Welcome to **E-XFL.COM** ### Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 6627 | | Number of Logic Elements/Cells | 132540 | | Total RAM Bits | 6747840 | | Number of I/O | 1126 | | Number of Gates | - | | Voltage - Supply | 1.15V ~ 1.25V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 1508-BBGA, FCBGA | | Supplier Device Package | 1508-FBGA, FC (40x40) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep2s130f1508c4 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Copyright © 2011 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. ii Altera Corporation R24 row interconnects span 24 LABs and provide the fastest resource for long row connections between LABs, TriMatrix memory, DSP blocks, and Row IOEs. The R24 row interconnects can cross M-RAM blocks. R24 row interconnects drive to other row or column interconnects at every fourth LAB and do not drive directly to LAB local interconnects. R24 row interconnects drive LAB local interconnects via R4 and C4 interconnects. R24 interconnects can drive R24, R4, C16, and C4 interconnects. The column interconnect operates similarly to the row interconnect and vertically routes signals to and from LABs, TriMatrix memory, DSP blocks, and IOEs. Each column of LABs is served by a dedicated column interconnect. These column resources include: - Shared arithmetic chain interconnects in an LAB - Carry chain interconnects in an LAB and from LAB to LAB - Register chain interconnects in an LAB - C4 interconnects traversing a distance of four blocks in up and down direction - C16 column interconnects for high-speed vertical routing through the device Stratix II devices include an enhanced interconnect structure in LABs for routing shared arithmetic chains and carry chains for efficient arithmetic functions. The register chain connection allows the register output of one ALM to connect directly to the register input of the next ALM in the LAB for fast shift registers. These ALM to ALM connections bypass the local interconnect. The Quartus II Compiler automatically takes advantage of these resources to improve utilization and performance. Figure 2–17 shows the shared arithmetic chain, carry chain and register chain interconnects. The LAB row source for control signals, data inputs, and outputs is shown in Table 2–7. | Table 2-7. I | Table 2–7. DSP Block Signal Sources & Destinations | | | | | | | | |-------------------------|---|--------------------|--------------------|--|--|--|--|--| | LAB Row at
Interface | Control Signals Generated | Data Inputs | Data Outputs | | | | | | | 0 | clock0 aclr0 ena0 mult01_saturate addnsub1_round/ accum_round addnsub1 signa sourcea sourceb | A1[170]
B1[170] | OA[170]
OB[170] | | | | | | | 1 | clock1 aclr1 ena1 accum_saturate mult01_round accum_sload sourcea sourceb mode0 | A2[170]
B2[170] | OC[170]
OD[170] | | | | | | | 2 | clock2 aclr2 ena2 mult23_saturate addnsub3_round/ accum_round addnsub3 sign_b sourcea sourceb | A3[170]
B3[170] | OE[170]
OF[170] | | | | | | | 3 | clock3 aclr3 ena3 accum_saturate mult23_round accum_sload sourcea sourceb mode1 | A4[170]
B4[170] | OG[170]
OH[170] | | | | | | See the *DSP Blocks in Stratix II & Stratix II GX Devices* chapter in volume 2 of the *Stratix II Device Handbook* or the *Stratix II GX Device Handbook*, for more information on DSP blocks. global clock networks can also be driven by internal logic for internally generated global clocks and asynchronous clears, clock enables, or other control signals with large fanout. Figure 2–31 shows the 16 dedicated CLK pins driving global clock networks. Figure 2-31. Global Clocking #### Regional Clock Network There are eight regional clock networks RCLK [7..0] in each quadrant of the Stratix II device that are driven by the dedicated CLK [15..0] input pins, by PLL outputs, or by internal logic. The regional clock networks