Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 6627 | | Number of Logic Elements/Cells | 132540 | | Total RAM Bits | 6747840 | | Number of I/O | 742 | | Number of Gates | - | | Voltage - Supply | 1.15V ~ 1.25V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 1020-BBGA | | Supplier Device Package | 1020-FBGA (33x33) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep2s130f1020i4 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # **Chapter Revision Dates** The chapters in this book, *Stratix II Device Handbook, Volume 1*, were revised on the following dates. Where chapters or groups of chapters are available separately, part numbers are listed. Chapter 1. Introduction Revised: May 2007 Part number: SII51001-4.2 Chapter 2. Stratix II Architecture Revised: *May* 2007 Part number: *SII5*1002-4.3 Chapter 3. Configuration & Testing Revised: *May* 2007 Part number: *SII51003-4.2* Chapter 4. Hot Socketing & Power-On Reset Revised: *May* 2007 Part number: *SII51004-3.2* Chapter 5. DC & Switching Characteristics Revised: *April* 2011 Part number: *SII51005-4.5* Chapter 6. Reference & Ordering Information Revised: *April* 2011 Part number: *SII51006-2.2* Altera Corporation vii # 1. Introduction SII51001-4.2 ## Introduction The Stratix® II FPGA family is based on a 1.2-V, 90-nm, all-layer copper SRAM process and features a new logic structure that maximizes performance, and enables device densities approaching 180,000 equivalent logic elements (LEs). Stratix II devices offer up to 9 Mbits of on-chip, TriMatrixTM memory for demanding, memory intensive applications and has up to 96 DSP blocks with up to 384 (18-bit \times 18-bit) multipliers for efficient implementation of high performance filters and other DSP functions. Various high-speed external memory interfaces are supported, including double data rate (DDR) SDRAM and DDR2 SDRAM, RLDRAM II, quad data rate (QDR) II SRAM, and single data rate (SDR) SDRAM. Stratix II devices support various I/O standards along with support for 1-gigabit per second (Gbps) source synchronous signaling with DPA circuitry. Stratix II devices offer a complete clock management solution with internal clock frequency of up to 550 MHz and up to 12 phase-locked loops (PLLs). Stratix II devices are also the industry's first FPGAs with the ability to decrypt a configuration bitstream using the Advanced Encryption Standard (AES) algorithm to protect designs. # **Features** The Stratix II family offers the following features: - 15,600 to 179,400 equivalent LEs; see Table 1–1 - New and innovative adaptive logic module (ALM), the basic building block of the Stratix II architecture, maximizes performance and resource usage efficiency - Up to 9,383,040 RAM bits (1,172,880 bytes) available without reducing logic resources - TriMatrix memory consisting of three RAM block sizes to implement true dual-port memory and first-in first-out (FIFO) buffers - High-speed DSP blocks provide dedicated implementation of multipliers (at up to 450 MHz), multiply-accumulate functions, and finite impulse response (FIR) filters - Up to 16 global clocks with 24 clocking resources per device region - Clock control blocks support dynamic clock network enable/disable, which allows clock networks to power down to reduce power consumption in user mode - Up to 12 PLLs (four enhanced PLLs and eight fast PLLs) per device provide spread spectrum, programmable bandwidth, clock switchover, real-time PLL reconfiguration, and advanced multiplication and phase shifting - Support for numerous single-ended and differential I/O standards - High-speed differential I/O support with DPA circuitry for 1-Gbps performance - Support for high-speed networking and communications bus standards including Parallel RapidIO, SPI-4 Phase 2 (POS-PHY Level 4), HyperTransport[™] technology, and SFI-4 - Support for high-speed external memory, including DDR and DDR2 SDRAM, RLDRAM II, QDR II SRAM, and SDR SDRAM - Support for multiple intellectual property megafunctions from Altera MegaCore[®] functions and Altera Megafunction Partners Program (AMPPSM) megafunctions - Support for design security using configuration bitstream encryption - Support for remote configuration updates | Table 1–1. Stratix II FPGA Family | Features | | | | | | |-------------------------------------|----------|-----------|-----------|-----------|-----------|-----------| | Feature | EP2S15 | EP2S30 | EP2S60 | EP2S90 | EP2S130 | EP2S180 | | ALMs | 6,240 | 13,552 | 24,176 | 36,384 | 53,016 | 71,760 | | Adaptive look-up tables (ALUTs) (1) | 12,480 | 27,104 | 48,352 | 72,768 | 106,032 | 143,520 | | Equivalent LEs (2) | 15,600 | 33,880 | 60,440 | 90,960 | 132,540 | 179,400 | | M512 RAM blocks | 104 | 202 | 329 | 488 | 699 | 930 | | M4K RAM blocks | 78 | 144 | 255 | 408 | 609 | 768 | | M-RAM blocks | 0 | 1 | 2 | 4 | 6 | 9 | | Total RAM bits | 419,328 | 1,369,728 | 2,544,192 | 4,520,488 | 6,747,840 | 9,383,040 | | DSP blocks | 12 | 16 | 36 | 48 | 63 | 96 | | 18-bit × 18-bit multipliers (3) | 48 | 64 | 144 | 192 | 252 | 384 | | Enhanced PLLs | 2 | 2 | 4 | 4 | 4 | 4 | | Fast PLLs | 4 | 4 | 8 | 8 | 8 | 8 | | Maximum user I/O pins | 366 | 500 | 718 | 902 | 1,126 | 1,170 | #### Notes to Table 1-1: - (1) One ALM contains two ALUTs. The ALUT is the cell used in the Quartus® II software for logic synthesis. - (2) This is the equivalent number of LEs in a Stratix device (four-input LUT-based architecture). - (3) These multipliers are implemented using the DSP blocks. # 2. Stratix II Architecture SII51002-4.3 # Functional Description Stratix[®] II devices contain a two-dimensional row- and column-based architecture to implement custom logic. A series of column and row interconnects of varying length and speed provides signal interconnects between logic array blocks (LABs), memory block structures (M512 RAM, M4K RAM, and M-RAM blocks), and digital signal processing (DSP) blocks. Each LAB consists of eight adaptive logic modules (ALMs). An ALM is the Stratix II device family's basic building block of logic providing efficient implementation of user logic functions. LABs are grouped into rows and columns across the device. M512 RAM blocks are simple dual-port memory blocks with 512 bits plus parity (576 bits). These blocks provide dedicated simple dual-port or single-port memory up to 18-bits wide at up to 500 MHz. M512 blocks are grouped into columns across the device in between certain LABs. M4K RAM blocks are true dual-port memory blocks with 4K bits plus parity (4,608 bits). These blocks provide dedicated true dual-port, simple dual-port, or single-port memory up to 36-bits wide at up to 550 MHz. These blocks are grouped into columns across the device in between certain LABs. M-RAM blocks are true dual-port memory blocks with 512K bits plus parity (589,824 bits). These blocks provide dedicated true dual-port, simple dual-port, or single-port memory up to 144-bits wide at up to 420 MHz. Several M-RAM blocks are located individually in the device's logic array. DSP blocks can implement up to either eight full-precision 9×9 -bit multipliers, four full-precision 18×18 -bit multipliers, or one full-precision 36×36 -bit multiplier with add or subtract features. The DSP blocks support Q1.15 format rounding and saturation in the multiplier and accumulator stages. These blocks also contain shift registers for digital signal processing applications, including finite impulse response (FIR) and infinite impulse response (IIR) filters. DSP blocks are grouped into columns across the device and operate at up to 450 MHz. The number of M512 RAM, M4K RAM, and DSP blocks varies by device along with row and column numbers and M-RAM blocks. Table 2–1 lists the resources available in Stratix II devices. | Table 2-1. | Stratix II Device Res | ources | | | | | |------------|----------------------------|---------------------------|-----------------|-----------------------------|----------------|----------| | Device | M512 RAM
Columns/Blocks | M4K RAM
Columns/Blocks | M-RAM
Blocks | DSP Block
Columns/Blocks | LAB
Columns | LAB Rows | | EP2S15 | 4 / 104 | 3 / 78 | 0 | 2 / 12 | 30 | 26 | | EP2S30 | 6 / 202 | 4 / 144 | 1 | 2 / 16 | 49 | 36 | | EP2S60 | 7 / 329 | 5 / 255 | 2 | 3 / 36 | 62 | 51 | | EP2S90 | 8 / 488 | 6 / 408 | 4 | 3 / 48 | 71 | 68 | | EP2S130 | 9 / 699 | 7 / 609 | 6 | 3 / 63 | 81 | 87 | | EP2S180 | 11 / 930 | 8 / 768 | 9 | 4 / 96 | 100 | 96 | # Logic Array Blocks Each LAB consists of eight ALMs, carry chains, shared arithmetic chains, LAB control signals, local interconnect, and register chain connection lines. The local interconnect transfers signals between ALMs in the same LAB. Register chain connections transfer the output of an ALM register to the adjacent ALM register in an LAB. The Quartus® II Compiler places associated logic in