Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. # **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 6627 | | Number of Logic Elements/Cells | 132540 | | Total RAM Bits | 6747840 | | Number of I/O | 742 | | Number of Gates | - | | Voltage - Supply | 1.15V ~ 1.25V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 1020-BBGA | | Supplier Device Package | 1020-FBGA (33x33) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep2s130f1020c5n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong | Timing Model | 5–20 | |---|------| | Preliminary & Final Timing | 5–20 | | I/O Timing Measurement Methodology | | | Performance | | | Internal Timing Parameters | 5–34 | | Stratix II Clock Timing Parameters | 5–41 | | Clock Network Skew Adders | 5–50 | | IOE Programmable Delay | 5–51 | | Default Capacitive Loading of Different I/O Standards | 5–52 | | I/O Delays | | | Maximum Input & Output Clock Toggle Rate | 5–66 | | Duty Cycle Distortion | 5–77 | | DCD Measurement Techniques | 5–78 | | High-Speed I/O Specifications | 5–87 | | PLL Timing Specifications | 5–91 | | External Memory Interface Specifications | 5–94 | | JTAG Timing Specifications | 5–96 | | Document Revision History | 5–97 | | Chapter 6. Reference & Ordering Information | | | Software | | | Device Pin-Outs | | | Ordering Information | | | Document Revision History | 6–2 | # 1. Introduction SII51001-4.2 # Introduction The Stratix® II FPGA family is based on a 1.2-V, 90-nm, all-layer copper SRAM process and features a new logic structure that maximizes performance, and enables device densities approaching 180,000 equivalent logic elements (LEs). Stratix II devices offer up to 9 Mbits of on-chip, TriMatrixTM memory for demanding, memory intensive applications and has up to 96 DSP blocks with up to 384 (18-bit \times 18-bit) multipliers for efficient implementation of high performance filters and other DSP functions. Various high-speed external memory interfaces are supported, including double data rate (DDR) SDRAM and DDR2 SDRAM, RLDRAM II, quad data rate (QDR) II SRAM, and single data rate (SDR) SDRAM. Stratix II devices support various I/O standards along with support for 1-gigabit per second (Gbps) source synchronous signaling with DPA circuitry. Stratix II devices offer a complete clock management solution with internal clock frequency of up to 550 MHz and up to 12 phase-locked loops (PLLs). Stratix II devices are also the industry's first FPGAs with the ability to decrypt a configuration bitstream using the Advanced Encryption Standard (AES) algorithm to protect designs. # **Features** The Stratix II family offers the following features: - 15,600 to 179,400 equivalent LEs; see Table 1–1 - New and innovative adaptive logic module (ALM), the basic building block of the Stratix II architecture, maximizes performance and resource usage efficiency - Up to 9,383,040 RAM bits (1,172,880 bytes) available without reducing logic resources - TriMatrix memory consisting of three RAM block sizes to implement true dual-port memory and first-in first-out (FIFO) buffers - High-speed DSP blocks provide dedicated implementation of multipliers (at up to 450 MHz), multiply-accumulate functions, and finite impulse response (FIR) filters - Up to 16 global clocks with 24 clocking resources per device region - Clock control blocks support dynamic clock network enable/disable, which allows clock networks to power down to reduce power consumption in user mode - Up to 12 PLLs (four enhanced PLLs and eight fast PLLs) per device provide spread spectrum, programmable bandwidth, clock switchover, real-time PLL reconfiguration, and advanced multiplication and phase shifting After compilation, check the information messages for a full list of I/O, DQ, LVDS, and other pins that are not available because of the selected migration path. Table 1–4 lists the Stratix II device package offerings and shows the total number of non-migratable user I/O pins when migrating from one density device to a larger density device. Additional