Welcome to **E-XFL.COM** ## Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 6627 | | Number of Logic Elements/Cells | 132540 | | Total RAM Bits | 6747840 | | Number of I/O | 1126 | | Number of Gates | - | | Voltage - Supply | 1.15V ~ 1.25V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 1508-BBGA, FCBGA | | Supplier Device Package | 1508-FBGA, FC (40x40) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep2s130f1508c3 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Stratix II devices are available in up to three speed grades, -3, -4, and -5, with -3 being the fastest. Table 1-5 shows Stratix II device speed-grade offerings. | Table 1-5 | Table 1–5. Stratix II Device Speed Grades | | | | | | | | | |-----------|---|----------------------------|--------------------------------------|----------------------------|----------------------------|------------------------------|------------------------------|--|--| | Device | Temperature
Grade | 484-Pin
FineLine
BGA | 484-Pin
Hybrid
FineLine
BGA | 672-Pin
FineLine
BGA | 780-Pin
FineLine
BGA | 1,020-Pin
FineLine
BGA | 1,508-Pin
FineLine
BGA | | | | EP2S15 | Commercial | -3, -4, -5 | | -3, -4, -5 | | | | | | | | Industrial | -4 | | -4 | | | | | | | EP2S30 | Commercial | -3, -4, -5 | | -3, -4, -5 | | | | | | | | Industrial | -4 | | -4 | | | | | | | EP2S60 | Commercial | -3, -4, -5 | | -3, -4, -5 | | -3, -4, -5 | | | | | | Industrial | -4 | | -4 | | -4 | | | | | EP2S90 | Commercial | | -4, -5 | | -4, -5 | -3, -4, -5 | -3, -4, -5 | | | | | Industrial | | | | | -4 | -4 | | | | EP2S130 | Commercial | | | | -4, -5 | -3, -4, -5 | -3, -4, -5 | | | | | Industrial | | | | | -4 | -4 | | | | EP2S180 | Commercial | | | | _ | -3, -4, -5 | -3, -4, -5 | | | | | Industrial | | | | | -4 | -4 | | | One ALM contains two programmable registers. Each register has data, clock, clock enable, synchronous and asynchronous clear, asynchronous load data, and synchronous and asynchronous load/preset inputs. Global signals, general-purpose I/O pins, or any internal logic can drive the register's clock and clear control signals. Either general-purpose I/O pins or internal logic can drive the clock enable, preset, asynchronous load, and asynchronous load data. The asynchronous load data input comes from the datae or dataf input of the ALM, which are the same inputs that can be used for register packing. For combinational functions, the register is bypassed and the output of the LUT drives directly to the outputs of the ALM. Each ALM has two sets of outputs that drive the local, row, and column routing resources. The LUT, adder, or register output can drive these output drivers independently (see Figure 2–6). For each set of output drivers, two ALM outputs can drive column, row, or direct link routing connections, and one of these ALM outputs can also drive local interconnect resources. This allows the LUT or adder to drive one output while the register drives another output. This feature, called register packing, improves device utilization because the device can use the register and the combinational logic for unrelated functions. Another special packing mode allows the register output to feed back into the LUT of the same ALM so that the register is packed with its own fan-out LUT. This provides another mechanism for improved fitting. The ALM can also drive out registered and unregistered versions of the LUT or adder output. See the *Performance & Logic Efficiency Analysis of Stratix II Devices White Paper* for more information on the efficiencies of the Stratix II ALM and comparisons with previous architectures. ## **ALM Operating Modes** The Stratix II ALM can operate in one of the following modes: - Normal mode - Extended LUT mode - Arithmetic mode - Shared arithmetic mode Each mode uses