provide the lowest clock delay and skew for logic contained in a single quadrant. The CLK clock pins symmetrically drive the RCLK networks in a particular quadrant, as shown in Figure 2–32. Figure 2-46. Stratix II IOE Structure The IOEs are located in I/O blocks around the periphery of the Stratix II device. There are up to four IOEs per row I/O block and four IOEs per column I/O block. The row I/O blocks drive row, column, or direct link interconnects. The column I/O blocks drive column interconnects. Figure 2–47 shows how a row I/O block connects to the logic array. Figure 2–48 shows how a column I/O block connects to the logic array. Figure 2–48. Column I/O Block Connection to the Interconnect Note (1) #### Note to Figure 2-48: (1) The 32 data and control signals consist of eight data out lines: four lines each for DDR applications io_dataouta[3..0] and io_dataoutb[3..0], four output enables io_oe[3..0], four input clock enables io_ce_in[3..0], four output clock enables io_ce_out[3..0], four clocks io_clk[3..0], four asynchronous clear and preset signals io_aclr/apreset[3..0], and four synchronous clear and preset signals io sclr/spreset[3..0]. Figure 2–51 shows the IOE in bidirectional configuration. Figure 2–51. Stratix II IOE in Bidirectional I/O Configuration Notes to Figure 2-51: - (1) All input signals to the IOE can be inverted at the IOE. - (2) The optional PCI clamp is only available on column I/O pins. When using the IOE for DDR inputs, the two input registers clock double rate input data on alternating edges. An input latch is also used in the IOE for DDR input acquisition. The latch holds the data that is present during the clock high times. This allows both bits of data to be synchronous with the same clock edge (either rising or falling). Figure 2–52 shows an IOE configured for DDR input. Figure 2–53 shows the DDR input timing diagram. Figure 2–52. Stratix II IOE in DDR Input I/O Configuration Notes (1), (2), (3) *Notes to Figure 2–52:* - (1) All input signals to the IOE can be inverted at the IOE. - (2) This signal connection is only allowed on dedicated DQ function pins. - (3) This signal is for dedicated DQS function pins only. - (4) The optional PCI clamp is only available on column I/O pins. | Table 2- | Table 2–14. DQS & DQ Bus Mode Support (Part 2 of 2) Note (1) | | | | | | | | | |----------|--|------------------------|------------------------|--------------------------|-----------------------------|--|--|--|--| | Device | Package | Number of
×4 Groups | Number of ×8/×9 Groups | Number of ×16/×18 Groups | Number of
×32/×36 Groups | | | | | | EP2S90 | 484-pin Hybrid FineLine BGA | 8 | 4 | 0 | 0 | | | | | | | 780-pin FineLine BGA | 18 | 8 | 4 | 0 | | | | | | | 1,020-pin FineLine BGA | 36 | 18 | 8 | 4 | | | | | | | 1,508-pin FineLine BGA | 36 | 18 | 8 | 4 | | | | | | EP2S130 | 780-pin FineLine BGA | 18 | 8 | 4 | 0 | | | | | | | 1,020-pin FineLine BGA | 36 | 18 | 8 | 4 | | | | | | | 1,508-pin FineLine BGA | 36 | 18 | 8 | 4 | | | | | | EP2S180 | 1,020-pin FineLine BGA | 36 | 18 | 8 | 4 | | | | | | | 1,508-pin FineLine BGA | 36 | 18 | 8 | 4 | | | | | Notes to Table 2-14: A compensated delay element on each DQS pin automatically aligns input DQS synchronization signals with the data window of their corresponding DQ data signals. The DQS signals drive a local DQS bus in the top and bottom I/O banks. This DQS bus is an additional resource to the I/O clocks and is used to clock DQ input registers with the DQS signal. The Stratix II device has two phase-shifting reference circuits, one on the top and one on the bottom of the device. The circuit on the top controls the compensated delay elements for all DQS pins on the top. The circuit on the bottom controls the compensated delay elements for all DQS pins on the bottom. Each phase-shifting reference circuit is driven by a