I/O pins may not be migratable if migrating from the larger device to the smaller density device. When moving from one density to a larger density, the larger density device may have fewer user I/O pins. The larger device requires more power and ground pins to support the additional logic within the device. Use the Quartus II Pin Planner to determine which user I/O pins are migratable between the two devices. | Table 1–4. Total Number of Non-Migratable I/O Pins for Stratix II Vertical Migration Paths | | | | | | | | | |--|-------------------------|-------------------------|-------------------------|--------------------------|--------------------------|--|--|--| | Vertical Migration
Path | 484-Pin
FineLine BGA | 672-Pin
FineLine BGA | 780-Pin
FineLine BGA | 1020-Pin
FineLine BGA | 1508-Pin
FineLine BGA | | | | | EP2S15 to EP2S30 | 0 (1) | 0 | | | | | | | | EP2S15 to EP2S60 | 8 (1) | 0 | | | | | | | | EP2S30 to EP2S60 | 8 (1) | 8 | | | | | | | | EP2S60 to EP2S90 | | | | 0 | | | | | | EP2S60 to EP2S130 | | | | 0 | | | | | | EP2S60 to EP2S180 | | | | 0 | | | | | | EP2S90 to EP2S130 | | | 0 (1) | 16 | 17 | | | | | EP2S90 to EP2S180 | | | | 16 | 0 | | | | | EP2S130 to EP2S180 | | | | 0 | 0 | | | | Note to Table 1–4: (1) Some of the DQ/DQS pins are not migratable. Refer to the Quartus II software information messages for more detailed information. To determine if your user I/O assignments are correct, run the I/O Assignment Analysis command in the Quartus II software (Processing > Start > Start I/O Assignment Analysis). Refer to the *I/O Management* chapter in volume 2 of the *Quartus II Handbook* for more information on pin migration. Each Stratix II device I/O pin is fed by an I/O element (IOE) located at the end of LAB rows and columns around the periphery of the device. I/O pins support numerous single-ended and differential I/O standards. Each IOE contains a bidirectional I/O buffer and six registers for registering input, output, and output-enable signals. When used with dedicated clocks, these registers provide exceptional performance and interface support with external memory devices such as DDR and DDR2 SDRAM, RLDRAM II, and QDR II SRAM devices. High-speed serial interface channels with dynamic phase alignment (DPA) support data transfer at up to 1 Gbps using LVDS or HyperTransport™ technology I/O standards. Figure 2–1 shows an overview of the Stratix II device. Figure 2-1. Stratix II Block Diagram The number of M512 RAM, M4K RAM, and DSP blocks varies by device along with row and column numbers and M-RAM blocks. Table 2–1 lists the resources available in Stratix II devices. | Table 2-1. | Table 2–1. Stratix II Device Resources | | | | | | | | |------------|--|---------------------------|-----------------|-----------------------------|----------------|----------|--|--| | Device | M512 RAM
Columns/Blocks | M4K RAM
Columns/Blocks | M-RAM
Blocks | DSP Block
Columns/Blocks | LAB
Columns | LAB Rows | | | | EP2S15 | 4 / 104 | 3 / 78 | 0 | 2 / 12 | 30 | 26 | | | | EP2S30 | 6 / 202 | 4 / 144 | 1 | 2 / 16 | 49 | 36 | | | | EP2S60 | 7 / 329 | 5 / 255 | 2 | 3 / 36 | 62 | 51 | | | | EP2S90 | 8 / 488 | 6 / 408 | 4 | 3 / 48 | 71 | 68 | | | | EP2S130 | 9 / 699 | 7 / 609 | 6 | 3 / 63 | 81 | 87 | | | | EP2S180 | 11 / 930 | 8 / 768 | 9 | 4 / 96 | 100 | 96 | | | # Logic Array Blocks Each LAB consists of eight ALMs, carry chains, shared arithmetic chains, LAB control signals, local interconnect, and register chain connection lines. The local interconnect transfers signals between ALMs in the same LAB. Register chain connections transfer the output of an ALM register to the adjacent ALM register in an LAB. The Quartus® II Compiler places associated logic in an LAB or adjacent LABs, allowing the use of local, shared arithmetic chain, and register chain connections for performance and area efficiency. Figure 2–2 shows the Stratix II LAB structure. Figure 2-6. Stratix II ALM Details One ALM contains two programmable registers. Each register has data, clock, clock