an LAB or adjacent LABs, allowing the use of local, shared arithmetic chain, and register chain connections for performance and area efficiency. Figure 2–2 shows the Stratix II LAB structure. Direct link interconnect from left LAB, TriMatrix memory block, DSP block, or IOE output Direct link interconnect from right LAB, TriMatrix memory block, DSP block, or IOE output ALMS Direct link interconnect from right LAB, TriMatrix memory block, DSP block, or IOE output Direct link interconnect from right LAB, TriMatrix memory block, DSP block, or IOE output Local Interconnect # LAB Control Signals Figure 2-3. Direct Link Connection Each LAB contains dedicated logic for driving control signals to its ALMs. The control signals include three clocks, three clock enables, two asynchronous clears, synchronous clear, asynchronous preset/load, and synchronous load control signals. This gives a maximum of 11 control signals at a time. Although synchronous load and clear signals are generally used when implementing counters, they can also be used with other functions. Each LAB can use three clocks and three clock enable signals. However, there can only be up to two unique clocks per LAB, as shown in the LAB control signal generation circuit in Figure 2–4. Each LAB's clock and clock enable signals are linked. For example, any ALM in a particular LAB using the labclk1 signal also uses labclkena1. If the LAB uses both the rising and falling edges of a clock, it also uses two LAB-wide clock signals. De-asserting the clock enable signal turns off the corresponding LAB-wide clock. Each LAB can use two asynchronous clear signals and an asynchronous load/preset signal. By default, the Quartus II software uses a NOT gate push-back technique to achieve preset. If you disable the NOT gate push-up option or assign a given register to power up high using the Quartus II software, the preset is achieved using the asynchronous load completely backward-compatible with four-input LUT architectures. One ALM can also implement any function of up to six inputs and certain seven-input functions. In addition to the adaptive LUT-based resources, each ALM contains two programmable registers, two dedicated full adders, a carry chain, a shared arithmetic chain, and a register chain. Through these dedicated resources, the ALM can efficiently implement various arithmetic functions and shift registers. Each ALM drives all types of interconnects: local, row, column, carry chain, shared arithmetic chain, register chain, and direct link interconnects. Figure 2–5 shows a high-level block diagram of the Stratix II ALM while Figure 2–6 shows a detailed view of all the connections in the ALM. Figure 2-5. High-Level Block Diagram of the Stratix II ALM synchronous load, and clock enable control for the register. These LAB-wide signals are available in all ALM modes. See the "LAB Control Signals" section for more information on the LAB-wide control signals. The Quartus II software and supported third-party synthesis tools, in conjunction with parameterized functions such as library of parameterized modules (LPM) functions, automatically choose the appropriate mode for common functions such as counters, adders, subtractors, and arithmetic functions. If required, you can also create special-purpose functions that specify which ALM operating mode to use for optimal performance. #### Normal Mode The normal mode is suitable for general logic applications and combinational functions. In this mode, up to eight data inputs from the LAB local interconnect are inputs to the combinational logic. The normal mode allows two functions to be implemented in one Stratix II ALM, or an ALM to implement a single function of up to six inputs. The ALM can support certain combinations of completely independent functions and various combinations of functions which have common inputs. Figure 2–7 shows the supported LUT combinations in normal mode. ## **Clear & Preset Logic Control** LAB-wide signals control the logic for the register's clear and load/preset signals. The ALM directly supports an asynchronous clear and preset function. The register preset is achieved through the asynchronous load of a logic high. The direct asynchronous preset does not require a NOT-gate push-back technique. Stratix II devices support simultaneous asynchronous load/preset, and clear signals. An asynchronous clear signal