system reference clock, which must have the same frequency as the DQS signal. Clock pins CLK[15..12]p feed the phase circuitry on the top of the device and clock pins CLK[7..4]p feed the phase circuitry on the bottom of the device. In addition, PLL clock outputs can also feed the phase-shifting reference circuits. Figure 2–56 illustrates the phase-shift reference circuit control of each DQS delay shift on the top of the device. This same circuit is duplicated on the bottom of the device. ⁽¹⁾ Check the pin table for each DQS/DQ group in the different modes. ### **Dedicated Circuitry with DPA Support** Stratix II devices support source-synchronous interfacing with LVDS or HyperTransport signaling at up to 1 Gbps. Stratix II devices can transmit or receive serial channels along with a low-speed or high-speed clock. The receiving device PLL multiplies the clock by an integer factor W = 1 through 32. For example, a HyperTransport technology application where the data rate is 1,000 Mbps and the clock rate is 500 MHz would require that W be set to 2. The SERDES factor *J* determines the parallel data width to deserialize from receivers or to serialize for transmitters. The SERDES factor *J* can be set to 4, 5, 6, 7, 8, 9, or 10 and does not have to equal the PLL clock-multiplication W value. A design using the dynamic phase aligner also supports all of these *J* factor values. For a *J* factor of 1, the Stratix II device bypasses the SERDES block. For a *J* factor of 2, the Stratix II device bypasses the SERDES block, and the DDR input and output registers are used in the IOE. Figure 2–58 shows the block diagram of the Stratix II transmitter channel. Figure 2-58. Stratix II Transmitter Channel Each Stratix II receiver channel features a DPA block for phase detection and selection, a SERDES, a synchronizer, and a data realigner circuit. You can bypass the dynamic phase aligner without affecting the basic source-synchronous operation of the channel. In addition, you can dynamically switch between using the DPA block or bypassing the block via a control signal from the logic array. Figure 2–59 shows the block diagram of the Stratix II receiver channel. Figure 2-59. Stratix II Receiver Channel An external pin or global or regional clock can drive the fast PLLs, which can output up to three clocks: two multiplied high-speed clocks to drive the SERDES block and/or external pin, and a low-speed clock to drive the logic array. In addition, eight phase-shifted clocks from the VCO can feed to the DPA circuitry. For more information on the fast PLL, see the *PLLs in Stratix II & Stratix II GX Devices* chapter in volume 2 of the *Stratix II Device Handbook* or the *Stratix II GX Device Handbook*. The eight phase-shifted clocks from the fast PLL feed to the DPA block. The DPA block selects the closest phase to the center of the serial data eye to sample the incoming data. This allows the source-synchronous circuitry to capture incoming data correctly regardless of the channel-to-channel or clock-to-channel skew. The DPA block locks to a phase closest to the serial data phase. The phase-aligned DPA clock is used to write the data into the synchronizer. The synchronizer sits between the DPA block and the data realignment and SERDES circuitry. Since every channel utilizing the DPA block can have a different phase selected to sample the data, the synchronizer is needed to synchronize the data to the high-speed clock domain of the data realignment and the SERDES circuitry. ### **Operating Modes** The Stratix II architecture uses SRAM configuration elements that require configuration data to be loaded each time the circuit powers up. The process of physically loading the SRAM data into the device is called configuration. During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. Together, the configuration and