enable, synchronous and asynchronous clear, asynchronous load data, and synchronous and asynchronous load/preset inputs. Global signals, general-purpose I/O pins, or any internal logic can drive the register's clock and clear control signals. Either general-purpose I/O pins or internal logic can drive the clock enable, preset, asynchronous load, and asynchronous load data. The asynchronous load data input comes from the datae or dataf input of the ALM, which are the same inputs that can be used for register packing. For combinational functions, the register is bypassed and the output of the LUT drives directly to the outputs of the ALM. Each ALM has two sets of outputs that drive the local, row, and column routing resources. The LUT, adder, or register output can drive these output drivers independently (see Figure 2–6). For each set of output drivers, two ALM outputs can drive column, row, or direct link routing connections, and one of these ALM outputs can also drive local interconnect resources. This allows the LUT or adder to drive one output while the register drives another output. This feature, called register packing, improves device utilization because the device can use the register and the combinational logic for unrelated functions. Another special packing mode allows the register output to feed back into the LUT of the same ALM so that the register is packed with its own fan-out LUT. This provides another mechanism for improved fitting. The ALM can also drive out registered and unregistered versions of the LUT or adder output. See the *Performance & Logic Efficiency Analysis of Stratix II Devices White Paper* for more information on the efficiencies of the Stratix II ALM and comparisons with previous architectures. # **ALM Operating Modes** The Stratix II ALM can operate in one of the following modes: - Normal mode - Extended LUT mode - Arithmetic mode - Shared arithmetic mode Each mode uses ALM resources differently. In each mode, eleven available inputs to the ALM--the eight data inputs from the LAB local interconnect; carry-in from the previous ALM or LAB; the shared arithmetic chain connection from the previous ALM or LAB; and the register chain connection--are directed to different destinations to implement the desired logic function. LAB-wide signals provide clock, asynchronous clear, asynchronous preset/load, synchronous clear, Figure 2–7. ALM in Normal Mode Note (1) Note to Figure 2-7: (1) Combinations of functions with fewer inputs than those shown are also supported. For example, combinations of functions with the following number of inputs are supported: 4 and 3, 3 and 3, 3 and 2, 5 and 2, etc. The normal mode provides complete backward compatibility with fourinput LUT architectures. Two independent functions of four inputs or less can be implemented in one Stratix II ALM. In addition, a five-input function and an independent three-input function can be implemented without sharing inputs. Figure 2-12. Conditional Operation Example The arithmetic mode also offers clock enable, counter enable, synchronous up/down control, add/subtract control, synchronous clear, synchronous load. The LAB local interconnect data inputs generate the clock enable, counter enable, synchronous up/down and add/subtract control signals. These control signals are good candidates for the inputs that are shared between the four LUTs in the ALM. The synchronous clear and synchronous load options are LAB-wide signals that affect all registers in the LAB. The Quartus II software automatically places any registers that are not used by the counter into other LABs. ### Carry Chain The carry chain provides a fast carry function between the dedicated adders in arithmetic or shared arithmetic mode. Carry chains can begin in either the first ALM or the fifth ALM in an LAB. The final carry-out signal is routed to an ALM, where it is fed to local, row, or column interconnects. The Quartus II Compiler automatically creates carry chain logic during design processing, or you can