takes precedence if both signals are asserted simultaneously. Each LAB supports up to two clears and one load/preset signal. In addition to the clear and load/preset ports, Stratix II devices provide a device-wide reset pin (DEV_CLRn) that resets all registers in the device. An option set before compilation in the Quartus II software controls this pin. This device-wide reset overrides all other control signals. # MultiTrack Interconnect In the Stratix II architecture, connections between ALMs, TriMatrix memory, DSP blocks, and device I/O pins are provided by the MultiTrack interconnect structure with DirectDrive technology. The MultiTrack interconnect consists of continuous, performance-optimized routing lines of different lengths and speeds used for inter- and intra-design block connectivity. The Quartus II Compiler automatically places critical design paths on faster interconnects to improve design performance. DirectDrive technology is a deterministic routing technology that ensures identical routing resource usage for any function regardless of placement in the device. The MultiTrack interconnect and DirectDrive technology simplify the integration stage of block-based designing by eliminating the re-optimization cycles that typically follow design changes and additions. The MultiTrack interconnect consists of row and column interconnects that span fixed distances. A routing structure with fixed length resources for all devices allows predictable and repeatable performance when migrating through different device densities. Dedicated row interconnects route signals to and from LABs, DSP blocks, and TriMatrix memory in the same row. These row resources include: - Direct link interconnects between LABs and adjacent blocks - R4 interconnects traversing four blocks to the right or left - R24 row interconnects for high-speed access across the length of the device Figure 2-26. M-RAM Row Unit Interface to Interconnect Table 2–4 shows the input and output data signal connections along with the address and control signal input connections to the row unit interfaces (L0 to L5 and R0 to R5). Table 2–15 shows the possible settings for the I/O standards with drive strength control. | Table 2–15. Programn | nable Drive Strength Note | (1) | |----------------------|---|--| | I/O Standard | I _{OH} / I _{OL} Current Strength
Setting (mA) for Column
I/O Pins | I _{OH} / I _{OL} Current Strength
Setting (mA) for Row I/O
Pins | | 3.3-V LVTTL | 24, 20, 16, 12, 8, 4 | 12, 8, 4 | | 3.3-V LVCMOS | 24, 20, 16, 12, 8, 4 | 8, 4 | | 2.5-V LVTTL/LVCMOS | 16, 12, 8, 4 | 12, 8, 4 | | 1.8-V LVTTL/LVCMOS | 12, 10, 8, 6, 4, 2 | 8, 6, 4, 2 | | 1.5-V LVCMOS | 8, 6, 4, 2 | 4, 2 | | SSTL-2 Class I | 12, 8 | 12, 8 | | SSTL-2 Class II | 24, 20, 16 | 16 | | SSTL-18 Class I | 12, 10, 8, 6, 4 | 10, 8, 6, 4 | | SSTL-18 Class II | 20, 18, 16, 8 | - | | HSTL-18 Class I | 12, 10, 8, 6, 4 | 12, 10, 8, 6, 4 | | HSTL-18 Class II | 20, 18, 16 | - | | HSTL-15 Class I | 12, 10, 8, 6, 4 | 8, 6, 4 | | HSTL-15 Class II | 20, 18, 16 | - | *Note to Table 2–15:* # **Open-Drain Output** Stratix II devices provide an optional open-drain (equivalent to an open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write-enable signals) that can be asserted by any of several devices. #### **Bus Hold** Each Stratix II device I/O pin provides an optional bus-hold feature. The bus-hold circuitry can weakly hold the signal on an I/O pin at its last-driven state. Since the bus-hold feature holds the last-driven state of the pin until the next input signal is present, you do not need an external pull-up or pull-down resistor to hold a signal level when the bus is tri-stated. The Quartus II software default current setting is the maximum setting for each I/O standard. | Table 2–19. Board Design Recon | nmendations f | or nCEO | | | | | | | | |--|---|---------------------------|---------------------------|---------------------------|---------------------------|--|--|--|--| | nCE Input Ruffer Power in I/O | Stratix II nCEO V _{CCIO} Voltage Level in I/O Bank 7 | | | | | | | | | | nCE Input Buffer Power in I/O
