd         Decement         Rd + Rd + W.K         Z.N.V           DEC         Rd         Decement         Rd + Rd + Rd + Z.N.V         Z.N.V           CLR         Rd         Decement         Rd + Rd + Rd + Rd - Z.N.V         Z.N.V           CLR         Rd         Decement         Rd + Rd + Rd - Rd - Z.N.V         Z.N.V           SER         Rd         Test for Zeco of Minus         Rd + Rd + Rd - Rd - Z.N.V         Z.N.V           SER         Rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AND       | Rd, Rr   | Logical AND Registers                  | $Rd \leftarrow Rd \bullet Rr$           | Z,N,V     | 1       |
| CRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ANDI      | Rd, K    | Logical AND Register and Constant      | $Rd \leftarrow Rd \bullet K$            | Z,N,V     | 1       |
| EOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OR        | Rd, Rr   | Logical OR Registers                   | $Rd \leftarrow Rd v Rr$                 | Z,N,V     | 1       |
| COM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ORI       | Rd, K    | Logical OR Register and Constant       | $Rd \leftarrow Rd \vee K$               | Z,N,V     | 1       |
| SER   Rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EOR       | Rd, Rr   | Exclusive OR Registers                 | $Rd \leftarrow Rd \oplus Rr$            | Z,N,V     | 1       |
| SBR   Rd.K   Set Bitto) in Register   Rd.← Rd.v.K   Z,N.V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | COM       | Rd       | One's Complement                       | $Rd \leftarrow 0xFF - Rd$               | Z,C,N,V   | 1       |
| CORN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NEG       | Rd       | Two's Complement                       | $Rd \leftarrow 0x00 - Rd$               | Z,C,N,V,H | 1       |
| INC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SBR       | Rd,K     | Set Bit(s) in Register                 | $Rd \leftarrow Rd v K$                  | Z,N,V     | 1       |
| DEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CBR       | Rd,K     | Clear Bit(s) in Register               | $Rd \leftarrow Rd \bullet (0xFF - K)$   | Z,N,V     | 1       |
| TST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INC       | Rd       | Increment                              | Rd ← Rd + 1                             | Z,N,V     | 1       |
| CLR   Rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DEC       | Rd       | Decrement                              | Rd ← Rd – 1                             | Z,N,V     | 1       |
| SER   Rd   Set Register   Rd ← 0xFF   None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TST       | Rd       | Test for Zero or Minus                 | $Rd \leftarrow Rd \bullet Rd$           | Z,N,V     | 1       |
| RAIMP   K   Relative Jump   PC ← PC + K + 1   None     LIMP   Indirect Jump to (2)   PC ← Z   None     RCALL   K   Relative Subroutine Call   PC ← PC + K + 1   None     RCALL   R   Relative Subroutine Call   PC ← PC + K + 1   None     RET   Subroutine Return   PC ← PC + K + 1   None     RET   Subroutine Return   PC ← PC + K + 1   None     RET   Subroutine Return   PC ← STACK   None     RET   RET   Subroutine Return   PC ← STACK   None     RET   RET   Return   PC ← STACK   I     CPSE   Rd,Rr   Compare, Sikp if Equal   if (Rd = Rr) PC ← PC + 2 or 3   None     CP   Rd,Rr   Compare with Carry   Rd − Rr − C   Z, NV,C.H     CPI   Rd,K   Compare with Carry   Rd − Rr − C   Z, NV,C.H     CPI   Rd,K   Compare with Carry   Rd − Rr − C   Z, NV,C.H     SBRC   Rr, b   Sikp if Bit in Register with Immediate   Rd − K   Z, NV,C.H     SBRC   Rr, b   Sikp if Bit in Register is Set   if (Rr(b)=1) PC ← PC + 2 or 3   None     SBRS   Rr, b   Skip if Bit in IOR Register is Set   if (Rr(b)=1) PC ← PC + 2 or 3   None     SBRS   P, b   Skip if Bit in IOR Register is Set   if (P(b)=1) PC ← PC + 2 or 3   None     BRBS   S, k   Branch if Status Flag Celered   if (SREG(s) = 1) then PC ← PC + k + 1   None     BRBC   K   Branch if Note Equal   if (Z = 0) then PC ← PC + k + 1   None     BRC   K   Branch if Note Equal   if (Z = 0) then PC ← PC + k + 1   None     BRC   K   Branch if Manuel Higher   Relative   | CLR       | Rd       | Clear Register                         | $Rd \leftarrow Rd \oplus Rd$            | Z,N,V     | 1       |
| RJMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SER       | Rd       | Set Register                           | Rd ← 0xFF                               | None      | 1       |
| LIMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | BF       | RANCH INSTRUCTIONS                     |                                         |           |         |
| RCALL   K   Relative Subroutine Call   PC ← PC + K + 1   None     ICALL   Indirect Call to (Z)   PC ← Z   None     RET   Subroutine Return   PC ← STACK   None     RET   RET   Subroutine Return   PC ← STACK   None     RET   RET   Interrupt Return   PC ← STACK   I     PC ← PC + 2 or 3   None     PC ← Rd,Rr   Compare with Carry   Rd − Rr − C   Z, N,V,C,H     SBRC   Rd,K   Compare Register with Immediate   Rd − K   Z, N,V,C,H     SBRC   Rr, b   Skip if Bit in Register Cleared   if (Rr(D)=0) PC ← PC + 2 or 3   None     SBRC   Rr, b   Skip if Bit in Register Set   if (Rr(D)=1) PC ← PC + 2 or 3   None     SBRC   Rr, b   Skip if Bit in I/O Register is Set   if (Rr(D)=1) PC ← PC + 2 or 3   None     SBRC   P, b   Skip if Bit in I/O Register is Set   if (P(D)=0) PC ← PC + 2 or 3   None     SBRS   P, b   Skip if Bit in I/O Register is Set   if (RR(D)=1) PC ← PC + 2 or 3   None     SBRS   S, k   Branch if Status Flag Cleared   if (SREG(S)=1) then PC ← PC + x + 1   None     BRBC   S, k   Branch if Status Flag Cleared   if (SREG(S)=1) then PC ← PC + x + 1   None     BRBC   S, k   Branch if Status Flag Cleared   if (SREG(S)=0) then PC ← PC + x + 1   None     BRC   K   Branch if Garry Set   if (SREG(S)=0) then PC ← PC + x + 1   None     BRCS   K   Branch if Carry Set   if (C=0) then PC ← PC + x + 1   None     BRSH   K   Branch if Same or Higher   if (C=0) then PC ← PC + x + 1   None     BRSH   K   Branch if Fasse or Higher   if (C=0) then PC ← PC + x + 1   None     BRDL   K   Branch if Fasse or Higher   if (N = 0) then PC ← PC + x + 1   None     BRDL   K   Branch if Half Carry Flag Set   if (N = 0) then PC ← PC + x + 1   None     BRST   K   Branch if Half Carry Flag Set   if (N = 0) then PC ← PC + x + 1   None     BRTS   K   B   | RJMP      | k        | Relative Jump                          | PC ← PC + k + 1                         | None      | 2       |
| CALL   Indirect Call to (Z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IJMP      |          | Indirect Jump to (Z)                   | PC ← Z                                  | None      | 2       |
| RETI         Subroutine Return         PC ← STACK         None           RETI         Interrupt Return         PC ← STACK         I           CPSE         Rd,Rr         Compare, Styli Equal         if (Rd = Rr) PC ← PC + 2 or 3         None           CP         Rd,Rr         Compare         Rd − Rr         Z, N.V.C.H           CPC         Rd,Rr         Compare with Carry         Rd − K         Z, N.V.C.H           CPI         Rd,K         Compare Register with Immediate         Rd − K         Z, N.V.C.H           CPI         Rd,K         Compare Register with Immediate         Rd − K         Z, N.V.C.H           SBRC         Rr, b         Skip if Bit in Register Cleared         if (Rr(b)=0) PC ← PC + 2 or 3         None           SBRS         Rr, b         Skip if Bit in I/O Register is Set         if (P(b)=0) PC ← PC + 2 or 3         None           SBIS         P, b         Skip if Bit in I/O Register is Set         if (P(b)=0) PC ← PC + 2 or 3         None           BRBS         s, k         Branch if Status Flag Set         if (P(b)=0) PC ← PC + 2 or 3         None           BRBC         s, k         Branch if Status Flag Set         if (SREG(s) = 1) then PC ← PC + k + 1         None           BRBC         s, k         Branch if Status Flag Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RCALL     | k        | Relative Subroutine Call               | PC ← PC + k + 1                         | None      | 3       |
| RETI         Subroutine Return         PC ← STACK         None           RETI         Interrupt Return         PC ← STACK         I           CPSE         Rd,Rr         Compare, Styli Equal         if (Rd = Rr) PC ← PC + 2 or 3         None           CP         Rd,Rr         Compare         Rd − Rr         Z, N.V.C.H           CPC         Rd,Rr         Compare with Carry         Rd − K         Z, N.V.C.H           CPI         Rd,K         Compare Register with Immediate         Rd − K         Z, N.V.C.H           CPI         Rd,K         Compare Register with Immediate         Rd − K         Z, N.V.C.H           SBRC         Rr, b         Skip if Bit in Register Cleared         if (Rr(b)=0) PC ← PC + 2 or 3         None           SBRS         Rr, b         Skip if Bit in I/O Register is Set         if (P(b)=0) PC ← PC + 2 or 3         None           SBIS         P, b         Skip if Bit in I/O Register is Set         if (P(b)=0) PC ← PC + 2 or 3         None           BRBS         s, k         Branch if Status Flag Set         if (P(b)=0) PC ← PC + 2 or 3         None           BRBC         s, k         Branch if Status Flag Set         if (SREG(s) = 1) then PC ← PC + k + 1         None           BRBC         s, k         Branch if Status Flag Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ICALL     |          | Indirect Call to (Z)                   | PC ← Z                                  | None      | 3       |
| RETI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |          | · ·                                    | PC ← STACK                              | None      | 4       |
| CPSE         Rd,Rr         Compare, Skip if Equal         if (Rd = Rr) PC ← PC + 2 or 3         None           CP         Rd,Rr         Compare         Rd − Rr         Z, N,V,C,H           CPC         Rd,Rr         Compare with Carry         Rd − Rr − C         Z, N,V,C,H           CPI         Rd,K         Compare Register with Immediate         Rd − K         Z, N,V,C,H           SBRC         Rr, b         Skip if Bit in Register Is Set         if (R(b)=0) PC ← PC + 2 or 3         None           SBRS         Rr, b         Skip if Bit in Register Is Set         if (R(b)=1) PC ← PC + 2 or 3         None           SBIS         P, b         Skip if Bit in I/O Register Cleared         if (P(b)=0) PC ← PC + 2 or 3         None           SBRS         Rr, b         Skip if Bit in I/O Register is Set         if (P(b)=0) PC ← PC + 2 or 3         None           SBIS         P, b         Skip if Bit in I/O Register is Set         if (P(b)=0) PC ← PC + 2 or 3         None           BRBS         s, k         Branch if Status Flag Set         if (SREG(s) = 1) then PC ← PC + 2 or 3         None           BRBC         s, k         Branch if Status Flag Set         if (SREG(s) = 0) then PC ← PC + k + 1         None           BRBC         s, k         Branch if Not Equal         if (Z = 0) then PC ← PC + k + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RETI      |          |                                        | <del> </del>                            | 1         | 4       |