create it manually during design entry. Parameterized functions such as LPM functions automatically take advantage of carry chains for the appropriate functions. The Quartus II Compiler creates carry chains longer than 16 (8 ALMs in arithmetic or shared arithmetic mode) by linking LABs together automatically. For enhanced fitting, a long carry chain runs vertically allowing fast horizontal connections to TriMatrix memory and DSP blocks. A carry chain can continue as far as a full column. To avoid routing congestion in one small area of the device when a high fan-in arithmetic function is implemented, the LAB can support carry chains that only utilize either the top half or the bottom half of the LAB before connecting to the next LAB. This leaves the other half of the ALMs in the LAB available for implementing narrower fan-in functions in normal mode. Carry chains that use the top four ALMs in the first LAB carry into the top half of the ALMs in the next LAB within the column. Carry chains that use the bottom four ALMs in the first LAB carry into the bottom half of the ALMs in the next LAB within the column. Every other column of LABs is top-half bypassable, while the other LAB columns are bottom-half bypassable. See the "MultiTrack Interconnect" on page 2–22 section for more information on carry chain interconnect. ### Shared Arithmetic Mode In shared arithmetic mode, the ALM can implement a three-input add. In this mode, the ALM is configured with four 4-input LUTs. Each LUT either computes the sum of three inputs or the carry of three inputs. The output of the carry computation is fed to the next adder (either to adder1 in the same ALM or to adder0 of the next ALM in the LAB) via a dedicated connection called the shared arithmetic chain. This shared arithmetic chain can significantly improve the performance of an adder tree by reducing the number of summation stages required to implement an adder tree. Figure 2–13 shows the ALM in shared arithmetic mode. R24 row interconnects span 24 LABs and provide the fastest resource for long row connections between LABs, TriMatrix memory, DSP blocks, and Row IOEs. The R24 row interconnects can cross M-RAM blocks. R24 row interconnects drive to other row or column interconnects at every fourth LAB and do not drive directly to LAB local interconnects. R24 row interconnects drive LAB local interconnects via R4 and C4 interconnects. R24 interconnects can drive R24, R4, C16, and C4 interconnects. The column interconnect operates similarly to the row interconnect and vertically routes signals to and from LABs, TriMatrix memory, DSP blocks, and IOEs. Each column of LABs is served by a dedicated column interconnect. These column resources include: - Shared arithmetic chain interconnects in an LAB - Carry chain interconnects in an LAB and from LAB to LAB - Register chain interconnects in an LAB - C4 interconnects traversing a distance of four blocks in up and down direction - C16 column interconnects for high-speed vertical routing through the device Stratix II devices include an enhanced interconnect structure in LABs for routing shared arithmetic chains and carry chains for efficient arithmetic functions. The register chain connection allows the register output of one ALM to connect directly to the register input of the next ALM in the LAB for fast shift registers. These ALM to ALM connections bypass the local interconnect. The Quartus II Compiler automatically takes advantage of these resources to improve utilization and performance. Figure 2–17 shows the shared arithmetic chain, carry chain and register chain interconnects. | Memory Feature | M512 RAM Block
(32 × 18 Bits) | M4K RAM Block
(128 × 36 Bits) | M-RAM Block
(4K × 144 Bits) | |---|---|--|--| | Simple dual-port memory mixed width support | ✓ | ✓ | ✓ | | True dual-port memory mixed width support | | ~ | ✓ | | Power-up conditions | Outputs cleared | Outputs cleared | Outputs unknown | | Register clears | Output registers | Output registers | Output registers | | Mixed-port read-during-write | Unknown output/old data | Unknown output/old data | Unknown output | | Configurations | 512 × 1