ALM resources differently. In each mode, eleven available inputs to the ALM--the eight data inputs from the LAB local interconnect; carry-in from the previous ALM or LAB; the shared arithmetic chain connection from the previous ALM or LAB; and the register chain connection--are directed to different destinations to implement the desired logic function. LAB-wide signals provide clock, asynchronous clear, asynchronous preset/load, synchronous clear, Figure 2–7. ALM in Normal Mode Note (1) Note to Figure 2-7: (1) Combinations of functions with fewer inputs than those shown are also supported. For example, combinations of functions with the following number of inputs are supported: 4 and 3, 3 and 3, 3 and 2, 5 and 2, etc. The normal mode provides complete backward compatibility with fourinput LUT architectures. Two independent functions of four inputs or less can be implemented in one Stratix II ALM. In addition, a five-input function and an independent three-input function can be implemented without sharing inputs. Figure 2–27. DSP Blocks Arranged in Columns DSP Block Column Figure 2–27 shows one of the columns with surrounding LAB rows. ## **Modes of Operation** The adder, subtractor, and accumulate functions of a DSP block have four modes of operation: - Simple multiplier - Multiply-accumulator - Two-multipliers adder - Four-multipliers adder Table 2–6 shows the different number of multipliers possible in each DSP block mode according to size. These modes allow the DSP blocks to implement numerous applications for DSP including FFTs, complex FIR, FIR, and 2D FIR filters, equalizers, IIR, correlators, matrix multiplication and many other functions. The DSP blocks also support mixed modes and mixed multiplier sizes in the same block. For example, half of one DSP block can implement one 18×18 -bit multiplier in multiply-accumulator mode, while the other half of the DSP block implements four 9×9 -bit multipliers in simple multiplier mode. | Table 2–6. Multiplier Size & Configurations per DSP Block | | | | | | | | |---|--|---|--|--|--|--|--| | DSP Block Mode | 9 × 9 | 18 × 18 | 36 × 36 | | | | | | Multiplier | Eight multipliers with eight product outputs | Four multipliers with four product outputs | One multiplier with one product output | | | | | | Multiply-accumulator | - | Two 52-bit multiply-
accumulate blocks | - | | | | | | Two-multipliers adder | Four two-multiplier adder (two 9 × 9 complex multiply) | Two two-multiplier adder (one 18 × 18 complex multiply) | - | | | | | | Four-multipliers adder | Two four-multiplier adder | One four-multiplier adder | - | | | | | #### **DSP Block Interface** Stratix II device DSP block input registers can generate a shift register that can cascade down in the same DSP block column. Dedicated connections between DSP blocks provide fast connections between the shift register inputs to cascade the shift register chains. You can cascade registers within multiple DSP blocks for 9 \times 9- or 18 \times 18-bit FIR filters larger than four taps, with additional adder stages implemented in ALMs. If the DSP block is configured as 36 \times 36 bits, the adder, subtractor, or accumulator stages are implemented in ALMs. Each DSP block can route the shift register chain out of the block to cascade multiple columns of DSP blocks. Figure 2-30. DSP Block Interface to Interconnect A bus of 44 control signals feeds the entire DSP block. These signals include clocks, asynchronous clears, clock enables, signed/unsigned control signals, addition and subtraction control signals, rounding and saturation control signals, and accumulator synchronous loads. The clock signals are routed from LAB row clocks and are generated from specific LAB rows at the DSP block interface. - Output drive strength control - Tri-state buffers - Bus-hold circuitry - Programmable pull-up resistors - Programmable input and output delays - Open-drain outputs - DQ and DQS I/O pins - Double data rate (DDR) registers The IOE in Stratix II devices contains a bidirectional I/O buffer, six registers, and a latch for a complete embedded bidirectional single data rate or DDR transfer. Figure 2–46 shows the Stratix II IOE structure. The IOE contains two input registers (plus a latch), two output registers, and two output enable registers. The design can use both input registers and the latch to capture DDR input and both output registers to drive DDR outputs. Additionally, the design can use the output enable (OE) register for fast clock-to-output enable timing. The negative edge-clocked OE register is used for DDR SDRAM interfacing. The Quartus II software automatically duplicates a single OE register that controls multiple output or bidirectional pins. Figure 2–48. Column I/O Block Connection to the Interconnect Note (1) #### Note to Figure 2-48: (1) The 32 data and control signals consist of eight data out lines: four lines each for DDR applications io_dataouta[3..0] and io_dataoutb[3..0], four output enables io_oe[3..0], four input clock enables io_ce_in[3..0], four output clock enables io_ce_out[3..0], four clocks io_clk[3..0], four asynchronous clear and preset signals io_aclr/apreset[3..0], and four synchronous clear and preset signals io sclr/spreset[3..0]. Figure 2-57. Stratix II I/O Banks Notes (1), (2), (3), (4) #### *Notes to Figure 2–57:* - (1) Figure 2–57 is a top view of the silicon die that corresponds to a reverse view for flip-chip packages. It is a graphical representation only. - (2) Depending on the size of the device, different device members have different numbers of V_{REF} groups. Refer to the pin list and the Quartus II software for exact locations. - (3) Banks 9 through 12 are enhanced PLL external clock output banks. These PLL banks utilize the adjacent V_{REF} group when voltage-referenced standards are implemented. For example, if an SSTL input is implemented in PLL bank 10, the voltage level at VREFB7 is the reference voltage level for the SSTL input. - (4) Horizontal I/O banks feature SERDES and DPA circuitry for high speed differential I/O standards. See the *High Speed Differential I/O Interfaces in Stratix II & Stratix II GX Devices* chapter of the *Stratix II Device Handbook, Volume 2* or the *Stratix II GX Device Handbook, Volume 2* for more information on differential I/O standards. | Davies | TDI Input | Stratix II TDO V _{CC10} Voltage Level in I/O Bank 4 | | | | | | | |----------------|--------------|--|---------------------------|--------------|------------------------|------------------------|--|--| | Device | Buffer Power | V _{CC10} = 3.3 V | V _{CCIO} = 1.2 V | | | | | | | Non-Stratix II | VCC = 3.3 V | √ (1) | √ (2) | √ (3) | Level shifter required | Level shifter required | | | | | VCC = 2.5 V | ✓ (1), (4) | √ (2) | √ (3) | Level shifter required | Level shifter required | | | | | VCC = 1.8 V | ✓ (1), (4) | ✓ (2), (5) | ~ | Level shifter required | Level shifter required | | | | | VCC = 1.5 V | √ (1), (4) | √ (2), (5) | √ (6) | ✓ | ✓ | | | Notes to Table 2-20: - (1) The TDO output buffer meets V_{OH} (MIN) = 2.4 V. - (2) The TDO output buffer meets V_{OH} (MIN) = 2.0 V. - (3) An external 250-Ω pull-up resistor is not required, but recommended if signal levels on the board are not optimal. - (4) Input buffer must be 3.3-V tolerant. - (5) Input buffer must be 2.5-V tolerant. - (6) Input buffer must be 1.8-V tolerant. ## High-Speed Differential I/O with DPA Support Stratix II devices contain dedicated circuitry for supporting differential standards at speeds up to 1 Gbps. The LVDS and HyperTransport