| CP         Rd,Rr         Compare         Rd - Rr         Z, N,V,C,H           CPC         Rd,Rr         Compare with Carry         Rd - Rr - C         Z, N,V,C,H           CPI         Rd,K         Compare Register with Immediate         Rd - K         Z, N,V,C,H           SBRC         Rr, b         Skip if Bit in Register Cleared         if (Rr(b)=0) PC ← PC + 2 or 3         None           SBRS         Rr, b         Skip if Bit in Register is Set         if (R(b)=1) PC ← PC + 2 or 3         None           SBIS         P, b         Skip if Bit in IVO Register Cleared         if (P(b)=1) PC ← PC + 2 or 3         None           SBIS         P, b         Skip if Bit in IVO Register is Set         if (P(b)=1) PC ← PC + 2 or 3         None           BRBS         s, k         Branch if Status Flag Set         if (SREG(s) = 1) then PC ← PC + k + 1         None           BRBS         s, k         Branch if Status Flag Cleared         if (SREG(s) = 0) then PC ← PC + k + 1         None           BREQ         k         Branch if Status Flag Cleared         if (Z = 0) then PC ← PC + k + 1         None           BRNE         k         Branch if Equal         if (Z = 0) then PC ← PC + k + 1         None           BRNE         k         Branch if Carry Cleared         if (C = 0) then PC ← PC + k + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CPSE      | Rd.Rr    |                                        |                                         | None      | 1/2/3   |
| CPC         Rd,Rr         Compare with Carry         Rd − Rr − C         Z, N,V,C,H           CPI         Rd,K         Compare Register with Immediate         Rd − K         Z, N,V,C,H           SBRC         Rr, b         Skipl filbt in Register Cleared         if (Rr(b)=0) PC − PC + 2 or 3         None           SBRS         Rr, b         Skipl filbt in I/O Register is Set         if (P(D)=0) PC − PC + 2 or 3         None           SBIC         P, b         Skipl filbt in I/O Register is Set         if (P(D)=1) PC − PC + 2 or 3         None           SBIS         P, b         Skipl filbt in I/O Register is Set         if (P(D)=1) PC − PC + 2 or 3         None           BRBS         s, k         Branch if Status Flag Set         if (PD)=1) PC ← PC + 2 or 3         None           BRBS         s, k         Branch if Status Flag Cleared         if (SREG(s) = 1) then PC ← PC + k + 1         None           BRBC         s, k         Branch if Status Flag Cleared         if (SREG(s) = 0) then PC ← PC + k + 1         None           BRRC         k         Branch if Status Flag Cleared         if (SREG(s) = 0) then PC ← PC + k + 1         None           BRRD         k         Branch if Status Flag Cleared         if (SREG(s) = 0) then PC ← PC + k + 1         None           BRND         k         Branch if Carr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |          |                                        | · · · · · ·                             |           | 1       |
| CPI         Rd,K         Compare Register with Immediate         Rd − K         Z, N,V,C,H           SBRC         Rr, b         Skpi fibit in Register Cleared         if (Rr(b)=0) PC ← PC + 2 or 3         None           SBRS         Rr, b         Skpi fibit in Register is Set         if (Rr(b)=1) PC ← PC + 2 or 3         None           SBIC         P, b         Skip if Bit in I/O Register Cleared         if (P(b)=1) PC ← PC + 2 or 3         None           SBIS         P, b         Skip if Bit in I/O Register is Set         if (P(b)=1) PC ← PC + 2 or 3         None           BRBS         s, k         Branch if Status Flag Set         if (P(b)=1) PC ← PC + C + 4 + 1         None           BRBC         s, k         Branch if Status Flag Set         if (SREG(s) = 1) then PC ← PC + k + 1         None           BRBC         s, k         Branch if Status Flag Set         if (SREG(s) = 0) then PC ← PC + k + 1         None           BREQ         k         Branch if Not Equal         if (Z = 0) then PC ← PC + k + 1         None           BRCO         k         Branch if Oarry Set         if (C = 1) then PC ← PC + k + 1         None           BRCO         k         Branch if Carry Cleared         if (C = 0) then PC ← PC + k + 1         None           BRSH         k         Branch if Same or Higher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | ,        |                                        |                                         |           | 1       |
| SBRC         Rr, b         Skip if Bit in Register Cleared         if (Rr(b)=0) PC ← PC + 2 or 3         None           SBRS         Rr, b         Skip if Bit in Register is Set         if (Rr(b)=1) PC ← PC + 2 or 3         None           SBIC         P, b         Skip if Bit in I/O Register Cleared         if (P(b)=0) PC ← PC + 2 or 3         None           SBIS         P, b         Skip if Bit in I/O Register is Set         if (P(b)=1) PC ← PC + 2 or 3         None           BRBS         s, k         Branch if Status Flag Set         if (SREG(s) = 1) then PC ← PC + k + 1         None           BRBC         s, k         Branch if Status Flag Cleared         if (SREG(s) = 0) then PC ← PC + k + 1         None           BRBC         k         Branch if Status Flag Cleared         if (SREG(s) = 0) then PC ← PC + k + 1         None           BRRD         k         Branch if Status Flag Cleared         if (SREG(s) = 0) then PC ← PC + k + 1         None           BRNE         k         Branch if Status Flag Cleared         if (Z = 0) then PC ← PC + k + 1         None           BRCS         k         Branch if Carry Set         if (C = 0) then PC ← PC + k + 1         None           BRCS         k         Branch if Same or Higher         if (C = 0) then PC ← PC + k + 1         None           BRSH         k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CPI       | Rd.K     |                                        | Rd – K                                  |           | 1       |
| SBRS         Rr, b         Skip if Bit in Register is Set         if (Rr(b)=1) PC ← PC + 2 or 3         None           SBIC         P, b         Skip if Bit in I/O Register Cleared         if (P(b)=0) PC ← PC + 2 or 3         None           SBIS         P, b         Skip if Bit in I/O Register is Set         if (P(b)=1) PC ← PC + 2 or 3         None           BRBS         s, k         Branch if Status Flag Set         if (SREG(s) = 1) then PC ← PC++ 1         None           BRBC         s, k         Branch if Status Flag Set         if (SREG(s) = 0) then PC ← PC++ 1         None           BRBC         s, k         Branch if Status Flag Set         if (SREG(s) = 0) then PC ← PC++ 1         None           BRRC         k         Branch if Status Flag Set         if (SREG(s) = 0) then PC ← PC++ 1         None           BRNE         k         Branch if Status Flag Set         if (Z = 1) then PC ← PC + k + 1         None           BRNE         k         Branch if Carry Set         if (C = 1) then PC ← PC + k + 1         None           BRCS         k         Branch if Carry Cleared         if (C = 0) then PC ← PC + k + 1         None           BRC         k         Branch if Same or Higher         if (C = 0) then PC ← PC + k + 1         None           BRC         k         Branch if Minus         if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | ,        |                                        |                                         |           | 1/2/3   |
| SBIC         P, b         Skip if Bit in I/O Register Cleared         if (P(b)=0) PC ← PC + 2 or 3         None           SBIS         P, b         Skip if Bit in I/O Register is Set         if (P(b)=1) PC ← PC + 2 or 3         None           BRBS         s, k         Branch if Status Flag Set         if (SREG(s) = 1) then PC ← PC + k + 1         None           BRBC         s, k         Branch if Status Flag Cleared         if (SREG(s) = 0) then PC ← PC + k + 1         None           BREQ         k         Branch if Status Flag Cleared         if (Z = 1) then PC ← PC + k + 1         None           BRNE         k         Branch if Equal         if (Z = 0) then PC ← PC + k + 1         None           BRNE         k         Branch if Cary Set         if (C = 0) then PC ← PC + k + 1         None           BRCS         k         Branch if Carry Set         if (C = 1) then PC ← PC + k + 1         None           BRCC         k         Branch if Carry Cleared         if (C = 0) then PC ← PC + k + 1         None           BRSH         k         Branch if Lower         if (C = 0) then PC ← PC + k + 1         None           BRSH         k         Branch if Lower         if (C = 1) then PC ← PC + k + 1         None           BRMI         k         Branch if Minus         if (N = 0) then PC ← PC + k + 1 <td></td> <td></td> <td></td> <td>1 1 1 1</td> <td></td> <td>1/2/3</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |          |                                        | 1 1 1 1                                 |           | 1/2/3   |
| SBIS         P, b         Skip if Bit in I/O Register is Set         if (P(b)=1) PC ← PC + 2 or 3         None           BRBS         s, k         Branch if Status Flag Set         if (SREG(s) = 1) then PC←PC+k+1         None           BRBC         s, k         Branch if Status Flag Cleared         if (SREG(s) = 0) then PC←PC+k+1         None           BREQ         k         Branch if Status Flag Cleared         if (Z=0) then PC←PC+k+1         None           BRNE         k         Branch if Not Equal         if (Z=0) then PC←PC+k+1         None           BRCS         k         Branch if Carry Set         if (C=0) then PC←PC+k+1         None           BRCC         k         Branch if Carry Cleared         if (C=0) then PC←PC+k+1         None           BRSH         k         Branch if Game or Higher         if (C=0) then PC←PC+k+1         None           BRSH         k         Branch if Lower         if (C=0) then PC←PC+k+1         None           BRNI         k         Branch if Minus         if (N=1) then PC←PC+k+1         None           BRNI         k         Branch if Plus         if (N=0) then PC←PC+k+1         None           BRPL         k         Branch if Plus         if (N=0) then PC←PC+k+1         None           BRIT         k <td< td=""><td>SBIC</td><td></td><td></td><td>` ' ' '</td><td>None</td><td>1/2/3</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SBIC      |          |                                        | ` ' ' '                                 | None      | 1/2/3   |