256 × 2
128 × 4
64 × 8
64 × 9
32 × 16
32 × 18 | 4K × 1
2K × 2
1K × 4
512 × 8
512 × 9
256 × 16
256 × 18
128 × 32
128 × 36 | 64K × 8
64K × 9
32K × 16
32K × 18
16K × 32
16K × 36
8K × 64
8K × 72
4K × 128
4K × 144 | #### Notes to Table 2-3: # **Memory Block Size** TriMatrix memory provides three different memory sizes for efficient application support. The Quartus II software automatically partitions the user-defined memory into the embedded memory blocks using the most efficient size combinations. You can also manually assign the memory to a specific block size or a mixture of block sizes. When applied to input registers, the asynchronous clear signal for the TriMatrix embedded memory immediately clears the input registers. However, the output of the memory block does not show the effects until the next clock edge. When applied to output registers, the asynchronous clear signal clears the output registers and the effects are seen immediately. ⁽¹⁾ The M-RAM block does not support memory initializations. However, the M-RAM block can emulate a ROM function using a dual-port RAM bock. The Stratix II device must write to the dual-port memory once and then disable the write-enable ports afterwards. Figure 2-19. M512 RAM Block Control Signals Figure 2-22. M4K RAM Block LAB Row Interface ### M-RAM Block The largest TriMatrix memory block, the M-RAM block, is useful for applications where a large volume of data must be stored on-chip. Each block contains 589,824 RAM bits (including parity bits). The M-RAM block can be configured in the following modes: - True dual-port RAM - Simple dual-port RAM - Single-port RAM - FIFO You cannot use an initialization file to initialize the contents of an M-RAM block. All M-RAM block contents power up to an undefined value. Only synchronous operation is supported in the M-RAM block, so all inputs are registered. Output registers can be bypassed. ### Differential On-Chip Termination Stratix II devices support internal differential termination with a nominal resistance value of $100~\Omega$ for LVDS or HyperTransport technology input receiver buffers. LVPECL input signals (supported on clock pins only) require an external termination resistor. Differential on-chip termination is supported across the full range of supported differential data rates as shown in the DC & Switching Characteristics chapter in volume 1 of the Stratix II Device Handbook. For more information on differential on-chip termination, refer to the *High-Speed Differential I/O Interfaces with DPA in Stratix II & Stratix II GX Devices* chapter in volume 2 of the *Stratix II Device Handbook* or the *Stratix II GX Device Handbook*. For more information on tolerance specifications for differential on-chip termination, refer to the *DC & Switching Characteristics* chapter in volume 1 of the *Stratix II Device Handbook*. ### On-Chip Series Termination Without Calibration Stratix II devices support driver impedance matching to provide the I/O driver with controlled output impedance that closely matches the impedance of the transmission line. As a result, reflections can be significantly reduced. Stratix II devices support on-chip series termination for single-ended I/O standards with typical $R_{\rm S}$ values of 25 and 50 Ω Once matching impedance is selected, current drive strength is no longer selectable. Table 2–17 shows the list of output standards that support on-chip series termination without calibration. ### On-Chip Series Termination with Calibration Stratix II devices support on-chip series termination with calibration in column I/O pins in top and bottom banks. There is one calibration circuit for the top I/O banks and one circuit for the bottom I/O banks. Each on-chip series termination calibration circuit compares the total impedance of each I/O buffer to the external 25- or $50-\Omega$ resistors connected to the RUP and RDN pins, and