differential I/O standards are supported in the Stratix II device. In addition, the LVPECL I/O standard is supported on input and output clock pins on the top and bottom I/O banks. The high-speed differential I/O circuitry supports the following high speed I/O interconnect standards and applications: - SPI-4 Phase 2 (POS-PHY Level 4) - SFI-4 - Parallel RapidIO - HyperTransport technology There are four dedicated high-speed PLLs in the EP2S15 to EP2S30 devices and eight dedicated high-speed PLLs in the EP2S60 to EP2S180 devices to multiply reference clocks and drive high-speed differential SERDES channels. Tables 2–21 through 2–26 show the number of channels that each fast PLL can clock in each of the Stratix II devices. In Tables 2–21 through 2–26 the first row for each transmitter or receiver provides the number of channels driven directly by the PLL. The second row below it shows the maximum channels a PLL can drive if cross bank channels are used from the adjacent center PLL. For example, in the 484-pin FineLine BGA EP2S15 Figure 2-59. Stratix II Receiver Channel An external pin or global or regional clock can drive the fast PLLs, which can output up to three clocks: two multiplied high-speed clocks to drive the SERDES block and/or external pin, and a low-speed clock to drive the logic array. In addition, eight phase-shifted clocks from the VCO can feed to the DPA circuitry. For more information on the fast PLL, see the *PLLs in Stratix II & Stratix II GX Devices* chapter in volume 2 of the *Stratix II Device Handbook* or the *Stratix II GX Device Handbook*. The eight phase-shifted clocks from the fast PLL feed to the DPA block. The DPA block selects the closest phase to the center of the serial data eye to sample the incoming data. This allows the source-synchronous circuitry to capture incoming data correctly regardless of the channel-to-channel or clock-to-channel skew. The DPA block locks to a phase closest to the serial data phase. The phase-aligned DPA clock is used to write the data into the synchronizer. The synchronizer sits between the DPA block and the data realignment and SERDES circuitry. Since every channel utilizing the DPA block can have a different phase selected to sample the data, the synchronizer is needed to synchronize the data to the high-speed clock domain of the data realignment and the SERDES circuitry. ## 3. Configuration & Testing SII51003-4.2 ## IEEE Std. 1149.1 JTAG Boundary-Scan Support All Stratix[®] II devices provide Joint Test Action Group (JTAG) boundary-scan test (BST) circuitry that complies with the IEEE Std. 1149.1. JTAG boundary-scan testing can be performed either before or after, but not during configuration. Stratix II devices can also use the JTAG port for configuration with the Quartus[®] II software or hardware using either Jam Files (.jam) or Jam Byte-Code Files (.jbc). Stratix II devices support IOE I/O standard setting reconfiguration through the JTAG BST chain. The JTAG chain can update the I/O standard for all input and output pins any time before or during user mode through the CONFIG_IO instruction. You can use this capability for JTAG testing before configuration when some of the Stratix II pins drive or receive from other devices on the board using voltage-referenced standards. Because the Stratix II device may not be configured before JTAG testing, the I/O pins may not be configured for appropriate electrical standards for chip-to-chip communication. Programming those I/O standards via JTAG allows you to fully test I/O connections to other devices. A device operating in JTAG mode uses four required pins, TDI,TDO, TMS, and TCK, and one optional pin, TRST. The TCK pin has an internal weak pull-down resistor, while the TDI,TMS and TRST pins have weak internal