| BRBS         s, k         Branch if Status Flag Set         if (SREG(s) = 1) then PC←PC+k+1         None           BRBC         s, k         Branch if Status Flag Cleared         if (SREG(s) = 0) then PC←PC+k+1         None           BREQ         k         Branch if Equal         if (Z = 1) then PC ← PC + k+1         None           BRNE         k         Branch if Not Equal         if (Z = 0) then PC ← PC + k+1         None           BRCS         k         Branch if Carry Set         if (C = 1) then PC ← PC + k+1         None           BRCC         k         Branch if Carry Cleared         if (C = 0) then PC ← PC + k+1         None           BRSH         k         Branch if Same or Higher         if (C = 0) then PC ← PC + k+1         None           BRLO         k         Branch if Lower         if (C = 0) then PC ← PC + k+1         None           BRMI         k         Branch if Minus         if (N = 1) then PC ← PC + k+1         None           BRPL         k         Branch if Greater or Equal, Signed         if (N = 0) then PC ← PC + k+1         None           BRLT         k         Branch if Greater or Equal, Signed         if (N ⊕ P 1) then PC ← PC + k+1         None           BRHS         k         Branch if Greater or Equal, Signed         if (N ⊕ P 1) then PC ← PC + k+1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>1/2/3</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |          |                                        |                                         |           | 1/2/3   |
| BRBC         s, k         Branch if Status Flag Cleared         if (SREG(s) = 0) then PC←PC+k+1         None           BREQ         k         Branch if Equal         if (Z = 1) then PC ← PC + k + 1         None           BRNE         k         Branch if Not Equal         if (Z = 0) then PC ← PC + k + 1         None           BRCS         k         Branch if Carry Set         if (C = 1) then PC ← PC + k + 1         None           BRCC         k         Branch if Carry Cleared         if (C = 0) then PC ← PC + k + 1         None           BRSH         k         Branch if Same or Higher         if (C = 0) then PC ← PC + k + 1         None           BRLO         k         Branch if Lower         if (C = 0) then PC ← PC + k + 1         None           BRMI         k         Branch if Minus         if (N = 1) then PC ← PC + k + 1         None           BRPL         k         Branch if Oreater or Equal, Signed         if (N = 0) then PC ← PC + k + 1         None           BRGE         k         Branch if Less Than Zero, Signed         if (N ⊕ V = 0) then PC ← PC + k + 1         None           BRHS         k         Branch if Half Carry Flag Set         if (H = 1) then PC ← PC + k + 1         None           BRHS         k         Branch if T Flag Set         if (T = 1) then PC ← PC + k + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | ·        |                                        | 1 1 1                                   |           | 1/2     |
| BREQ         k         Branch if Equal         if (Z = 1) then PC ← PC + k + 1         None           BRNE         k         Branch if Not Equal         if (Z = 0) then PC ← PC + k + 1         None           BRCS         k         Branch if Carry Set         if (C = 1) then PC ← PC + k + 1         None           BRCC         k         Branch if Carry Cleared         if (C = 0) then PC ← PC + k + 1         None           BRSH         k         Branch if Same or Higher         if (C = 0) then PC ← PC + k + 1         None           BRLO         k         Branch if Lower         if (C = 1) then PC ← PC + k + 1         None           BRMI         k         Branch if Minus         if (N = 1) then PC ← PC + k + 1         None           BRPL         k         Branch if Greater or Equal, Signed         if (N = 0) then PC ← PC + k + 1         None           BRGE         k         Branch if Greater or Equal, Signed         if (N = 0) then PC ← PC + k + 1         None           BRHT         k         Branch if Greater or Equal, Signed         if (N = V = 1) then PC ← PC + k + 1         None           BRHS         k         Branch if Jersey Flag         if (N = V = 1) then PC ← PC + k + 1         None           BRHS         k         Branch if Half Carry Flag Cleared         if (H = 1) then PC ← PC + k +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |          | 0                                      | , , , ,                                 |           | 1/2     |
| BRNE         k         Branch if Not Equal         if (Z = 0) then PC ← PC + k + 1         None           BRCS         k         Branch if Carry Set         if (C = 1) then PC ← PC + k + 1         None           BRCC         k         Branch if Carry Cleared         if (C = 0) then PC ← PC + k + 1         None           BRSH         k         Branch if Same or Higher         if (C = 0) then PC ← PC + k + 1         None           BRLO         k         Branch if Lower         if (C = 1) then PC ← PC + k + 1         None           BRMI         k         Branch if Minus         if (N = 1) then PC ← PC + k + 1         None           BRPL         k         Branch if Greater or Equal, Signed         if (N = 0) then PC ← PC + k + 1         None           BRGE         k         Branch if Greater or Equal, Signed         if (N ⊕ V = 0) then PC ← PC + k + 1         None           BRLT         k         Branch if Jess Than Zero, Signed         if (N ⊕ V = 0) then PC ← PC + k + 1         None           BRHS         k         Branch if Half Carry Flag Set         if (H = 1) then PC ← PC + k + 1         None           BRHC         k         Branch if Half Carry Flag Cleared         if (H = 0) then PC ← PC + k + 1         None           BRTS         k         Branch if T Flag Set         if (T = 1) then PC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |          | •                                      | 1 1 1                                   |           | 1/2     |
| BRCS         k         Branch if Carry Set         if (C = 1) then PC ← PC + k + 1         None           BRCC         k         Branch if Carry Cleared         if (C = 0) then PC ← PC + k + 1         None           BRSH         k         Branch if Same or Higher         if (C = 0) then PC ← PC + k + 1         None           BRLO         k         Branch if Lower         if (C = 1) then PC ← PC + k + 1         None           BRMI         k         Branch if Hower         if (N = 1) then PC ← PC + k + 1         None           BRMI         k         Branch if Minus         if (N = 1) then PC ← PC + k + 1         None           BRPL         k         Branch if Minus         if (N = 1) then PC ← PC + k + 1         None           BRGE         k         Branch if Greater or Equal, Signed         if (N = 0) then PC ← PC + k + 1         None           BRLT         k         Branch if Less Than Zero, Signed         if (N ⊕ V = 0) then PC ← PC + k + 1         None           BRHS         k         Branch if Half Carry Flag Set         if (H = 1) then PC ← PC + k + 1         None           BRHC         k         Branch if Tag Set         if (H = 0) then PC ← PC + k + 1         None           BRTS         k         Branch if Tag Set         if (T = 1) then PC ← PC + k + 1         None </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>1/2</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |          |                                        |                                         |           | 1/2     |
| BRCC         k         Branch if Carry Cleared         if (C = 0) then PC ← PC + k + 1         None           BRSH         k         Branch if Same or Higher         if (C = 0) then PC ← PC + k + 1         None           BRLO         k         Branch if Lower         if (C = 1) then PC ← PC + k + 1         None           BRMI         k         Branch if Minus         if (N = 1) then PC ← PC + k + 1         None           BRPL         k         Branch if Plus         if (N = 0) then PC ← PC + k + 1         None           BRGE         k         Branch if Greater or Equal, Signed         if (N ⊕ V = 0) then PC ← PC + k + 1         None           BRLT         k         Branch if Less Than Zero, Signed         if (N ⊕ V = 1) then PC ← PC + k + 1         None           BRHS         k         Branch if Half Carry Flag Set         if (H = 1) then PC ← PC + k + 1         None           BRHC         k         Branch if Tag Set         if (T = 0) then PC ← PC + k + 1         None           BRTS         k         Branch if T Flag Set         if (T = 0) then PC ← PC + k + 1         None           BRTC         k         Branch if Overflow Flag is Set         if (Y = 0) then PC ← PC + k + 1         None           BRVS         k         Branch if Overflow Flag is Cleared         if (Y = 0) then PC ← PC + k +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |          |                                        | , ,                                     |           | 1/2     |
| BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None BRMI k Branch if Plus if (N = 0) then PC ← PC + k + 1 None BRPL k Branch if Greater or Equal, Signed if (N = 0) then PC ← PC + k + 1 None BRLT k Branch if Less Than Zero, Signed if (N ⊕ V = 0) then PC ← PC + k + 1 None BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None BRTC k Branch if T Flag Set if (T = 0) then PC ← PC + k + 1 None BRTC k Branch if Overflow Flag is Set if (V = 0) then PC ← PC + k + 1 None BRVS k Branch if Overflow Flag is Set if (V = 0) then PC ← PC + k + 1 None BRVS k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None BRTC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None BRTC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None BRTC k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None BRTC k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None BRTC k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None BRTC k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None BRTC k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None BRTC k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None BRTC k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None BRTC BRTCHONS                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |          | •                                      | ` ′                                     |           | 1/2     |
| BRLO         k         Branch if Lower         if (C = 1) then PC ← PC + k + 1         None           BRMI         k         Branch if Minus         if (N = 1) then PC ← PC + k + 1         None           BRPL         k         Branch if Plus         if (N = 0) then PC ← PC + k + 1         None           BRGE         k         Branch if Greater or Equal, Signed         if (N ⊕ V = 0) then PC ← PC + k + 1         None           BRLT         k         Branch if Less Than Zero, Signed         if (N ⊕ V = 1) then PC ← PC + k + 1         None           BRHS         k         Branch if Half Carry Flag Set         if (H = 1) then PC ← PC + k + 1         None           BRHC         k         Branch if Half Carry Flag Cleared         if (T = 0) then PC ← PC + k + 1         None           BRTS         k         Branch if T Flag Set         if (T = 1) then PC ← PC + k + 1         None           BRTC         k         Branch if T Flag Cleared         if (T = 0) then PC ← PC + k + 1         None           BRVS         k         Branch if Overflow Flag is Set         if (V = 1) then PC ← PC + k + 1         None           BRVC         k         Branch if Interrupt Enabled         if (I = 1) then PC ← PC + k + 1         None           BRIE         k         Branch if Interrupt Disabled         if (I = 0) then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |          |                                        | 1 ,                                     |           | 1/2     |