Bank 3 | V _{CC10} = 3.3 V | V _{CC10} = 2.5 V | V _{CC10} = 1.8 V | V _{CC10} = 1.5 V | V _{CCIO} = 1.2 V | | | | | | VCCSEL high (V _{CCIO} Bank 3 = 1.5 V) | √ (1), (2) | ✓ (3), (4) | √ (5) | ✓ | ✓ | | | | | | VCCSEL high (V _{CCIO} Bank 3 = 1.8 V) | √ (1), (2) | ✓ (3), (4) | ✓ | ✓ | Level shifter required | | | | | | VCCSEL low (nCE Powered by V _{CCPD} = 3.3V) | √ | √ (4) | √ (6) | Level shifter required | Level shifter required | | | | | #### Notes to Table 2-19: - (1) Input buffer is 3.3-V tolerant. - (2) The nCEO output buffer meets V_{OH} (MIN) = 2.4 V. - (3) Input buffer is 2.5-V tolerant. - (4) The nCEO output buffer meets V_{OH} (MIN) = 2.0 V. - (5) Input buffer is 1.8-V tolerant. - (6) An external 250-Ω pull-up resistor is not required, but recommended if signal levels on the board are not optimal. For JTAG chains, the TDO pin of the first device drives the TDI pin of the second device in the chain. The V_{CCSEL} input on JTAG input I/O cells (TCK, TMS, TDI, and TRST) is internally hardwired to GND selecting the 3.3-V/2.5-V input buffer powered by V_{CCPD} . The ideal case is to have the V_{CCIO} of the TDO bank from the first device to match the V_{CCSEL} settings for TDI on the second device, but that may not be possible depending on the application. Table 2–20 contains board design recommendations to ensure proper JTAG chain operation. | Table 2-20. | Table 2–20. Supported TDO/TDI Voltage Combinations (Part 1 of 2) | | | | | | | | | | |-------------|--|---------------------------|--|---------------------------|---------------------------|---------------------------|--|--|--|--| | Device | TDI Input | ; | Stratix II TDO V _{CC10} Voltage Level in I/O Bank 4 | | | | | | | | | | Buffer Power | V _{CC10} = 3.3 V | V _{CC10} = 2.5 V | V _{CC10} = 1.8 V | V _{CC10} = 1.5 V | V _{CC10} = 1.2 V | | | | | | Stratix II | Always
V _{CCPD} (3.3V) | √ (1) | √ (2) | √ (3) | Level shifter required | Level shifter required | | | | | An encryption configuration file is the same size as a non-encryption configuration file. When using a serial configuration scheme such as passive serial (PS) or active serial (AS), configuration time is the same whether or not the design security feature is enabled. If the fast passive parallel (FPP) scheme us used with the design security or decompression feature, a $4\times$ DCLK is required. This results in a slower configuration time when compared to the configuration time of an FPGA that has neither the design security, nor decompression feature enabled. For more information about this feature, refer to *AN 341: Using the Design Security Feature in Stratix II Devices*. Contact your local Altera sales representative to request this document. #### Device Configuration Data Decompression Stratix II FPGAs support decompression of configuration data, which saves configuration memory space and time. This feature allows you to store compressed configuration data in configuration devices or other memory, and transmit this compressed bit stream to Stratix II FPGAs. During configuration, the Stratix II FPGA decompresses the bit stream in real time and programs its SRAM cells. Stratix II FPGAs support decompression in the FPP (when using a MAX II device/microprocessor and flash memory), AS and PS configuration schemes. Decompression is not supported in the PPA configuration scheme nor in JTAG-based configuration. #### Remote System Upgrades Shortened design cycles, evolving standards, and system deployments in remote locations are difficult challenges faced by modern system designers. Stratix II devices can help effectively deal with these challenges with their inherent re-programmability and dedicated circuitry to perform remote system updates. Remote system updates help deliver feature enhancements and bug fixes without costly recalls, reduce time to market, and extend product life. Stratix II FPGAs feature dedicated remote system upgrade circuitry to facilitate remote system updates. Soft logic (Nios® processor or user logic) implemented in the Stratix II device can download a new configuration image from a remote location, store it in configuration memory, and direct the dedicated remote system upgrade circuitry to initiate a reconfiguration cycle. The dedicated circuitry performs error detection during and after the configuration process, recovers from any error condition by reverting back to a safe configuration image, and provides Figure 4–1. Hot Socketing Circuit Block Diagram for Stratix II Devices The POR circuit monitors V_{CCINT} voltage level and keeps I/O pins tristated until the device is in user mode. The weak pull-up resistor (R) from the I/O pin to V_{CCIO} is present to