pull-ups. The JTAG input pins are powered by the 3.3-V VCCPD pins. The TDO output pin is powered by the $V_{\rm CCIO}$ power supply of bank 4. Stratix II devices also use the JTAG port to monitor the logic operation of the device with the SignalTap[®] II embedded logic analyzer. Stratix II devices support the JTAG instructions shown in Table 3–1. Stratix II, Stratix, Cyclone[®] II, and Cyclone devices must be within the first 17 devices in a JTAG chain. All of these devices have the same JTAG controller. If any of the Stratix II, Stratix, Cyclone II, or Cyclone devices are in the 18th of further position, they fail configuration. This does not affect SignalTap II. The Stratix II device instruction register length is 10 bits and the USERCODE register length is 32 bits. Tables 3–2 and 3–3 show the boundary-scan register length and device IDCODE information for Stratix II devices. The PLL_ENA pin and the configuration input pins (Table 3–4) have a dual buffer design: a 3.3-V/2.5-V input buffer and a 1.8-V/1.5-V input buffer. The VCCSEL input pin selects which input buffer is used. The 3.3-V/2.5-V input buffer is powered by $V_{CCPD_{\rm c}}$ while the 1.8-V/1.5-V input buffer is powered by $V_{\rm CCIO}$. Table 3–4 shows the pins affected by VCCSEL. | Table 3–4. Pins Affected by the Voltage Level at VCCSEL | | | | | | | |---|--|---|--|--|--|--| | Pin | VCCSEL = LOW (connected to GND) | | | | | | | nSTATUS (when used as an input) | | | | | | | | nCONFIG | | | | | | | | CONF_DONE (when used as an input) | | | | | | | | DATA[70] | | | | | | | | nCE | | | | | | | | DCLK (when used as an input) | 3.3/2.5-V input buffer is | 1.8/1.5-V input buffer is selected. Input buffer is | | | | | | CS | selected. Input buffer is powered by V _{CCPD} . | powered by V _{CCIO} of the I/O | | | | | | nWS | , 5015 | bank. | | | | | | nRS | | | | | | | | nCS | | | | | | | | CLKUSR | | | | | | | | DEV_OE | | | | | | | | DEV_CLRn | | | | | | | | RUnLU | | | | | | | | PLL_ENA | | | | | | | VCCSEL is sampled during power-up. Therefore, the VCCSEL setting cannot change on the fly or during a reconfiguration. The VCCSEL input buffer is powered by V_{CCINT} and must be hardwired to V_{CCPD} or ground. A logic high VCCSEL connection selects the 1.8-V/1.5-V input buffer, and a logic low selects the 3.3-V/2.5-V input buffer. VCCSEL should be set to comply with the logic levels driven out of the configuration device or MAX^{\otimes} II/microprocessor. If you need to support configuration input voltages of 3.3 V/2.5 V, you should set the VCCSEL to a logic low; you can set the V_{CCIO} of the I/O bank that contains the configuration inputs to any supported voltage. If #### Configuring Stratix II FPGAs with the MicroBlaster Driver The MicroBlaster™ software driver supports an RBF programming input file and is ideal for embedded FPP or PS configuration. The source code is developed for the Windows NT operating system, although it can be customized to run on other operating systems. For more information on the MicroBlaster software driver, see the Configuring the MicroBlaster Fast Passive Parallel Software Driver White Paper or the Configuring the MicroBlaster Passive Serial Software Driver White Paper on the Altera web site (www.altera.com). ## **PLL Reconfiguration** The phase-locked loops (PLLs) in the Stratix II device family support reconfiguration of their multiply, divide, VCO-phase selection, and bandwidth selection settings without reconfiguring the entire device. You can use either serial data from the logic array or regular I/O pins to program the PLL's counter settings in a serial chain. This option provides considerable flexibility for frequency synthesis, allowing real-time variation of the PLL frequency and delay. The rest of the device is functional