| BRMI         k         Branch if Minus         if (N = 1) then PC ← PC + k + 1         None           BRPL         k         Branch if Plus         if (N = 0) then PC ← PC + k + 1         None           BRGE         k         Branch if Greater or Equal, Signed         if (N ⊕ V = 0) then PC ← PC + k + 1         None           BRLT         k         Branch if Less Than Zero, Signed         if (N ⊕ V = 1) then PC ← PC + k + 1         None           BRHS         k         Branch if Half Carry Flag Set         if (H = 1) then PC ← PC + k + 1         None           BRHC         k         Branch if Half Carry Flag Cleared         if (H = 0) then PC ← PC + k + 1         None           BRTS         k         Branch if T Flag Set         if (T = 1) then PC ← PC + k + 1         None           BRTC         k         Branch if T Flag Cleared         if (T = 0) then PC ← PC + k + 1         None           BRVS         k         Branch if Overflow Flag is Set         if (V = 1) then PC ← PC + k + 1         None           BRVC         k         Branch if Overflow Flag is Cleared         if (V = 1) then PC ← PC + k + 1         None           BRIE         k         Branch if Interrupt Enabled         if (I = 1) then PC ← PC + k + 1         None           BRID         k         Branch if Interrupt Disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |          | 3                                      | <u> </u>                                |           | 1/2     |
| BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None BRGE k Branch if Greater or Equal, Signed if (N ⊕ V = 0) then PC ← PC + k + 1 None BRLT k Branch if Less Than Zero, Signed if (N ⊕ V = 1) then PC ← PC + k + 1 None BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None BRID k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None BRID K Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None BRIT AND BIT-TEST INSTRUCTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |          |                                        | 1                                       |           | 1/2     |
| BRGE k Branch if Greater or Equal, Signed if (N ⊕ V = 0) then PC ← PC + k + 1 None  BRLT k Branch if Less Than Zero, Signed if (N ⊕ V = 1) then PC ← PC + k + 1 None  BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None  BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None  BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None  BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None  BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None  BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None  BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None  BRID k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None  BIT AND BIT-TEST INSTRUCTIONS  SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |          |                                        | 1                                       |           | 1/2     |
| BRLT k Branch if Less Than Zero, Signed if (N ⊕ V = 1) then PC ← PC + k + 1 None  BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None  BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None  BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None  BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None  BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None  BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None  BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None  BRID k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None  BIT AND BIT-TEST INSTRUCTIONS  SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |          |                                        | , , ,                                   |           | 1/2     |
| BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None  BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None  BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None  BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None  BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None  BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None  BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None  BRID k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None  BIT AND BIT-TEST INSTRUCTIONS  SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |          |                                        | ,                                       |           | 1/2     |
| BRHC       k       Branch if Half Carry Flag Cleared       if (H = 0) then PC ← PC + k + 1       None         BRTS       k       Branch if T Flag Set       if (T = 1) then PC ← PC + k + 1       None         BRTC       k       Branch if T Flag Cleared       if (T = 0) then PC ← PC + k + 1       None         BRVS       k       Branch if Overflow Flag is Set       if (V = 1) then PC ← PC + k + 1       None         BRVC       k       Branch if Overflow Flag is Cleared       if (V = 0) then PC ← PC + k + 1       None         BRIE       k       Branch if Interrupt Enabled       if (I = 1) then PC ← PC + k + 1       None         BRID       k       Branch if Interrupt Disabled       if (I = 0) then PC ← PC + k + 1       None         BIT AND BIT-TEST INSTRUCTIONS         SBI       P,b       Set Bit in I/O Register       I/O(P,b) ← 1       None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |                                        |                                         |           | 1/2     |
| BRTS       k       Branch if T Flag Set       if (T = 1) then PC ← PC + k + 1       None         BRTC       k       Branch if T Flag Cleared       if (T = 0) then PC ← PC + k + 1       None         BRVS       k       Branch if Overflow Flag is Set       if (V = 1) then PC ← PC + k + 1       None         BRVC       k       Branch if Overflow Flag is Cleared       if (V = 0) then PC ← PC + k + 1       None         BRIE       k       Branch if Interrupt Enabled       if (I = 1) then PC ← PC + k + 1       None         BRID       k       Branch if Interrupt Disabled       if (I = 0) then PC ← PC + k + 1       None         BIT AND BIT-TEST INSTRUCTIONS         SBI       P,b       Set Bit in I/O Register       I/O(P,b) ← 1       None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |          |                                        |                                         |           | 1/2     |
| BRTC     k     Branch if T Flag Cleared     if (T = 0) then PC ← PC + k + 1     None       BRVS     k     Branch if Overflow Flag is Set     if (V = 1) then PC ← PC + k + 1     None       BRVC     k     Branch if Overflow Flag is Cleared     if (V = 0) then PC ← PC + k + 1     None       BRIE     k     Branch if Interrupt Enabled     if (I = 1) then PC ← PC + k + 1     None       BRID     k     Branch if Interrupt Disabled     if (I = 0) then PC ← PC + k + 1     None       BIT AND BIT-TEST INSTRUCTIONS       SBI     P,b     Set Bit in I/O Register     I/O(P,b) ← 1     None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |          |                                        | ` '                                     |           | 1/2     |
| BRVS k Branch if Overflow Flag is Set if $(V = 1)$ then $PC \leftarrow PC + k + 1$ None BRVC k Branch if Overflow Flag is Cleared if $(V = 0)$ then $PC \leftarrow PC + k + 1$ None BRIE k Branch if Interrupt Enabled if $(I = 1)$ then $PC \leftarrow PC + k + 1$ None BRID k Branch if Interrupt Disabled if $(I = 0)$ then $PC \leftarrow PC + k + 1$ None BIT AND BIT-TEST INSTRUCTIONS  SBI P,b Set Bit in I/O Register I/O(P,b) $\leftarrow$ 1 None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |          |                                        | 1 /                                     |           | 1/2     |
| BRVC     k     Branch if Overflow Flag is Cleared     if (V = 0) then PC $\leftarrow$ PC + k + 1     None       BRIE     k     Branch if Interrupt Enabled     if (I = 1) then PC $\leftarrow$ PC + k + 1     None       BRID     k     Branch if Interrupt Disabled     if (I = 0) then PC $\leftarrow$ PC + k + 1     None       BIT AND BIT-TEST INSTRUCTIONS       SBI     P,b     Set Bit in I/O Register     I/O(P,b) $\leftarrow$ 1     None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |          |                                        |                                         |           | 1/2     |
| BRIE     k     Branch if Interrupt Enabled     if (I = 1) then PC $\leftarrow$ PC + k + 1     None       BRID     k     Branch if Interrupt Disabled     if (I = 0) then PC $\leftarrow$ PC + k + 1     None       BIT AND BIT-TEST INSTRUCTIONS       SBI     P,b     Set Bit in I/O Register     I/O(P,b) $\leftarrow$ 1     None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |          |                                        | 1                                       |           | 1/2     |
| BRID         k         Branch if Interrupt Disabled         if (I = 0) then PC ← PC + k + 1         None           BIT AND BIT-TEST INSTRUCTIONS         SBI         P,b         Set Bit in I/O Register         I/O(P,b) ← 1         None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |          | •                                      | ` '                                     |           | 1/2     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |          |                                        | ` '                                     |           | 1/2     |
| SBI P,b Set Bit in I/O Register $I/O(P,b) \leftarrow 1$ None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | סואוט     |          |                                        | 11 (1 - 0) alon FO + FO + K + 1         | I MOLIC   | 1/2     |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SRI       |          |                                        | I/O/P h) ← 1                            | None      | 2       |
| CBI P,b Clear Bit in I/O Register $I/O(P,b) \leftarrow 0$ None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |                                        |                                         |           | 2       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |          |                                        |                                         |           | 1       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |          | ,                                      |                                         |           |         |
| LSR Rd Logical Shift Right Rd(n) $\leftarrow$ Rd(n+1), Rd(7) $\leftarrow$ 0 Z,C,N,V ROL Rd Rotate Left Through Carry Rd(0) $\leftarrow$ C,Rd(n+1) $\leftarrow$ Rd(n),C $\leftarrow$ Rd(7) Z,C,N,V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |          |                                        | ` ' ` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' |           | 1       |