dynamically enables or disables the transistors until they match. Calibration occurs at the end of device configuration. Once the calibration circuit finds the correct impedance, it powers down and stops changing the characteristics of the drivers. For more information on series on-chip termination supported by Stratix II devices, refer to the *Selectable I/O Standards in Stratix II & Stratix II GX Devices* chapter in volume 2 of the *Stratix II Device Handbook* or the *Stratix II GX Device Handbook*. | Table 5–74. Stratix II I/O Input Delay for Row Pins (Part 2 of 2) | | | | | | | | | | | |---|--------------------|----------------|------------|------------------|-----------|----------|----------|------|--|--| | 1/0 04 | D | Minimum Timing | | -3 Speed | -3 Speed | -4 Speed | -5 Speed | 11 | | | | I/O Standard | Parameter | Industrial | Commercial | Grade (1) | Grade (2) | Grade | Grade | Unit | | | | 1.5-V HSTL | t _{P1} | 602 | 631 | 1056 | 1107 | 1212 | 1413 | ps | | | | Class II | t _{PCOUT} | 278 | 292 | 529 | 555 | 608 | 708 | ps | | | | 1.8-V HSTL | t _{P1} | 577 | 605 | 960 | 1006 | 1101 | 1285 | ps | | | | Class I | t _{PCOUT} | 253 | 266 | 433 | 454 | 497 | 580 | ps | | | | 1.8-V HSTL | t _{P1} | 577 | 605 | 960 | 1006 | 1101 | 1285 | ps | | | | Class II | t _{PCOUT} | 253 | 266 | 433 | 454 | 497 | 580 | ps | | | | LVDS | t _{P1} | 515 | 540 | 948 | 994 | 1088 | 1269 | ps | | | | | t _{PCOUT} | 191 | 201 | 421 | 442 | 484 | 564 | ps | | | | HyperTransport | t _{Pl} | 515 | 540 | 948 | 994 | 1088 | 1269 | ps | | | | | t _{PCOUT} | 191 | 201 | 421 | 442 | 484 | 564 | ps | | | ### *Notes for Table 5–74:* - These numbers apply to -3 speed grade EP2S15, EP2S30, EP2S60, and EP2S90 devices. These numbers apply to -3 speed grade EP2S130 and EP2S180 devices. | Table 5-75. St | Table 5–75. Stratix II I/O Output Delay for Column Pins (Part 1 of 8) | | | | | | | | | | | | |----------------|---|------------------|------------|------------|-----------------------|-----------------------|----------------|----------------|------|--|--|--| | | | | Minimu | m Timing | -3 | -3 | -4 | -5 | | | | | | I/O Standard | Drive
Strength | Parameter | Industrial | Commercial | Speed
Grade
(3) | Speed
Grade
(4) | Speed
Grade | Speed
Grade | Unit | | | | | LVTTL | 4 mA | t _{OP} | 1178 | 1236 | 2351 | 2467 | 2702 | 2820 | ps | | | | | | | t _{DIP} | 1198 | 1258 | 2417 | 2537 | 2778 | 2910 | ps | | | | | | 8 mA | t _{OP} | 1041 | 1091 | 2036 | 2136 | 2340 | 2448 | ps | | | | | | | t _{DIP} | 1061 | 1113 | 2102 | 2206 | 2416 | 2538 | ps | | | | | | 12 mA | t _{OP} | 976 | 1024 | 2036 | 2136 | 2340 | 2448 | ps | | | | | | | t _{DIP} | 996 | 1046 | 2102 | 2206 | 2416 | 2538 | ps | | | | | | 16 mA | t _{OP} | 951 | 998 | 1893 | 1986 | 2176 | 2279 | ps | | | | | | | t _{DIP} | 971 | 1020 | 1959 | 2056 | 2252 | 2369 | ps | | | | | | 20 mA | t _{OP} | 931 | 976 | 1787 | 1875 | 2054 | 2154 | ps | | | | | | | t _{DIP} | 951 | 998 | 1853 | 1945 | 2130 | 2244 | ps | | | | | | 24 mA | t _{OP} | 924 | 969 | 1788 | 1876 | 2055 | 2156 | ps | | | | | | (1) | t _{DIP} | 944 | 991 | 1854 | 1946 | 2131 | 2246 | ps | | | | | Table 5–79. Max | Table 5–79. Maximum Output Clock Toggle Rate Derating Factors (Part 2 of 5) | | | | | | | | | | | |------------------|---|-----------------|---------|----------|----------|-----------|----------|----------|-------------------------|------|--| | | | | Maximur | n Output | Clock To | ggle Rate | e Derati | ng Facto | rs (ps/p | F) | | | I/O Standard | Drive