keep the I/O pins from floating. The 3.3-V tolerance control circuit permits the I/O pins to be driven by 3.3 V before V_{CCIO} and/or V_{CCINT} and/or V_{CCPD} are powered, and it prevents the I/O pins from driving out when the device is not in user mode. The hot socket circuit prevents I/O pins from internally powering V_{CCIO} , V_{CCINT} , and V_{CCPD} when driven by external signals before the device is powered. Figure 4–2 shows a transistor level cross section of the Stratix II device I/O buffers. This design ensures that the output buffers do not drive when V_{CCIO} is powered before V_{CCINT} or if the I/O pad voltage is higher than V_{CCIO} . This also applies for sudden voltage spikes during hot insertion. There is no current path from signal I/O pins to V_{CCINT} or V_{CCIO} or V_{CCPD} during hot insertion. The V_{PAD} leakage current charges the 3.3-V tolerant circuit capacitance. **Table 5–30. Series On-Chip Termination Specification for Top & Bottom I/O Banks (Part 2 of 2)**Notes (1), 2 | | | | Resist | ance Toleranc | e | |--------------------------------|--|-----------------------------------|-------------------|-------------------|------| | Symbol | Description | Conditions | Commercial
Max | Industrial
Max | Unit | | 50-Ω R _S
3.3/2.5 | Internal series termination with calibration (50- Ω setting) | $V_{CCIO} = 3.3/2.5 \text{ V}$ | ±5 | ±10 | % | | | Internal series termination without calibration (50-Ω setting) | $V_{CCIO} = 3.3/2.5 \text{ V}$ | ±30 | ±30 | % | | 50-Ω R _T
2.5 | Internal parallel termination with calibration (50-Ω setting) | V _{CCIO} = 1.8 V ±30 ±30 | | ±30 | % | | 25-Ω R _S
1.8 | Internal series termination with calibration (25-Ω setting) | V _{CCIO} = 1.8 V | ±5 | ±10 | % | | | Internal series termination without calibration (25- Ω setting) | V _{CCIO} = 1.8 V | ±30 | ±30 | % | | 50-Ω R _S
1.8 | Internal series termination with calibration (50-Ω setting) | V _{CCIO} = 1.8 V | ±5 | ±10 | % | | | Internal series termination without calibration (50- Ω setting) | V _{CCIO} = 1.8 V | ±30 | ±30 | % | | 50-Ω R _T
1.8 | Internal parallel termination with calibration (50-Ω setting) | V _{CCIO} = 1.8 V | ±10 | ±15 | % | | 50–Ω R _S
1.5 | Internal series termination with calibration (50-Ω setting) | V _{CCIO} = 1.5 V | ±8 | ±10 | % | | | Internal series termination without calibration (50-Ω setting) | V _{CCIO} = 1.5 V | ±36 | ±36 | % | | 50-Ω R _T
1.5 | Internal parallel termination with calibration (50-Ω setting) | V _{CCIO} = 1.5 V | ±10 | ±15 | % | | 50–Ω R _S
1.2 | Internal series termination with calibration (50-Ω setting) | V _{CCIO} = 1.2 V | ±8 | ±10 | % | | | Internal series termination without calibration (50-Ω setting) | V _{CCIO} = 1.2 V | ±50 | ±50 | % | | 50-Ω R _T
1.2 | Internal parallel termination with calibration (50- Ω setting) | V _{CCIO} = 1.2 V | ±10 | ±15 | % | #### Notes for Table 5-30: ⁽¹⁾ The resistance tolerances for calibrated SOCT and POCT are for the moment of calibration. If the temperature or voltage changes over time, the tolerance may also change. ⁽²⁾ On-chip parallel termination with calibration is only supported for input pins. | | | | peed | | peed | | peed | | peed | | |-----------------------------|---|---------|-----------|---------|------------------|----------------|-------|---------|-------|------| | Symbol | Parameter | Grad | Grade (1) | | Grade (2) | | ade | Grade | | Unit | | Oymboi | raidilicioi | Min (3) | Max | Min (3) | Max | Min
(4) | Max | Min (3) | Max | | | t _{SU} | IOE input and output register setup time before clock | 122 | | 128 | | 140
140 | | 163 | | ps | | t _H | IOE input and output register hold time afte clock | | | 75 | | 82
82 | | 96 | | ps | | t _{CO} | IOE input and output register clock-to-output delay | 101 | 169 | 101 | 177 | 97
101 | 194 | 101 | 226 | ps | | t _{PIN2} COMBOUT_R | Row input pin to IOE combinational output | 410 | 760 | 410 | 798 | 391
410 | 873 | 873 410 | | ps | | t _{PIN2COMBOUT_C} | Column input pin to IOE combinational output | 428 | 787 | 428 | 825 | 408
428 | 904 | 428 | 1,054 | ps | | t _{COMBIN2PIN_R} | Row IOE data input to combinational output pin | 1,101 | 2,026 | 1,101 | 2,127 | 1,049
1,101 | 2,329 | 1,101 | 2,439 | ps | | t _{COMBIN2PIN_C} | Column IOE data input to combinational output pin | 991 | 1,854 | 991 | 1,946 | 944
991 | 2,131 | 991 | 2,246 | ps | | t _{CLR} | Minimum clear pulse width | 200 | | 210 | | 229