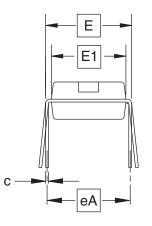
# **Ordering Information**

| Speed (MHz) (3) | Power Supply (V) | Ordering Code (4)                                                                                                                              | Package <sup>(2)</sup>                                    | Operation Range                               |
|-----------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------|
| 10              | 1.8 - 5.5        | ATtiny13V-10PU ATtiny13V-10SU ATtiny13V-10SUR ATtiny13V-10SSU ATtiny13V-10SSUR ATtiny13V-10MU ATtiny13V-10MUR ATtiny13V-10MMU ATtiny13V-10MMUR | 8P3<br>8S2<br>8S2<br>S8S1<br>S8S1<br>20M1<br>20M1<br>10M1 | Industrial<br>(-40°C to +85°C) <sup>(1)</sup> |
| 20              | 2.7 - 5.5        | ATtiny13-20PU ATtiny13-20SU ATtiny13-20SUR ATtiny13-20SSU ATtiny13-20SSUR ATtiny13-20MU ATtiny13-20MUR ATtiny13-20MMU ATtiny13-20MMUR          | 8P3<br>8S2<br>8S2<br>S8S1<br>S8S1<br>20M1<br>20M1<br>10M1 | Industrial<br>(-40°C to +85°C) <sup>(1)</sup> |