while reconfiguring the PLL. See the *PLLs in Stratix II & Stratix II GX Devices* chapter in volume 2 of the *Stratix II Device Handbook* or the *Stratix II GX Device Handbook* for more information on Stratix II PLLs. ## Temperature Sensing Diode (TSD) Stratix II devices include a diode-connected transistor for use as a temperature sensor in power management. This diode is used with an external digital thermometer device. These devices steer bias current through the Stratix II diode, measuring forward voltage and converting this reading to temperature in the form of an 8-bit signed number (7 bits plus sign). The external device's output represents the junction temperature of the Stratix II device and can be used for intelligent power management. The diode requires two pins (tempdiodep and tempdioden) on the Stratix II device to connect to the external temperature-sensing device, as shown in Figure 3–1. The temperature sensing diode is a passive element and therefore can be used before the Stratix II device is powered. # 5. DC & Switching Characteristics SII51005-4.5 ## Operating Conditions Stratix[®] II devices are offered in both commercial and industrial grades. Industrial devices are offered in -4 speed grades and commercial devices are offered in -3 (fastest), -4, -5 speed grades. Tables 5–1 through 5–32 provide information about absolute maximum ratings, recommended operating conditions, DC electrical characteristics, and other specifications for Stratix II devices. #### **Absolute Maximum Ratings** Table 5–1 contains the absolute maximum ratings for the Stratix II device family. | Table 5–1. Stratix II Device Absolute Maximum Ratings Notes (1), (2), (3) | | | | | | | | | |---|-------------------------------|-------------------------|-----------------|---------|------|--|--|--| | Symbol | Parameter | Conditions | Minimum | Maximum | Unit | | | | | V_{CCINT} | Supply voltage | With respect to ground | -0.5 | 1.8 | V | | | | | V _{CCIO} | Supply voltage | With respect to ground | -0.5 | 4.6 | V | | | | | V _{CCPD} | Supply voltage | With respect to ground | -0.5 | 4.6 | V | | | | | V _{CCA} | Analog power supply for PLLs | With respect to ground | -0.5 | 1.8 | V | | | | | V _{CCD} | Digital power supply for PLLs | With respect to ground | -0.5 | 1.8 | V | | | | | VI | DC input voltage (4) | | -0.5 | 4.6 | V | | | | | I _{OUT} | DC output current, per pin | | -25 | 40 | mA | | | | | T _{STG} | Storage temperature | No bias | -65 | 150 | °C | | | | | T _J | Junction temperature | BGA packages under bias | - 55 | 125 | °C | | | | #### Notes to Tables 5-1 - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Conditions beyond those listed in Table 5–1 may cause permanent damage to a device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse affects on the device. - (3) Supply voltage specifications apply to voltage readings taken at the device pins, not at the power supply. - (4) During transitions, the inputs may overshoot to the voltage shown in Table 5–2 based upon the input duty cycle. The DC case is equivalent to 100% duty cycle. During transitions, the inputs may undershoot to −2.0 V for input currents less than 100 mA and periods shorter than 20 ns. | Table 5–73. Stratix II I/O Input Delay for Column Pins (Part 3 of 3) | | | | | | | | | |--|--------------------|----------------|------------|-------------------------|------------------|----------|-------|------| | | | Minimum Timing | | -3 Speed -3 Speed | -4 Speed | -5 Speed | 11!4 | | | I/O Standard | Parameter | Industrial | Commercial | Grade <i>(2)</i> | Grade (3) | Grade | Grade | Unit | | 1.2-V HSTL | t _{P1} | 645 | 677 | 1194 | 1252 | - | - | ps | | | t _{PCOUT} | 379 | 398 | 758 | 795 | - | - | ps | #### Notes for Table 5-73: - (1) These I/O standards are only supported on DQS pins. - (2) These numbers apply to -3 speed grade EP2S15, EP2S30, EP2S60, and EP2S90 devices. - (3) These numbers apply to -3 speed grade EP2S130 and EP2S180 devices. | Table 5–74. Stratix II I/O Input Delay for Row Pins (Part 1 of 2) | | | | | | | | | |---|--------------------|----------------|------------|-------------------|-------------------|----------|----------|-------| | I/O Standard | Parameter | Minimum Timing | | -3 Speed