initialization processes are called command mode. Normal device operation is called user mode. SRAM configuration elements allow Stratix II devices to be reconfigured in-circuit by loading new configuration data into the device. With real-time reconfiguration, the device is forced into command mode with a device pin. The configuration process loads different configuration data, reinitializes the device, and resumes user-mode operation. You can perform in-field upgrades by distributing new configuration files either within the system or remotely. PORSEL is a dedicated input pin used to select POR delay times of 12 ms or 100 ms during power-up. When the PORSEL pin is connected to ground, the POR time is 100 ms; when the PORSEL pin is connected to $V_{\rm CC}$, the POR time is 12 ms. The nio pullup pin is a dedicated input that chooses whether the internal pull-ups on the user I/O pins and dual-purpose configuration I/O pins (ncso, Asdo, data [7..0], nws, nrs, rdynbsy, ncs, cs, runlu, pgm [2..0], clkusr, init_done, dev_oe, dev_clr) are on or off before and during configuration. A logic high (1.5, 1.8, 2.5, 3.3 V) turns off the weak internal pull-ups, while a logic low turns them on. Stratix II devices also offer a new power supply, V_{CCPD} , which must be connected to 3.3 V in order to power the 3.3-V/2.5-V buffer available on the configuration input pins and JTAG pins. V_{CCPD} applies to all the JTAG input pins (TCK, TMS, TDI, and TRST) and the configuration input pins when VCCSEL is connected to ground. See Table 3–4 for more information on the pins affected by VCCSEL. The VCCSEL pin allows the V_{CCIO} setting (of the banks where the configuration inputs reside) to be independent of the voltage required by the configuration inputs. Therefore, when selecting the V_{CCIO} , the V_{IL} and V_{IH} levels driven to the configuration inputs do not have to be a concern. the Device & Pin Options dialog box in the Quartus II software uses a 32-bit CRC circuit to ensure data reliability and is one of the best options for mitigating SEU. You can implement the error detection CRC feature with existing circuitry in Stratix II devices, eliminating the need for external logic. For Stratix II devices, CRC is computed by the device during configuration and checked against an automatically computed CRC during normal operation. The CRC_ERROR pin reports a soft error when configuration SRAM data is corrupted, triggering device reconfiguration. ### **Custom-Built Circuitry** Dedicated circuitry is built in the Stratix II devices to perform error detection automatically. This error detection circuitry in Stratix II devices constantly checks for errors in the configuration SRAM cells while the device is in user mode. You can monitor one external pin for the error and use it to trigger a re-configuration cycle. You can select the desired time between checks by adjusting a built-in clock divider. #### **Software Interface** In the Quartus II software version 4.1 and later, you can turn on the automated error detection CRC feature in the Device & Pin Options dialog box. This dialog box allows you to enable the feature and set the internal frequency of the CRC between 400 kHz to 50 MHz. This controls the rate that the CRC circuitry verifies the internal configuration SRAM bits in the FPGA device. For more information on CRC, refer to AN 357: Error Detection Using CRC in Altera FPGA Devices. ## Document Revision History Table 3–7 shows the revision history for this chapter. | Table 3–7. Document Revision History (Part 1 of 2) | | | | | | | |--|--|--------------------|--|--|--|--| | Date and
Document
Version | Changes Made | Summary of Changes | | | | | | May 2007, v4.2 | Moved Document Revision History section to the end of the chapter. | _ | | | | | | | Updated the "Temperature Sensing Diode (TSD)" section. | _ | | | | | | Table 3–7. Document Revision History (Part 2 of 2) | | | | | | | |--|---|--------------------|--|--|--|--| | Date and