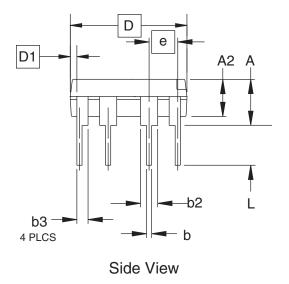
- Notes: 1. These devices can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
  - 2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazardous Substances (RoHS).
  - 3. For Speed vs.  $V_{CC}$ , see "Speed Grades" on page 117.
  - 4. Code indicators:
- U: matte tin
- R: tape & reel


| Package Type |                                                                                 |  |  |  |
|--------------|---------------------------------------------------------------------------------|--|--|--|
| 8P3          | 8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)                         |  |  |  |
| 8S2          | 8-lead, 0.209" Wide, Plastic Small Outline Package (EIAJ SOIC)                  |  |  |  |
| S8S1         | 8-lead, 0.150" Wide, Plastic Gull-Wing Small Outline (JEDEC SOIC)               |  |  |  |
| 20M1         | 20-pad, 4 x 4 x 0.8 mm Body, Lead Pitch 0.50 mm, Micro Lead Frame Package (MLF) |  |  |  |
| 10M1         | 10-pad, 3 x 3 x 1 mm Body, Lead Pitch 0.50 mm, Micro Lead Frame Package (MLF)   |  |  |  |






# **Packaging Information**


#### 7.1 8P3



Top View

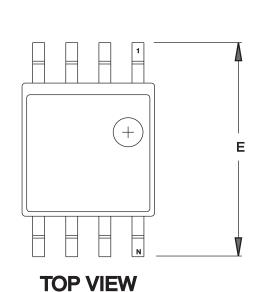


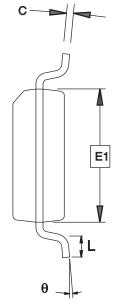
**End View** 



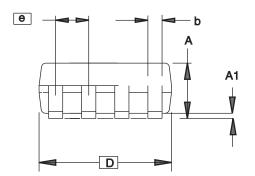
# **COMMON DIMENSIONS**

(Unit of Measure = inches)


| SYMBOL | MIN       | NOM   | MAX   | NOTE |
|--------|-----------|-------|-------|------|
| А      |           |       | 0.210 | 2    |
| A2     | 0.115     | 0.130 | 0.195 |      |
| b      | 0.014     | 0.018 | 0.022 | 5    |
| b2     | 0.045     | 0.060 | 0.070 | 6    |
| b3     | 0.030     | 0.039 | 0.045 | 6    |
| С      | 0.008     | 0.010 | 0.014 |      |
| D      | 0.355     | 0.365 | 0.400 | 3    |
| D1     | 0.005     |       |       | 3    |
| Е      | 0.300     | 0.310 | 0.325 | 4    |
| E1     | 0.240     | 0.250 | 0.280 | 3    |
| е      | 0.100 BSC |       |       |      |
| eA     | 0.300 BSC |       |       | 4    |
| L      | 0.115     | 0.130 | 0.150 | 2    |


- This drawing is for general information only; refer to JEDEC Drawing MS-001, Variation BA for additional information.
   Dimensions A and L are measured with the package seated in JEDEC seating plane Gauge GS-3.
- 3. D, D1 and E1 dimensions do not include mold Flash or protrusions. Mold Flash or protrusions shall not exceed 0.010 inch.
- 4. E and eA measured with the leads constrained to be perpendicular to datum.
- 5. Pointed or rounded lead tips are preferred to ease insertion.
- 6. b2 and b3 maximum dimensions do not include Dambar protrusions. Dambar protrusions shall not exceed 0.010 (0.25 mm).

01/09/02


| 1 |                                            | TITLE                                                              | DRAWING NO. | REV. | ı |
|---|--------------------------------------------|--------------------------------------------------------------------|-------------|------|---|
| ĺ | 2325 Orchard Parkway<br>San Jose, CA 95131 | 8P3, 8-lead, 0.300" Wide Body, Plastic Dual In-line Package (PDIP) | 8P3         | В    |   |

#### 7.2 **8S2**





# **END VIEW**



| SYMBOL | MIN  | NOM      | MAX  | NOTE |
|--------|------|----------|------|------|
| Α      | 1.70 |          | 2.16 |      |
| A1     | 0.05 |          | 0.25 |      |
| b      | 0.35 |          | 0.48 | 4    |
| С      | 0.15 |          | 0.35 | 4    |
| D      | 5.13 |          | 5.35 |      |
| E1     | 5.18 |          | 5.40 | 2    |
| E      | 7.70 |          | 8.26 |      |
| L      | 0.51 |          | 0.85 |      |
| θ      | 0°   |          | 8°   |      |
| е      |      | 1.27 BSC |      | 3    |

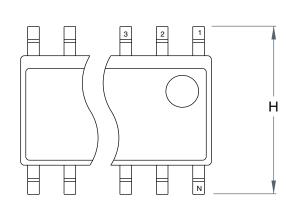
**COMMON DIMENSIONS** (Unit of Measure = mm)

# **SIDE VIEW**

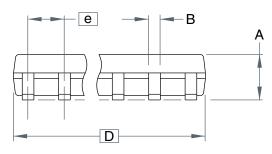
- Notes: 1. This drawing is for general information only; refer to EIAJ Drawing EDR-7320 for additional information.

  2. Mismatch of the upper and lower dies and resin burrs aren't included.

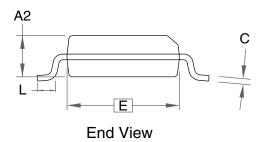
  - Determines the true geometric position.
     Values b,C apply to plated terminal. The standard thickness of the plating layer shall measure between 0.007 to .021 mm.


4/15/08

|                                                    | IIILE                                                             | GPC | DRAWING NO. | KEV. | ı |
|----------------------------------------------------|-------------------------------------------------------------------|-----|-------------|------|---|
| Package Drawing Contact: packagedrawings@atmel.com | 8S2, 8-lead, 0.208" Body, Plastic Small<br>Outline Package (EIAJ) | STN | 8S2         | F    |   |







#### 7.3 **S8S1**



Top View

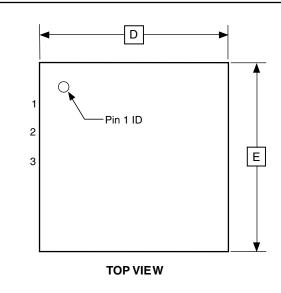


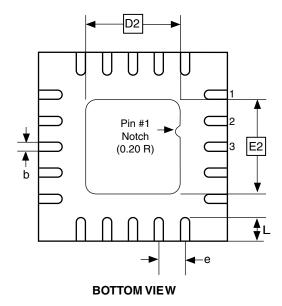
Side View



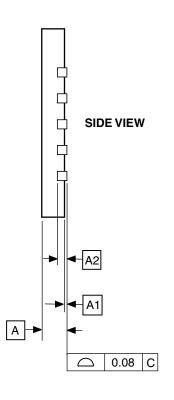
# **COMMON DIMENSIONS**

(Unit of Measure = mm)


| SYMBOL | MIN | NOM      | MAX  | NOTE |
|--------|-----|----------|------|------|
| Α      | _   | _        | 1.75 |      |
| В      | _   | _        | 0.51 |      |
| С      | _   | _        | 0.25 |      |
| D      | _   | _        | 5.00 |      |
| Е      | _   | _        | 4.00 |      |
| е      |     | 1.27 BSC |      |      |
| Н      | _   | _        | 6.20 |      |
| L      | _   | _        | 1.27 |      |


Note: This drawing is for general information only. Refer to JEDEC Drawing MS-012 for proper dimensions, tolerances, datums, etc.