Strength | Column I/O Pine | | | Ro | w I/O Pi | ns | Dedica | Dedicated Clock Outputs | | | | | oog | -3 | -4 | -5 | -3 | -4 | -5 | -3 | -4 | -5 | | | 1.8-V | 2 mA | 951 | 1421 | 1421 | 951 | 1421 | 1421 | 904 | 1421 | 1421 | | | LVTTL/LVCMOS | 4 mA | 405 | 516 | 516 | 405 | 516 | 516 | 393 | 516 | 516 | | | | 6 mA | 261 | 325 | 325 | 261 | 325 | 325 | 253 | 325 | 325 | | | | 8 mA | 223 | 274 | 274 | 223 | 274 | 274 | 224 | 274 | 274 | | | | 10 mA | 194 | 236 | 236 | - | - | 1 | 199 | 236 | 236 | | | | 12 mA | 174 | 209 | 209 | - | - | - | 180 | 209 | 209 | | | 1.5-V | 2 mA | 652 | 963 | 963 | 652 | 963 | 963 | 618 | 963 | 963 | | | LVTTL/LVCMOS | 4 mA | 333 | 347 | 347 | 333 | 347 | 347 | 270 | 347 | 347 | | | | 6 mA | 182 | 247 | 247 | - | - | - | 198 | 247 | 247 | | | | 8 mA | 135 | 194 | 194 | - | - | - | 155 | 194 | 194 | | | SSTL-2 Class I | 8 mA | 364 | 680 | 680 | 364 | 680 | 680 | 350 | 680 | 680 | | | | 12 mA | 163 | 207 | 207 | 163 | 207 | 207 | 188 | 207 | 207 | | | SSTL-2 Class II | 16 mA | 118 | 147 | 147 | 118 | 147 | 147 | 94 | 147 | 147 | | | | 20 mA | 99 | 122 | 122 | - | - | - | 87 | 122 | 122 | | | | 24 mA | 91 | 116 | 116 | - | - | - | 85 | 116 | 116 | | | SSTL-18 Class I | 4 mA | 458 | 570 | 570 | 458 | 570 | 570 | 505 | 570 | 570 | | | | 6 mA | 305 | 380 | 380 | 305 | 380 | 380 | 336 | 380 | 380 | | | | 8 mA | 225 | 282 | 282 | 225 | 282 | 282 | 248 | 282 | 282 | | | | 10 mA | 167 | 220 | 220 | 167 | 220 | 220 | 190 | 220 | 220 | | | | 12 mA | 129 | 175 | 175 | - | - | - | 148 | 175 | 175 | | | SSTL-18 Class II | 8 mA | 173 | 206 | 206 | - | - | - | 155 | 206 | 206 | | | | 16 mA | 150 | 160 | 160 | - | - | - | 140 | 160 | 160 | | | | 18 mA | 120 | 130 | 130 | - | - | - | 110 | 130 | 130 | | | | 20 mA | 109 | 127 | 127 | - | - | - | 94 | 127 | 127 | | | SSTL-2 Class I | 8 mA | 364 | 680 | 680 | 364 | 680 | 680 | 350 | 680 | 680 | | | | 12 mA | 163 | 207 | 207 | 163 | 207 | 207 | 188 | 207 | 207 | | | SSTL-2 Class II | 16 mA | 118 | 147 | 147 | 118 | 147 | 147 | 94 | 147 | 147 | | | | 20 mA | 99 | 122 | 122 | - | - | - | 87 | 122 | 122 | | | | 24 mA | 91 | 116 | 116 | - | - | - | 85 | 116 | 116 | | | Table 5–79. Maximum Output Clock Toggle Rate Derating Factors (Part 4 of 5) | | | | | | | | | | | |---|-------------------|------------------------------|---------|----------|-----------|---------------------------|-------------------|----------|----------|-----| | | | | Maximur | n Output | Clock Tog | gle Rat | e Derati | ng Facto | rs (ps/p | F) | | I/O Standard | Drive
Strength | Column I/O Pins Row I/O Pins | | | ns | s Dedicated Clock Outputs | | | | | | | Ottongtii | -3 | -4 | -5 | -3 | -4 | -5 | -3 | -4 | -5 | | Differential | 4 mA | 458 | 570 | 570 | - | - | - | 505 | 570 | 570 | | SSTL-18 Class I | 6 mA | 305 | 380 | 380 | - | - | - | 336 | 380 | 380 | | (3) | 8 mA | 225 | 282 | 282 | - | - | - | 248 | 282 | 282 | | | 10 mA | 167 | 220 | 220 | - | - | - | 190 | 220 | 220 | | | 12 mA | 129 | 175 | 175 | - | - | - | 148 | 175 | 175 | | Differential | 8 mA | 173 | 206 | 206 | - | - | - | 155 | 206 | 206 | | SSTL-18 Class II | 16 mA | 150 | 160 | 160 | - | - | - | 140 | 160 | 160 | | (3) | 18 mA | 120 | 130 | 130 | - | - | - | 110 | 130 | 130 | | | 20 mA | 109 | 127 | 127 | - | - | - | 94 | 127 | 127 | | 1.8-V Differential | 4 mA | 245 | 282 | 282 | - | - | - | 229 | 282 | 282 | | HSTL Class I (3) | 6 mA | 164 | 188 | 188 | - | - | - | 153 | 188 | 188 | | | 8 mA | 123 | 140 | 140 | - | - | - | 114 | 140 | 140 | | | 10 mA | 110 | 124 | 124 | - | - | - | 108 | 124 | 124 | | | 12 mA | 97 | 110 | 110 | - | - | - | 104 | 110 | 110 | | 1.8-V Differential | 16 mA | 101 | 104 | 104 | - | - | - | 99 | 104 | 104 | | HSTL Class II (3) | 18 mA | 98 | 102 | 102 | - | - | - | 93 | 102 | 102 | | | 20 mA | 93 | 99 | 99 | - | - | - | 88 | 99 | 99 | | 1.5-V Differential | 4 mA | 168 | 196 | 196 | - | - | - | 188 | 196 | 196 | | HSTL Class I (3) | 6 mA | 112 | 131 | 131 | - | - | - | 125 | 131 | 131 | | | 8 mA | 84 | 99 | 99 | - | - | - | 95 | 99 | 99 | | | 10 mA | 87 | 98 | 98 | - | - | - | 90 | 98 | 98 | | | 12 mA | 86 | 98 | 98 | - | - | - | 87 | 98 | 98 | | 1.5-V Differential | 16 mA | 95 | 101 | 101 | - | - | - | 96 | 101 | 101 | | HSTL Class II (3) | 18 mA | 95 | 100 | 100 | - | - | - | 101 | 100 | 100 | | | 20 mA | 94 | 101 | 101 | - | - | - | 104 | 101 | 101 | | 3.3-V PCI | | 134 | 177 | 177 | - | - | - | 143 | 177 | 177 | | 3.3-V PCI-X | | 134 | 177 | 177 | - | - | - | 143 | 177 | 177 | | LVDS | | - | - | - | 155 (1) | 155
<i>(1)</i> | 155