Grade | -3 Speed
Grade | -4 Speed | -5 Speed | Unit | | i/O Stanuaru | 1 arameter | Industrial | Commercial | (1) | <i>(2)</i> | Grade | Grade | Ullit | | LVTTL | t _{PI} | 715 | 749 | 1287 | 1350 | 1477 | 1723 | ps | | | t _{PCOUT} | 391 | 410 | 760 | 798 | 873 | 1018 | ps | | 2.5 V | t _{PI} | 726 | 761 | 1273 | 1335 | 1461 | 1704 | ps | | | t _{PCOUT} | 402 | 422 | 746 | 783 | 857 | 999 | ps | | 1.8 V | t _{PI} | 788 | 827 | 1427 | 1497 | 1639 | 1911 | ps | | | t _{PCOUT} | 464 | 488 | 900 | 945 | 1035 | 1206 | ps | | 1.5 V | t _{PI} | 792 | 830 | 1498 | 1571 | 1720 | 2006 | ps | | | t _{PCOUT} | 468 | 491 | 971 | 1019 | 1116 | 1301 | ps | | LVCMOS | t _{PI} | 715 | 749 | 1287 | 1350 | 1477 | 1723 | ps | | | t _{PCOUT} | 391 | 410 | 760 | 798 | 873 | 1018 | ps | | SSTL-2 Class I | t _{PI} | 547 | 573 | 879 | 921 | 1008 | 1176 | ps | | | t _{PCOUT} | 223 | 234 | 352 | 369 | 404 | 471 | ps | | SSTL-2 Class II | t _{PI} | 547 | 573 | 879 | 921 | 1008 | 1176 | ps | | | t _{PCOUT} | 223 | 234 | 352 | 369 | 404 | 471 | ps | | SSTL-18 Class I | t _{PI} | 577 | 605 | 960 | 1006 | 1101 | 1285 | ps | | | t _{PCOUT} | 253 | 266 | 433 | 454 | 497 | 580 | ps | | SSTL-18 Class II | t _{Pl} | 577 | 605 | 960 | 1006 | 1101 | 1285 | ps | | | t _{PCOUT} | 253 | 266 | 433 | 454 | 497 | 580 | ps | | 1.5-V HSTL | t _{Pl} | 602 | 631 | 1056 | 1107 | 1212 | 1413 | ps | | Class I | t _{PCOUT} | 278 | 292 | 529 | 555 | 608 | 708 | ps | | | | | Minimu | m Timing | -3 | -3 | -4 | -5 | | |---------------------|-------------------|------------------|------------|------------|-----------------------|-----------------------|----------------|----------------|------| | I/O Standard | Drive
Strength | Parameter | Industrial | Commercial | Speed
Grade
(3) | Speed
Grade
(4) | Speed
Grade | Speed
Grade | Unit | | Differential | 8 mA | t _{OP} | 913 | 957 | 1715 | 1799 | 1971 | 2041 | ps | | SSTL-2 Class I | | t _{DIP} | 933 | 979 | 1781 | 1869 | 2047 | 2131 | ps | | | 12 mA | t _{OP} | 896 | 940 | 1672 | 1754 | 1921 | 1991 | ps | | | | t _{DIP} | 916 | 962 | 1738 | 1824 | 1997 | 2081 | ps | | Differential | 16 mA | t _{OP} | 876 | 918 | 1609 | 1688 | 1849 | 1918 | ps | | SSTL-2 Class II | | t _{DIP} | 896 | 940 | 1675 | 1758 | 1925 | 2008 | ps | | | 20 mA | t _{OP} | 877 | 919 | 1598 | 1676 | 1836 | 1905 | ps | | | | t _{DIP} | 897 | 941 | 1664 | 1746 | 1912 | 1995 | ps | | | 24 mA | t _{OP} | 872 | 915 | 1596 | 1674 | 1834 | 1903 | ps | | | | t _{DIP} | 892 | 937 | 1662 | 1744 | 1910 | 1993 | ps | | Differential | 4 mA | t _{OP} | 909 | 953 | 1690 | 1773 | 1942 | 2012 | ps | | SSTL-18
Class I | | t _{DIP} | 929 | 975 | 1756 | 1843 | 2018 | 2102 | ps | | 0.000 | 6 mA | t _{OP} | 914 | 958 | 1656 | 1737 | 1903 | 1973 | ps | | | | t _{DIP} | 934 | 980 | 1722 | 1807 | 1979 | 2063 | ps | | | 8 mA | t _{OP} | 894 | 937 | 1640 | 1721 | 1885 | 1954 | ps | | | | t _{DIP} | 914 | 959 | 1706 | 1791 | 1961 | 2044 | ps | | | 10 mA | t _{OP} | 898 | 942 | 1638 | 1718 | 1882 | 1952 | ps | | | | t _{DIP} | 918 | 964 | 1704 | 1788 | 1958 | 2042 | ps | | | 12 mA | t _{OP} | 891 | 936 | 1626 | 1706 | 1869 | 1938 | ps | | | | t _{DIP} | 911 | 958 | 1692 | 1776 | 1945 | 2028 | ps | | Differential | 8 mA | t _{OP} | 883 | 925 | 1597 | 1675 | 1835 | 1904 | ps | | SSTL-18