10/10/01


| <u>AMEL</u> | 2325 Orchard Parkway<br>San Jose, CA 95131 | 8S1, 8-lead (0.150" Wide Body), Plastic Gull Wing Small Outline (JEDEC SOIC) | 8S1 | REV. |  |
|-------------|--------------------------------------------|------------------------------------------------------------------------------|-----|------|--|
|-------------|--------------------------------------------|------------------------------------------------------------------------------|-----|------|--|

# 7.4 20M1





Note: Reference JEDEC Standard MO-220, Fig. 1 (SAW Singulation) WGGD-5.



# COMMON DIMENSIONS

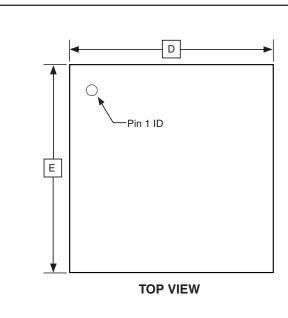
(Unit of Measure = mm)

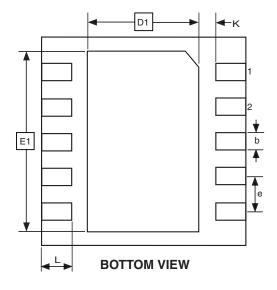
| SYMBOL | MIN      | NOM      | MAX  | NOTE |
|--------|----------|----------|------|------|
| Α      | 0.70     | 0.75     | 0.80 |      |
| A1     | _        | 0.01     | 0.05 |      |
| A2     |          | 0.20 REF |      |      |
| b      | 0.18     | 0.23     | 0.30 |      |
| D      |          | 4.00 BSC |      |      |
| D2     | 2.45     | 2.60     | 2.75 |      |
| Е      |          | 4.00 BSC |      |      |
| E2     | 2.45     | 2.60     | 2.75 |      |
| е      | 0.50 BSC |          |      |      |
| L      | 0.35     | 0.40     | 0.55 |      |

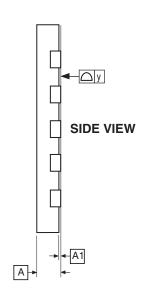
10/27/04



2325 Orchard Parkway San Jose, CA 95131 **TITLE 20M1**, 20-pad, 4 x 4 x 0.8 mm Body, Lead Pitch 0.50 mm, 2.6 mm Exposed Pad, Micro Lead Frame Package (MLF)


DRAWING NO. 20M1


REV.






#### 7.5 10M1







### **COMMON DIMENSIONS** (Unit of Measure = mm)

| SYMBOL | MIN  | NOM  | MAX  | NOTE |
|--------|------|------|------|------|
| Α      | 0.80 | 0.90 | 1.00 |      |
| A1     | 0.00 | 0.02 | 0.05 |      |
| b      | 0.18 | 0.25 | 0.30 |      |
| D      | 2.90 | 3.00 | 3.10 |      |
| D1     | 1.40 | _    | 1.75 |      |
| Е      | 2.90 | 3.00 | 3.10 |      |
| E1     | 2.20 | _    | 2.70 |      |
| е      | 0.50 |      |      |      |
| L      | 0.30 | _    | 0.50 |      |
| у      | _    | _    | 0.08 |      |
| K      | 0.20 | _    | _    |      |

Notes: 1. This package conforms to JEDEC reference MO-229C, Variation VEED-5.

2. The terminal #1 ID is a Lasser-marked Feature.

7/7/06

| 4 mei   |
|---------|
| AIIIIEL |
|         |

2325 Orchard Parkway San Jose, CA 95131

**10M1**, 10-pad, 3 x 3 x 1.0 mm Body, Lead Pitch 0.50 mm, 1.64 x 2.60 mm Exposed Pad, Micro Lead Frame Package DRAWING NO. REV. 10M1

Α

# 8. Errata

The revision letter in this section refers to the revision of the ATtiny13 device.

# 8.1 ATtiny13 Rev. D

EEPROM can not be written below 1.9 Volt

# 1. EEPROM can not be written below 1.9 Volt

Writing the EEPROM at V<sub>CC</sub> below 1.9 volts might fail.

#### Problem Fix/Workaround

Do not write the EEPROM when  $V_{CC}$  is below 1.9 volts.

# 8.2 ATtiny13 Rev. C

Revision C has not been sampled.

# 8.3 ATtiny13 Rev. B

- · Wrong values read after Erase Only operation
- High Voltage Serial Programming Flash, EEPROM, Fuse and Lock Bits may fail
- · Device may lock for further programming
- · debugWIRE communication not blocked by lock-bits
- Watchdog Timer Interrupt disabled
- EEPROM can not be written below 1.9 Volt

# 8.3.1 Wrong values read after Erase Only operation

At supply voltages below 2.7 V, an EEPROM location that is erased by the Erase Only operation may read as programmed (0x00).

#### Problem Fix/Workaround

If it is necessary to read an EEPROM location after Erase Only, use an Atomic Write operation with 0xFF as data in order to erase a location. In any case, the Write Only operation can be used as intended. Thus no special considerations are needed as long as the erased location is not read before it is programmed.

# 8.3.2 High Voltage Serial Programming Flash, EEPROM, Fuse and Lock Bits may fail

Writing to any of these locations and bits may in some occasions fail.

# Problem Fix/Workaround

After a writing has been initiated, always observe the RDY/BSY signal. If the writing should fail, rewrite until the RDY/BSY verifies a correct writing. This will be fixed in revision D.

### 8.3.3 Device may lock for further programming

Special combinations of fuse bits will lock the device for further programming effectively turning it into an OTP device. The following combinations of settings/fuse bits will cause this effect:

- 128 kHz internal oscillator (CKSEL[1..0] = 11), shortest start-up time
   (SUT[1..0] = 00), Debugwire enabled (DWEN = 0) or Reset disabled RSTDISBL = 0.
- 9.6 MHz internal oscillator (CKSEL[1..0] = 10), shortest start-up time
   (SUT[1..0] = 00), Debugwire enabled (DWEN = 0) or Reset disabled RSTDISBL = 0.





4.8 MHz internal oscillator (CKSEL[1..0] = 01), shortest start-up time
 (SUT[1..0] = 00), Debugwire enabled (DWEN = 0) or Reset disabled RSTDISBL = 0.

### Problem fix/ Workaround

Avoid the above fuse combinations. Selecting longer start-up time will eliminate the problem.

# 8.3.4 debugWIRE communication not blocked by lock-bits

When debugWIRE on-chip debug is enabled (DWEN = 0), the contents of program memory and EEPROM data memory can be read even if the lock-bits are set to block further reading of the device.

#### Problem fix/ Workaround

Do not ship products with on-chip debug of the tiny13 enabled.

# 8.3.5 Watchdog Timer Interrupt disabled

If the watchdog timer interrupt flag is not cleared before a new timeout occurs, the watchdog will be disabled, and the interrupt flag will automatically be cleared. This is only applicable in interrupt only mode. If the Watchdog is configured to reset the device in the watchdog timeout following an interrupt, the device works correctly.

### Problem fix / Workaround

Make sure there is enough time to always service the first timeout event before a new watchdog timeout occurs. This is done by selecting a long enough time-out period.

# 8.3.6 EEPROM can not be written below 1.9 Volt

Writing the EEPROM at  $V_{\text{CC}}$  below 1.9 volts might fail.