Document
Version | Changes Made | Summary of Changes | | | | | | April 2006,
v4.1 | Updated "Device Security Using Configuration Bitstream Encryption" section. | _ | | | | | | December
2005, v4.0 | Updated "Software Interface" section. | _ | | | | | | May 2005, v3.0 | Updated "IEEE Std. 1149.1 JTAG Boundary-Scan
Support" section. Updated "Operating Modes" section. | _ | | | | | | January 2005,
v2.1 | Updated JTAG chain device limits. | _ | | | | | | January 2005,
v2.0 | Updated Table 3–3. | _ | | | | | | July 2004, v1.1 | Added "Automated Single Event Upset (SEU) Detection" section. Updated "Device Security Using Configuration Bitstream Encryption" section. Updated Figure 3–2. | _ | | | | | | February 2004,
v1.0 | Added document to the Stratix II Device Handbook. | _ | | | | | I_{IOPIN} is the current at any user I/O pin on the device. This specification takes into account the pin capacitance, but not board trace and external loading capacitance. Additional capacitance for trace, connector, and loading needs must be considered separately. For the AC specification, the peak current duration is 10 ns or less because of power-up transients. For more information, refer to the Hot-Socketing & Power-Sequencing Feature & Testing for Altera Devices white paper. A possible concern regarding hot-socketing is the potential for latch-up. Latch-up can occur when electrical subsystems are hot-socketed into an active system. During hot-socketing, the signal pins may be connected and driven by the active system before the power supply can provide current to the device's V_{CC} and ground planes. This condition can lead to latch-up and cause a low-impedance path from V_{CC} to ground within the device. As a result, the device extends a large amount of current, possibly causing electrical damage. Nevertheless, Stratix II devices are immune to latch-up when hot-socketing. ### Hot Socketing Feature Implementation in Stratix II Devices The hot socketing feature turns off the output buffer during the power-up event (either $V_{\rm CCINT}, V_{\rm CCIO},$ or $V_{\rm CCPD}$ supplies) or power down. The hot-socket circuit will generate an internal HOTSCKT signal when either $V_{\rm CCINT}, V_{\rm CCIO},$ or $V_{\rm CCPD}$ is below threshold voltage. The HOTSCKT signal will cut off the output buffer to make sure that no DC current (except for weak pull up leaking) leaks through the pin. When $V_{\rm CC}$ ramps up very slowly, $V_{\rm CC}$ is still relatively low even after the POR signal is released and the configuration is finished. The CONF_DONE, nCEO, and nSTATUS pins fail to respond, as the output buffer can not flip from the state set by the hot socketing circuit at this low $V_{\rm CC}$ voltage. Therefore, the hot socketing circuit has been removed on these configuration pins to make sure that they are able to operate during configuration. It is expected behavior for these pins to drive out during power-up and power-down sequences. Each I/O pin has the following circuitry shown in Figure 4–1. ## 5. DC & Switching Characteristics SII51005-4.5 ### Operating Conditions Stratix[®] II devices are offered in both commercial and industrial grades. Industrial devices are offered in -4 speed grades and commercial devices are offered in -3 (fastest), -4, -5 speed grades. Tables 5–1 through 5–32 provide information about absolute maximum ratings, recommended operating conditions, DC electrical characteristics, and other specifications for Stratix II devices. ### **Absolute Maximum Ratings** Table 5–1 contains the absolute maximum ratings for the Stratix II device family. | Table 5-1. Stratix II Device Absolute Maximum Ratings Notes (1), (2), (3) | | | | | | | | | | |---|-------------------------------|-------------------------|-----------------|---------|------|--|--|--|--| | Symbol | Parameter | Conditions | Minimum | Maximum | Unit | | | | | | V_{CCINT} | Supply voltage | With respect to ground | -0.5 | 1.8 | V | | | | | | V _{CCIO} | Supply voltage | With respect to ground | -0.5 | 4.6 | V | | | | | | V _{CCPD} | Supply voltage | With respect to ground | -0.5 | 4.6 | V | | | | | | V _{CCA} | Analog power supply for PLLs | With respect to ground | -0.5 | 1.8 | V | | | | | | V _{CCD} | Digital power supply for PLLs | With respect to ground | -0.5 | 1.8 | V | | | | | | VI | DC input voltage (4) | | -0.5 | 4.6 | V | | | | | | I _{OUT} | DC output current, per pin | | -25 | 40 | mA | | | | | | T _{STG} | Storage temperature | No bias | -65 | 150 | °C | | | | | | T _J | Junction temperature | BGA packages under bias | - 55 | 125 | °C | | | | | #### Notes to Tables 5-1 - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Conditions beyond those listed in Table 5–1 may cause permanent damage to a device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse affects on the device. - (3) Supply voltage specifications apply to voltage readings taken at the device pins, not at the power supply. - (4) During transitions, the inputs may overshoot to the voltage shown in Table 5–2 based upon the input duty cycle. The DC case is equivalent to 100% duty cycle. During transitions, the inputs may undershoot to −2.0 V for input currents less than 100 mA and periods shorter than 20 ns. | Table 5–75. Sti | | | | • | ,
 | _ | | | | |-----------------|-------------------|------------------|------------|------------------------|----------------------|-----------------------------|----------------------|----------------------|------| | I/O Standard | Drive
Strength | Parameter | Industrial | m Timing
Commercial | -3
Speed
Grade | -3
Speed
Grade
(4) | -4
Speed
Grade | -5
Speed
Grade | Unit | | 1.8 V | 2 mA | t _{OP} | 1042 | 1093 | 2904 | 3048 | 3338 | 3472 | ps | | | | t _{DIP} | 1062 | 1115 | 2970 | 3118 | 3414 | 3562 | ps | | | 4 mA | t _{OP} | 1047 | 1098 | 2248 | 2359 | 2584 | 2698 | ps | | | | t _{DIP} | 1067 | 1120 | 2314 | 2429 | 2660 | 2788 | ps | | | 6 mA | t _{OP} | 974 | 1022 | 2024 | 2124 | 2326 | 2434 | ps | | | | t _{DIP} | 994 | 1044 | 2090 | 2194 | 2402 | 2524 | ps | | | 8 mA | t _{OP} | 976 | 1024 | 1947 | 2043 | 2238 | 2343 | ps | | | | t _{DIP} | 996 | 1046 | 2013 | 2113 | 2314 | 2433 | ps | | | 10 mA | t _{OP} | 933 | 978 | 1882 | 1975 | 2163 | 2266 | ps | | | | t _{DIP} | 953 | 1000 | 1948 | 2045 | 2239 | 2356 | ps | | | 12 mA | t _{OP} | 934 | 979 | 1833 | 1923 | 2107 | 2209 | ps | | | (1) | t _{DIP} | 954 | 1001 | 1899 | 1993 | 2183 | 2299 | ps | | 1.5 V | 2 mA | t _{OP} | 1023 | 1073 | 2505 | 2629 | 2879 | 3002 | ps | | | | t _{DIP} | 1043 | 1095 | 2571 | 2699 | 2955 | 3092 | ps | | | 4 mA | t _{OP} | 963 | 1009 | 2023 | 2123 | 2325 | 2433 | ps | | | | t _{DIP} | 983 | 1031 | 2089 | 2193 | 2401 | 2523 | ps | | | 6 mA | t _{OP} | 966 | 1012 | 1923 | 2018 | 2210 | 2315 | ps | | | | t _{DIP} | 986 | 1034 | 1989 | 2088 | 2286 | 2405 | ps | | | 8 mA (1) | t _{OP} | 926 | 971 | 1878 | 1970 | 2158 | 2262 | ps | | | | t _{DIP} | 946 | 993 | 1944 | 2040 | 2234 | 2352 | ps | | SSTL-2 Class I | 8 mA | t _{OP} | 913 | 957 | 1715 | 1799 | 1971 | 2041 | ps | | | | t _{DIP} | 933 | 979 | 1781 | 1869 | 2047 | 2131 | ps | | | 12 mA | t _{OP} | 896 | 940 | 1672 | 1754 | 1921 | 1991 | ps | | | (1) | t _{DIP} | 916 | 962 | 1738 | 1824 | 1997 | 2081 | ps | | SSTL-2 Class II | 16 mA | t _{OP} | 876 | 918 | 1609 | 1688 | 1849 | 1918 | ps | | | | t _{DIP} | 896 | 940 | 1675 | 1758 | 1925 | 2008 | ps | | | 20 mA | t _{OP} | 877 | 919 | 1598 | 1676 | 1836 | 1905 | ps | | | | t _{DIP} | 897 | 941 | 1664 | 1746 | 1912 | 1995 | ps | | | 24 mA | t _{OP} | 872 | 915 | 1596 | 1674 | 1834 | 1903 | ps | | | (1) | t _{DIP} | 892 | 937 | 1662 | 1744 | 1910 | 1993 | ps | | Table 5–78. Maximum Output Toggle Rate on Stratix II Devices (Part 1 of 5) Note (1) | | | | | | | | | | | |---|----------|-----------------------|-------|--------------------|-----|-----|---------------------|-------|-------|-------| | I/O Standard | Drive | Column I/O Pins (MHz) | | Row I/O Pins (MHz) | | | Clock Outputs (MHz) | | | | | I/O Standard | Strength | -3 | -4 | -5 | -3 | -4 | -5 | -3 | -4 | -5 | | 3.3-V LVTTL | 4 mA | 270 | 225 | 210 | 270 | 225 | 210 | 270 | 225 | 210 | | | 8 mA | 435 | 355 | 325 | 435 | 355 | 325 | 435 | 355 | 325 | | | 12 mA | 580 | 475 | 420 | 580 | 475 | 420 | 580 | 475 | 420 | | | 16 mA | 720 | 594 | 520 | - | - | - | 720 | 594 | 520 | | | 20 mA | 875 | 700 | 610 | - | - | - | 875 | 700 | 610 | | | 24 mA | 1,030 | 794 | 670 | - | - | - | 1,030 | 794 | 670 | | 3.3-V LVCMOS | 4 mA | 290 | 250 | 230 | 290 | 250 | 230 | 290 | 250 | 230 | | | 8 mA | 565 | 480 | 440 | 565 | 480 | 440 | 565 | 480 | 440 | | | 12 mA | 790 | 710 | 670 | - | - | - | 790 | 710 | 670 | | | 16 mA | 1,020 | 925 | 875 | - | - | - | 1,020 | 925 | 875 | | | 20 mA | 1,066 | 985 | 935 | - | - | - | 1,066 | 985 | 935 | | | 24 mA | 1,100 | 1,040 | 1,000 | - | - | - | 1,100 | 1,040 | 1,000 | | 2.5-V | 4 mA | 230 | 194 | 180 | 230 | 194 | 180 | 230 | 194 | 180 | | LVTTL/LVCMOS | 8 mA | 430 | 380 | 380 | 430 | 380 | 380 | 430 | 380 | 380 | | | 12 mA | 630 | 575 | 550 | 630 | 575 | 550 | 630 | 575 | 550 | | | 16 mA | 930 | 845 | 820 | - | - | - | 930 | 845 | 820 | | 1.8-V | 2 mA | 120 | 109 | 104 | 120 | 109 | 104 | 120 | 109 | 104 | | LVTTL/LVCMOS | 4 mA | 285 | 250 | 230 | 285 | 250 | 230 | 285 | 250 | 230 | | | 6 mA | 450 | 390 | 360 | 450 | 390 | 360 | 450 | 390 | 360 | | | 8 mA | 660 | 570 | 520 | 660 | 570 | 520 | 660 | 570 | 520 | | | 10 mA | 905 | 805 | 755 | - | - | - | 905 | 805 | 755 | | | 12 mA | 1,131 | 1,040 | 990 | - | - | - | 1,131 | 1,040 | 990 | | 1.5-V | 2 mA | 244 | 200 | 180 | 244 | 200 | 180 | 244 | 200 | 180 | | LVTTL/LVCMOS | 4 mA | 470 | 370 | 325 | 470 | 370 | 325 | 470 | 370 | 325 | | | 6 mA | 550 | 430 | 375 | - | - | - | 550 | 430 | 375 | | | 8 mA | 625 | 495 | 420 | - | - | - | 625 | 495 | 420 | | SSTL-2 Class I | 8 mA | 400 | 300 | 300 | - | - | - | 400 | 300 | 300 | | | 12 mA | 400 | 400 | 350 | 400 | 350 | 350 | 400 | 400 | 350 | | SSTL-2 Class II | 16 mA | 350 | 350 | 300 | 350 | 350 | 300 | 350 | 350 | 300 | | | 20 mA | 400 | 350 | 350 | - | - | - | 400 | 350 | 350 | | | 24 mA | 400 | 400 | 350 | - | - | - | 400 | 400 | 350 | | Table 5–78. Maxi | Table 5–78. Maximum Output Toggle Rate on Stratix II Devices (Part 3 of 5) Note (1) | | | | | | | | | | | |--|---|-------|------------|-------|-------|--------------------|-----|-------|---------------------|-----|--| | I/O Otomdond | Drive | Colum | n I/O Pins | (MHz) | Row I | Row I/O Pins (MHz) | | | Clock Outputs (MHz) | | | | I/O Standard | Strength | -3 | -4 | -5 | -3 | -4 | -5 | -3 | -4 | -5 | | | Differential | 4 mA | 200 | 150 | 150 | 200 | 150 | 150 | 200 | 150 | 150 | | | SSTL-18 Class I | 6 mA | 350 | 250 | 200 | 350 | 250 | 200 | 350 | 250 | 200 | | | (0) | 8 mA | 450 | 300 | 300 | 450 | 300 | 300 | 450 | 300 | 300 | | | | 10 mA | 500 | 400 | 400 | 500 | 400 | 400 | 500 | 400 | 400 | | | | 12 mA | 700 | 550 | 400 | 350 | 350 | 297 | 650 | 550 | 400 | | | Differential | 8 mA | 200 | 200 | 150 | - | - | - | 200 | 200 | 150 | | | SSTL-18 Class II | 16 mA | 400 | 350 | 350 | - | - | - | 400 | 350 | 350 | | | (3) | 18 mA | 450 | 400 | 400 | - | - | - | 450 | 400 | 400 | | | | 20 mA | 550 | 500 | 450 | - | - | - | 550 | 500 | 450 | | | 1.8-V Differential