229 | | 268 | | ps | | t _{PRE} | Minimum preset pulse width | 200 | | 210 | | 229
229 | | 268 | | ps | | t _{CLKL} | Minimum clock low time | 600 | | 630 | | 690
690 | | 804 | | ps | | t _{CLKH} | Minimum clock high time | 600 | | 630 | | 690
690 | | 804 | | ps | #### *Notes to Table 5–38:* - (1) These numbers apply to -3 speed grade EP2S15, EP2S30, EP2S60, and EP2S90 devices. - (2) These numbers apply to -3 speed grade EP2S130 and EP2S180 devices. - (3) For the -3 and -5 speed grades, the minimum timing is for the commercial temperature grade. Only -4 speed grade devices offer the industrial temperature grade. - (4) For the -4 speed grade, the first number is the minimum timing parameter for industrial devices. The second number is the minimum timing parameter for commercial devices. | Cumbal | Dovomatav | | peed
le (1) | | peed
e <i>(2)</i> | | peed
ide | -5 S
Gra | peed
ide | I I m i 4 | |------------------------------|--|---------|----------------|---------|----------------------|----------------|-------------|--------------------------|-------------|-----------| | Symbol | Parameter | Min (3) | Max | Min (3) | Max | Min (4) | Max | Min (3) | Max | Unit | | t _{SU} | Input, pipeline, and output register setup time before clock | 50 | | 52 | | 57
57 | | 67 | | ps | | t _H | Input, pipeline, and output register hold time after clock | | | 189 | | 206
206 | | 241 | | ps | | t _{co} | Input, pipeline, and output register clock-to-output delay | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ps | | tinreg2PIPE9 | block pipeline register
in 9 × 9-bit mode | | 2,030 | 1,312 | 2,030 | 1,250
1,312 | 2,334 | 1,312 | 2,720 | ps | | t _{INREG2PIPE18} | Input register to DSP block pipeline register in 18 × 18-bit mode | 1,302 | 2,010 | 1,302 | 2,110 | 1,240
1,302 | 2,311 | 1,302 | 2,693 | ps | | tinreg2PIPE36 | Input register to DSP
block pipeline register
in 36 × 36-bit mode | 1,302 | 2,010 | 1,302 | 2,110 | 1,240
1,302 | 2,311 | 1,302 | 2,693 | ps | | t _{PIPE2OUTREG2ADD} | DSP block pipeline
register to output
register delay in two-
multipliers adder
mode | 924 | 1,450 | 924 | 1,522 | 880
924 | 1,667 | 924 | 1,943 | ps | | t _{PIPE2OUTREG4ADD} | DSP block pipeline
register to output
register delay in four-
multipliers adder
mode | 1,134 | 1,850 | 1,134 | 1,942 | 1,080
1,134 | 2,127 | 1,134 | 2,479 | ps | | t _{PD9} | Combinational input to output delay for 9×9 | 2,100 | 2,880 | 2,100 | 3,024 | 2,000
2,100 | 3,312 | 2,100 | 3,859 | ps | | t _{PD18} | Combinational input to output delay for 18 × 18 | 2,110 | 2,990 | 2,110 | 3,139 | 2,010
2,110 | 3,438 | 2,110 | 4,006 | ps | | t _{PD36} | Combinational input to output delay for 36 × 36 | 2,939 | 4,450 | 2,939 | 4,672 | 2,800
2,939 | 5,117 | 2,939 | 5,962 | ps | | t _{CLR} | Minimum clear pulse width | 2,212 | | 2,322 | | 2,543
2,543 | | 2,964 | | ps | | Table 5–74. Stra | atix II I/O Inpu | t Delay for Ro | w Pins (Part 2 | ? of 2) | | | | | |-----------------------|--------------------|----------------|----------------|------------------|-----------|----------|----------|------| | 1/0 04 | D | Minimu | m Timing | -3 Speed | -3 Speed | -4 Speed | -5 Speed | 11 | | I/O Standard | Parameter | Industrial | Commercial | Grade (1) | Grade (2) | Grade | Grade | Unit | | 1.5-V HSTL | t _{P1} | 602 | 631 | 1056 | 1107 | 1212 | 1413 | ps | | Class II | t _{PCOUT} | 278 | 292 | 529 | 555 | 608 | 708 | ps | | 1.8-V HSTL
Class I | t _{P1} | 577 | 605 | 960 | 1006 | 1101 | 1285 | ps | | | t _{PCOUT} | 253 | 266 | 433 | 454 | 497 | 580 | ps | | 1.8-V HSTL | t _{P1} | 577 | 605 | 960 | 1006 | 1101 | 1285 | ps | | Class II | t _{PCOUT} | 253 | 266 | 433 | 454 | 497 | 580 | ps | | LVDS | t _{P1} | 515 | 540 | 948 | 994 | 1088 | 1269 | ps | | | t _{PCOUT} | 191 | 201 | 421 | 442 | 484 | 564 | ps | | HyperTransport | t _{Pl} | 515 | 540 | 948 | 994 | 1088 | 1269 | ps | | | t _{PCOUT} | 191 | 201 | 421 | 442 | 484 | 564 | ps | #### *Notes for Table 5–74:* - These numbers apply to -3 speed grade EP2S15, EP2S30, EP2S60, and EP2S90 devices. These numbers apply to -3 speed grade EP2S130 and EP2S180 devices. | Table 5-75. St | ratix II I/O (| Output Delay i | for Column Pi | ns (Part 1 of 8 | ') | | | | | |----------------|-------------------|------------------|---------------|-----------------|-----------------------|-----------------------|----------------|----------------|------| | | | | Minimu | m Timing | -3 | -3 | -4 | -5 | | | I/O Standard | Drive