Class II | | t _{DIP} | 903 | 947 | 1663 | 1745 | 1911 | 1994 | ps | | J.200 II | 16 mA | t _{OP} | 894 | 937 | 1578 | 1655 | 1813 | 1882 | ps | | | | t _{DIP} | 914 | 959 | 1644 | 1725 | 1889 | 1972 | ps | | | 18 mA | t _{OP} | 890 | 933 | 1585 | 1663 | 1821 | 1890 | ps | | | | t _{DIP} | 910 | 955 | 1651 | 1733 | 1897 | 1980 | ps | | | 20 mA | t _{OP} | 890 | 933 | 1583 | 1661 | 1819 | 1888 | ps | | | | t _{DIP} | 910 | 955 | 1649 | 1731 | 1895 | 1978 | ps | | Table 5–80. Maximum DCD for Non-DDIO Output on Row I/O Pins (Part 2 of 2) Note (1) | | | | | | | | |--|---------------------------------|-----------------|------|--|--|--|--| | Row I/O Output | Maximum DCD for Non-DDIO Output | | | | | | | | Standard | -3 Devices | -4 & -5 Devices | Unit | | | | | | 1.8 V | 180 | 180 | ps | | | | | | 1.5-V LVCMOS | 165 | 195 | ps | | | | | | SSTL-2 Class I | 115 | 145 | ps | | | | | | SSTL-2 Class II | 95 | 125 | ps | | | | | | SSTL-18 Class I | 55 | 85 | ps | | | | | | 1.8-V HSTL Class I | 80 | 100 | ps | | | | | | 1.5-V HSTL Class I | 85 | 115 | ps | | | | | | LVDS/
HyperTransport
technology | 55 | 80 | ps | | | | | Note to Table 5-80: (1) The DCD specification is based on a no logic array noise condition. Here is an example for calculating the DCD as a percentage for a non-DDIO output on a row I/O on a -3 device: If the non-DDIO output I/O standard is SSTL-2 Class II, the maximum DCD is 95 ps (see Table 5–80). If the clock frequency is 267 MHz, the clock period T is: $$T = 1/f = 1/267 \text{ MHz} = 3.745 \text{ ns} = 3745 \text{ ps}$$ To calculate the DCD as a percentage: $$(T/2 - DCD) / T = (3745ps/2 - 95ps) / 3745ps = 47.5\%$$ (for low boundary) $$(T/2 + DCD) / T = (3745ps/2 + 95ps) / 3745ps = 52.5\%$$ (for high boundary) # 6. Reference & Ordering Information SII51006-2.2 ## Software Stratix[®] II devices are supported by the Altera[®] Quartus[®] II design software, which provides a comprehensive environment for system-on-a-programmable-chip (SOPC) design. The Quartus II software includes HDL and schematic design entry, compilation and logic synthesis, full simulation and advanced timing analysis, SignalTap[®] II logic analyzer, and device configuration. See the *Quartus II Handbook* for more information on the Quartus II software features. The Quartus II software supports the Windows XP/2000/NT/98, Sun Solaris, Linux Red Hat v7.1 and HP-UX operating systems. It also supports seamless integration with industry-leading EDA tools through the NativeLink® interface. ## **Device Pin-Outs** Device pin-outs for Stratix II devices are available on the Altera web site at (www.altera.com). ## Ordering Information Figure 6–1 describes the ordering codes for Stratix II devices. For more information on a specific package, refer to the *Package Information for Stratix II & Stratix II GX Devices* chapter in volume 2 of the *Stratix II Device Handbook* or the *Stratix II GX Device Handbook*. Figure 6-1. Stratix II Device Packaging Ordering Information Note to Figure 6-1: Applicable to I4 devices. For more information, refer to the Stratix II Military Temperature Range Support technical brief. ## Document Revision History Table 6–1 shows the revision history for this chapter. | Table 6–1. Document Revision History | | | | | | | |--------------------------------------|--|--|--|--|--|--| | Date and
Document
Version | Changes Made | Summary of Changes | | | | | | April 2011,
v2.2 | Updated Figure 6–1. | Added operating junction temperature for military use. | | | | | | May 2007,
v2.1 | Moved the Document Revision History section to the end of the chapter. | _ | | | | | | January
2005, v2.0 | Contact information was removed. | _ | | | | | | October
2004, v1.1 | Updated Figure 6–1. | _ | | | | | | February
2004, v1.0 | Added document to the Stratix II Device Handbook. | _ | | | | |