HSTL Class I (3) | 4 mA | 300 | 300 | 300 | - | - | - | 300 | 300 | 300 | | | | 6 mA | 500 | 450 | 450 | - | - | - | 500 | 450 | 450 | | | | 8 mA | 650 | 600 | 600 | - | - | - | 650 | 600 | 600 | | | | 10 mA | 700 | 650 | 600 | - | - | - | 700 | 650 | 600 | | | | 12 mA | 700 | 700 | 650 | - | - | - | 700 | 700 | 650 | | | 1.8-V Differential | 16 mA | 500 | 500 | 450 | - | - | - | 500 | 500 | 450 | | | HSTL Class II (3) | 18 mA | 550 | 500 | 500 | - | - | - | 550 | 500 | 500 | | | | 20 mA | 650 | 550 | 550 | - | - | - | 550 | 550 | 550 | | | 1.5-V Differential | 4 mA | 350 | 300 | 300 | - | - | - | 350 | 300 | 300 | | | HSTL Class I (3) | 6 mA | 500 | 500 | 450 | - | - | - | 500 | 500 | 450 | | | | 8 mA | 700 | 650 | 600 | - | - | - | 700 | 650 | 600 | | | | 10 mA | 700 | 700 | 650 | - | - | - | 700 | 700 | 650 | | | | 12 mA | 700 | 700 | 700 | - | - | - | 700 | 700 | 700 | | | 1.5-V Differential | 16 mA | 600 | 600 | 550 | - | - | - | 600 | 600 | 550 | | | HSTL Class II (3) | 18 mA | 650 | 600 | 600 | - | - | - | 650 | 600 | 600 | | | | 20 mA | 700 | 650 | 600 | - | - | - | 700 | 650 | 600 | | | 3.3-V PCI | | 1,000 | 790 | 670 | - | - | - | 1,000 | 790 | 670 | | | 3.3-V PCI-X | | 1,000 | 790 | 670 | - | - | - | 1,000 | 790 | 670 | | | LVDS (6) | | - | - | - | 500 | 500 | 500 | 450 | 400 | 300 | | | HyperTransport technology (4), (6) | | | | | 500 | 500 | 500 | - | ı | - | | | LVPECL (5) | | - | - | - | - | - | - | 450 | 400 | 300 | | | 3.3-V LVTTL | OCT 50 Ω | 400 | 400 | 350 | 400 | 400 | 350 | 400 | 400 | 350 | | | 2.5-V LVTTL | OCT 50 Ω | 350 | 350 | 300 | 350 | 350 | 300 | 350 | 350 | 300 | | # High-Speed I/O Specifications Table 5–88 provides high-speed timing specifications definitions. | Table 5–88. High-Speed Timing Specifications & Definitions | | | | | | |--|--|--|--|--|--| | High-Speed Timing Specifications | Definitions | | | | | | t _C | High-speed receiver/transmitter input and output clock period. | | | | | | f _{HSCLK} | High-speed receiver/transmitter input and output clock frequency. | | | | | | J | Deserialization factor (width of parallel data bus). | | | | | | W | PLL multiplication factor. | | | | | | t _{RISE} | Low-to-high transmission time. | | | | | | t _{FALL} | High-to-low transmission time. | | | | | | Timing unit interval (TUI) | The timing budget allowed for skew, propagation delays, and data sampling window. (TUI = $1/(\text{Receiver Input Clock Frequency} \times \text{Multiplication Factor}) = t_{\text{C}}/w$). | | | | | | f _{HSDR} | Maximum/minimum LVDS data transfer rate (f _{HSDR} = 1/TUI), non-DPA. | | | | | | f _{HSDRDPA} | Maximum/minimum LVDS data transfer rate (f _{HSDRDPA} = 1/TUI), DPA. | | | | | | Channel-to-channel skew (TCCS) | The timing difference between the fastest and slowest output edges, including t_{CO} variation and clock skew. The clock is included in the TCCS measurement. | | | | | | Sampling window (SW) | The period of time during which the data must be valid in order to capture it correctly. The setup and hold times determine the ideal strobe position within the sampling window. | | | | | | Input jitter | Peak-to-peak input jitter on high-speed PLLs. | | | | | | Output jitter | Peak-to-peak output jitter on high-speed PLLs. | | | | | | t _{DUTY} | Duty cycle on high-speed transmitter output clock. | | | | | | t _{LOCK} | Lock time for high-speed transmitter and receiver PLLs. | | | | | Table 5–89 shows the high-speed I/O timing specifications for -3 speed grade Stratix II devices. | Table 5–89. High-Speed I/O Specifications for -3 Speed Grade (Part 1 of 2) Notes (1), (2) | | | | | | | | | | |---|---|------|--------|------|------|--|--|--|--| | Symbol | Conditions | -3 S | peed G | Unit | | | | | | | | Conditions | | Тур | Max | UIII | | | | | | f_{HSCLK} (clock frequency)
$f_{HSCLK} = f_{HSDR} / W$ | W = 2 to 32 (LVDS, HyperTransport technology) (3) | 16 | | 520 | MHz | | | | | | | W = 1 (SERDES bypass, LVDS only) | 16 | | 500 | MHz | | | | | | | W = 1 (SERDES used, LVDS only) | 150 | | 717 | MHz | | | | |