Strength | Parameter | Industrial | Commercial | Speed
Grade
(3) | Speed
Grade
(4) | Speed
Grade | Speed
Grade | Unit | | LVTTL | 4 mA | t _{OP} | 1178 | 1236 | 2351 | 2467 | 2702 | 2820 | ps | | | | t _{DIP} | 1198 | 1258 | 2417 | 2537 | 2778 | 2910 | ps | | | 8 mA | t _{OP} | 1041 | 1091 | 2036 | 2136 | 2340 | 2448 | ps | | | | t _{DIP} | 1061 | 1113 | 2102 | 2206 | 2416 | 2538 | ps | | | 12 mA | t _{OP} | 976 | 1024 | 2036 | 2136 | 2340 | 2448 | ps | | | | t _{DIP} | 996 | 1046 | 2102 | 2206 | 2416 | 2538 | ps | | | 16 mA | t _{OP} | 951 | 998 | 1893 | 1986 | 2176 | 2279 | ps | | | | t _{DIP} | 971 | 1020 | 1959 | 2056 | 2252 | 2369 | ps | | | 20 mA | t _{OP} | 931 | 976 | 1787 | 1875 | 2054 | 2154 | ps | | | | t _{DIP} | 951 | 998 | 1853 | 1945 | 2130 | 2244 | ps | | | 24 mA | t _{OP} | 924 | 969 | 1788 | 1876 | 2055 | 2156 | ps | | | (1) | t _{DIP} | 944 | 991 | 1854 | 1946 | 2131 | 2246 | ps | | | | | Minimu | m Timing | -3 | -3 | -4 | -5 | | |------------------------------------|-------------------|------------------|------------|------------|-----------------------|-----------------------|----------------|----------------|------| | I/O Standard | Drive
Strength | Parameter | Industrial | Commercial | Speed
Grade
(3) | Speed
Grade
(4) | Speed
Grade | Speed
Grade | Unit | | Differential | 8 mA | t _{OP} | 913 | 957 | 1715 | 1799 | 1971 | 2041 | ps | | SSTL-2 Class I | | t _{DIP} | 933 | 979 | 1781 | 1869 | 2047 | 2131 | ps | | | 12 mA | t _{OP} | 896 | 940 | 1672 | 1754 | 1921 | 1991 | ps | | | | t _{DIP} | 916 | 962 | 1738 | 1824 | 1997 | 2081 | ps | | Differential | 16 mA | t _{OP} | 876 | 918 | 1609 | 1688 | 1849 | 1918 | ps | | SSTL-2 Class II | | t _{DIP} | 896 | 940 | 1675 | 1758 | 1925 | 2008 | ps | | | 20 mA | t _{OP} | 877 | 919 | 1598 | 1676 | 1836 | 1905 | ps | | | | t _{DIP} | 897 | 941 | 1664 | 1746 | 1912 | 1995 | ps | | | 24 mA | t _{OP} | 872 | 915 | 1596 | 1674 | 1834 | 1903 | ps | | | | t _{DIP} | 892 | 937 | 1662 | 1744 | 1910 | 1993 | ps | | Differential
SSTL-18
Class I | 4 mA | t _{OP} | 909 | 953 | 1690 | 1773 | 1942 | 2012 | ps | | | | t _{DIP} | 929 | 975 | 1756 | 1843 | 2018 | 2102 | ps | | 0.000 | 6 mA | t _{OP} | 914 | 958 | 1656 | 1737 | 1903 | 1973 | ps | | | | t _{DIP} | 934 | 980 | 1722 | 1807 | 1979 | 2063 | ps | | | 8 mA | t _{OP} | 894 | 937 | 1640 | 1721 | 1885 | 1954 | ps | | | | t _{DIP} | 914 | 959 | 1706 | 1791 | 1961 | 2044 | ps | | | 10 mA | t _{OP} | 898 | 942 | 1638 | 1718 | 1882 | 1952 | ps | | | | t _{DIP} | 918 | 964 | 1704 | 1788 | 1958 | 2042 | ps | | | 12 mA | t _{OP} | 891 | 936 | 1626 | 1706 | 1869 | 1938 | ps | | | | t _{DIP} | 911 | 958 | 1692 | 1776 | 1945 | 2028 | ps | | Differential | 8 mA | t _{OP} | 883 | 925 | 1597 | 1675 | 1835 | 1904 | ps | | SSTL-18
Class II | | t _{DIP} | 903 | 947 | 1663 | 1745 | 1911 | 1994 | ps | | J.200 II | 16 mA | t _{OP} | 894 | 937 | 1578 | 1655 | 1813 | 1882 | ps | | | | t _{DIP} | 914 | 959 | 1644 | 1725 | 1889 | 1972 | ps | | | 18 mA | t _{OP} | 890 | 933 | 1585 | 1663 | 1821 | 1890 | ps | | | | t _{DIP} | 910 | 955 | 1651 | 1733 | 1897 | 1980 | ps | | | 20 mA | t _{OP} | 890 | 933 | 1583 | 1661 | 1819 | 1888 | ps | | | | t _{DIP} | 910 | 955 | 1649 | 1731 | 1895 | 1978 | ps | | Table 5–103. Document Revision History (Part 3 of 3) | | | |--|--|--------------------| | Date and
Document
Version | Changes Made | Summary of Changes | | January 2005,
v2.0 | Updated the "Power Consumption" section. Added the "High-Speed I/O Specifications" and "On-Chip Termination Specifications" sections. Removed the ESD Protection Specifications section. Updated Tables 5–3 through 5–13, 5–16 through 5–18, 5–21, 5–35, 5–39, and 5–40. Updated tables in "Timing Model" section. Added Tables 5–30 and 5–31. | _ | | October 2004,
v1.2 | Updated Table 5–3. Updated introduction text in the "PLL Timing
Specifications" section. | _ | | July 2004, v1.1 | Re-organized chapter. Added typical values and C_{OUTFB} to Table 5–32. Added undershoot specification to Note (4) for Tables 5–1 through 5–9. Added Note (1) to Tables 5–5 and 5–6. Added V_{ID} and V_{ICM} to Table 5–10. Added "I/O Timing Measurement Methodology" section. Added Table 5–72. Updated Tables 5–1 through 5–2 and Tables 5–24 through 5–29. | _ | | February 2004,
v1.0 | Added document to the Stratix II Device Handbook. | _ |