#### Problem Fix/Workaround

Do not write the EEPROM when  $V_{CC}$  is below 1.9 volts.

# 8.4 ATtiny13 Rev. A

Revision A has not been sampled.

# Datasheet Revision History

Please note that the referring page numbers in this section refer to the complete document.

# 9.1 Rev. 2535J-08/10

Added tape and reel part numbers in "Ordering Information" on page 160. Removed text "Not recommended for new design" from cover page. Updated last page.

# 9.2 Rev. 2535I-05/08

- 1. Updated document template, layout and paragraph formats.
- 2. Updated "Features" on page 1.
- 3. Created Sections:
  - "Calibrated Internal RC Oscillator Accuracy" on page 118
  - "Analog Comparator Characteristics" on page 119
- 4. Updated Sections:
  - "System Clock and Clock Options" on page 23
  - "Calibrated Internal 4.8/9.6 MHz Oscillator" on page 25
  - "External Interrupts" on page 45
  - "Analog Noise Canceling Techniques" on page 88
  - "Limitations of debugWIRE" on page 96
  - "Reading Fuse and Lock Bits from Firmware" on page 99
  - "Fuse Bytes" on page 103
  - "Calibration Bytes" on page 104
  - "High-Voltage Serial Programming" on page 108
  - "Ordering Information" on page 160
- 5. Updated Figure:
  - "Analog Input Circuitry" on page 87
  - "High-voltage Serial Programming Timing" on page 122
- Moved Figures:
  - "Serial Programming Timing" on page 121
  - "Serial Programming Waveform" on page 121
  - "High-voltage Serial Programming Timing" on page 122
- 7. Updated Tables:
  - "DC Characteristics,  $T_A = -40$  °C to +85 °C" on page 115
  - "Serial Programming Characteristics,  $T_A$  = -40°C to +85°C,  $V_{CC}$  = 1.8 5.5V (Unless Otherwise Noted)" on page 121
- 8. Moved Tables:
  - "Serial Programming Instruction Set" on page 107
  - "Serial Programming Characteristics,  $T_A$  = -40°C to +85°C,  $V_{CC}$  = 1.8 5.5V (Unless Otherwise Noted)" on page 121
  - "High-voltage Serial Programming Characteristics  $T_A$  = 25°C,  $V_{CC}$  = 5.0V  $\pm$  10% (Unless otherwise noted)" on page 122
- 9. Updated Register Description for Sections:





- "TCCR0A Timer/Counter Control Register A" on page 69
- "DIDR0 Digital Input Disable Register 0" on page 94
- 10. Updated description in Step 1. on page 106.
- 11. Changed device status to "Not Recommended for New Designs".

# 9.3 Rev. 2535H-10/07

- 1. Updated "Features" on page 1.
- 2. Updated "Pin Configurations" on page 2.
- 3. Added "Data Retention" on page 6.
- 4. Updated "Assembly Code Example<sup>(1)</sup>" on page 39.
- 5. Updated Table 21 in "Alternate Functions of Port B" on page 54.
- 6. Updated Bit 5 description in "GIMSK General Interrupt Mask Register" on page 46.
- 7. Updated "ADC Voltage Reference" on page 87.
- 8. Updated "Calibration Bytes" on page 104.
- 9. Updated "Read Calibration Byte" on page 108.
- 10. Updated Table 51 in "Serial Programming Characteristics" on page 121.
- 11. Updated Algorithm in "High-Voltage Serial Programming Algorithm" on page 109.
- 12. Updated "Read Calibration Byte" on page 112.
- 13. Updated values in "External Clock Drive" on page 118.
- 14. Updated "Ordering Information" on page 160.
- 15. Updated "Packaging Information" on page 161.

# 9.4 Rev. 2535G-01/07

- 1. Removed Preliminary.
- 2. Updated Table 7-1 on page 30, Table 8-1 on page 42, Table 18-8 on page 121.
- 3. Removed Note from Table 7-1 on page 30.
- 4. Updated "Bit 6 ACBG: Analog Comparator Bandgap Select" on page 79.
- 5. Updated "Prescaling and Conversion Timing" on page 83.
- 6. Updated Figure 18-4 on page 121.
- 7. Updated "DC Characteristics" on page 115.
- 8. Updated "Ordering Information" on page 160.
- 9. Updated "Packaging Information" on page 161.

### 9.5 Rev. 2535F-04/06

1. Revision not published.

# 9.6 Rev. 2535E-10/04

- 1. Bits EEMWE/EEWE changed to EEMPE/EEPE in document.
- 2. Updated "Pinout ATtiny13/ATtiny13V" on page 2.
- 3. Updated "Write Fuse Low Bits" in Table 17-13 on page 110, Table 18-3 on page 118.
- 2. Added "Pin Change Interrupt Timing" on page 45.
- 4. Updated "GIMSK General Interrupt Mask Register" on page 46.
- 5. Updated "PCMSK Pin Change Mask Register" on page 47.
- 6. Updated item 4 in "Serial Programming Algorithm" on page 106.
- 7. Updated "High-Voltage Serial Programming Algorithm" on page 109.

- 8. Updated "DC Characteristics" on page 115.
- 9. Updated "Typical Characteristics" on page 122.
- 10. Updated "Ordering Information" on page 160.
- 11. Updated "Packaging Information" on page 161.
- 12. Updated "Errata" on page 166.

### 9.7 Rev. 2535D-04/04

- 1. Maximum Speed Grades changed: 12MHz to 10MHz, 24MHz to 20MHz
- 2. Updated "Serial Programming Instruction Set" on page 107.
- 3. Updated "Speed Grades" on page 117
- 4. Updated "Ordering Information" on page 160

### 9.8 Rev. 2535C-02/04

- 1. C-code examples updated to use legal IAR syntax.
- 2. Replaced occurrences of WDIF with WDTIF and WDIE with WDTIE.
- 3. Updated "Stack Pointer" on page 11.
- 4. Updated "Calibrated Internal 4.8/9.6 MHz Oscillator" on page 25.
- 5. Updated "OSCCAL Oscillator Calibration Register" on page 27.
- 6. Updated typo in introduction on "Watchdog Timer" on page 37.
- 7. Updated "ADC Conversion Time" on page 86.
- 8. Updated "Serial Programming" on page 105.
- 9. Updated "Electrical Characteristics" on page 115.
- 10. Updated "Ordering Information" on page 160.
- 11. Removed rev. C from "Errata" on page 166.

# 9.9 Rev. 2535B-01/04

- Updated Figure 2-1 on page 4.
- 2. Updated Table 7-1, Table 8-1, Table 14-2 and Table 18-3.
- Updated "Calibrated Internal 4.8/9.6 MHz Oscillator" on page 25.
- 4. Updated the whole "Watchdog Timer" on page 37.
- 5. Updated Figure 17-1 on page 105 and Figure 17-2 on page 108.
- 6. Updated registers "MCUCR MCU Control Register", "TCCR0B Timer/Counter Control Register B" and "DIDR0 Digital Input Disable Register 0".
- 7. Updated Absolute Maximum Ratings and DC Characteristics in "Electrical Characteristics" on page 115.
- 8. Added "Speed Grades" on page 117
- 9. Updated "" on page 120.
- 10. Updated "Typical Characteristics" on page 123.
- 11. Updated "Ordering Information" on page 160.
- 12. Updated "Packaging Information" on page 161.
- 13. Updated "Errata" on page 166.
- 14. Changed instances of EEAR to EEARL.

### 9.10 Rev. 2535A-06/03

Initial Revision.





# Headquarters

**Atmel Corporation** 

2325 Orchard Parkway San Jose, CA 95131 USA

Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

#### International

Atmel Asia

Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon Hong Kong

Tel: (852) 2245-6100 Fax: (852) 2722-1369 Atmel Europe

Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-

Yvelines Cedex France

Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033

Japan

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

#### **Product Contact**

Web Site

www.atmel.com

Technical Support

Enter Product Line E-mail

Sales Contact

www.atmel.com/contacts

Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2010 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR® and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.