<i>(1)</i> | 134 | 134 | 134 | | HyperTransport technology | | - | - | - | 155 (1) | 155
<i>(1)</i> | 155
<i>(1)</i> | - | - | - | | LVPECL (4) | | - | - | - | - | - | - | 134 | 134 | 134 | Table 5–85. Maximum DCD for DDIO Output on Column I/O Pins Without PLL in the Clock Path for -4 & -5 Devices (Part 2 of 2) Notes (1), (2) | DDIO Column Output I/O | Maximum DCD Based on I/O Standard of Input Feeding the DDIO Clock Port (No PLL in the Clock Path) | | | | | | | | |------------------------|---|-----------|-------|-----------|------|--|--|--| | Standard | TTL/0 | TTL/CMOS | | SSTL/HSTL | Unit | | | | | | 3.3/2.5 V | 1.8/1.5 V | 2.5 V | 1.8/1.5 V | | | | | | SSTL-18 Class I | 335 | 390 | 65 | 65 | ps | | | | | SSTL-18 Class II | 320 | 375 | 70 | 80 | ps | | | | | 1.8-V HSTL Class I | 330 | 385 | 60 | 70 | ps | | | | | 1.8-V HSTL Class II | 330 | 385 | 60 | 70 | ps | | | | | 1.5-V HSTL Class I | 330 | 390 | 60 | 70 | ps | | | | | 1.5-V HSTL Class II | 330 | 360 | 90 | 100 | ps | | | | | 1.2-V HSTL | 420 | 470 | 155 | 165 | ps | | | | | LVPECL | 180 | 180 | 180 | 180 | ps | | | | #### Notes to Table 5-85: - (1) Table 5–85 assumes the input clock has zero DCD. - (2) The DCD specification is based on a no logic array noise condition. Table 5–86. Maximum DCD for DDIO Output on Row I/O Pins with PLL in the Clock Path (Part 1 of 2) Note (1) | Row DDIO Output I/O | Maximum DCD (PLL (
DDIO Clo | | Unit | |---------------------|--------------------------------|----------------|------| | Stanuaru | -3 Device | -4 & -5 Device | | | 3.3-V LVTTL | 110 | 105 | ps | | 3.3-V LVCMOS | 65 | 75 | ps | | 2.5V | 75 | 90 | ps | | 1.8V | 85 | 100 | ps | | 1.5-V LVCMOS | 105 | 100 | ps | | SSTL-2 Class I | 65 | 75 | ps | | SSTL-2 Class II | 60 | 70 | ps | | SSTL-18 Class I | 50 | 65 | ps | | 1.8-V HSTL Class I | 50 | 70 | ps | | 1.5-V HSTL Class I | 55 | 70 | ps | | Table 5-103. Do | ocument Revision History (Part 2 of 3) | | |---------------------------------|--|--| | Date and
Document
Version | Changes Made | Summary of Changes | | August, 2006,
v4.2 | Updated Table 5–73, Table 5–75, Table 5–77, Table 5–78, Table 5–79, Table 5–81, Table 5–85, and Table 5–87. | _ | | April 2006, v4.1 | Updated Table 5–3. Updated Table 5–11. Updated Figures 5–8 and 5–9. Added parallel on-chip termination information to "On-Chip Termination Specifications" section. Updated Tables 5–28, 5–30,5–31, and 5–34. Updated Table 5–78, Tables 5–81 through 5–90, and Tables 5–92, 5–93, and 5–98. Updated "PLL Timing Specifications" section. Updated "External Memory Interface Specifications" section. Added Tables 5–95 and 5–101. Updated "JTAG Timing Specifications" section, including Figure 5–10 and Table 5–102. | Changed 0.2 MHz to 2 MHz in Table 5–93. Added new spec for half period jitter (Table 5–101). Added support for PLL clock switchover for industrial temperature range. Changed f_{INPFD} (min) spec from 4 MHz to 2 MHz in Table 5–92. Fixed typo in t_{OUTJITTER} specification in Table 5–92. Updated V_{DIF} AC & DC max specifications in Table 5–28. Updated minimum values for t_{JCH}, t_{JCL}, and t_{JPSU} in Table 5–102. Update maximum values for t_{JPCO}, t_{JPZX}, and t_{JPXZ} in Table 5–102. | | December 2005,
v4.0 | Updated "External Memory Interface
Specifications" section. Updated timing numbers throughout chapter. | _ | | July 2005, v3.1 | Updated HyperTransport technology information in Table 5–13. Updated "Timing Model" section. Updated "PLL Timing Specifications" section. Updated "External Memory Interface Specifications" section. | _ | | May 2005, v3.0 | Updated tables throughout chapter. Updated "Power Consumption" section. Added various tables. Replaced "Maximum Input & Output Clock Rate" section with "Maximum Input & Output Clock Toggle Rate" section. Added "Duty Cycle Distortion" section. Added "External Memory Interface Specifications" section. | _ | | March 2005,
v2.2 | Updated tables in "Internal Timing Parameters" section. | _ | | January 2005,
v2.1 | Updated input rise and fall time. | _ |