
Altera - EP2S130F1508I4 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

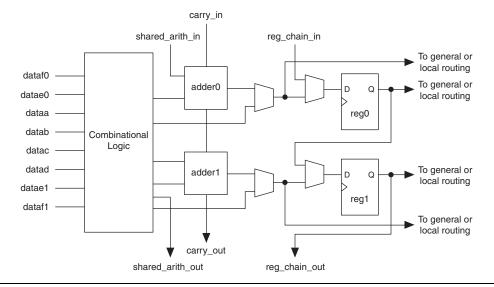
Details

Details	
Product Status	Active
Number of LABs/CLBs	6627
Number of Logic Elements/Cells	132540
Total RAM Bits	6747840
Number of I/O	1126
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1508-BBGA, FCBGA
Supplier Device Package	1508-FBGA (40x40)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=ep2s130f1508i4

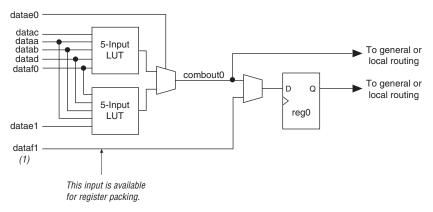
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Timing Model	5-20
Preliminary & Final Timing	
I/O Timing Measurement Methodology	
Performance	
Internal Timing Parameters	5–34
Stratix II Clock Timing Parameters	5–41
Clock Network Skew Adders	5-50
IOE Programmable Delay	5–51
Default Capacitive Loading of Different I/O Standards	5-52
I/O Delays	5-54
Maximum Input & Output Clock Toggle Rate	5–66
Duty Cycle Distortion	5-77
DCD Measurement Techniques	5-78
High-Speed I/O Specifications	5-87
PLL Timing Specifications	5–91
External Memory Interface Specifications	5–94
JTAG Timing Specifications	5–96
Document Revision History	5–97


Chapter 6. Reference & Ordering Information


· · · · · · · · · · · · · · · · · · ·	
Software	. 6–1
Device Pin-Outs	6–1
Ordering Information	. 6–1
Document Revision History	


completely backward-compatible with four-input LUT architectures. One ALM can also implement any function of up to six inputs and certain seven-input functions.

In addition to the adaptive LUT-based resources, each ALM contains two programmable registers, two dedicated full adders, a carry chain, a shared arithmetic chain, and a register chain. Through these dedicated resources, the ALM can efficiently implement various arithmetic functions and shift registers. Each ALM drives all types of interconnects: local, row, column, carry chain, shared arithmetic chain, register chain, and direct link interconnects. Figure 2–5 shows a high-level block diagram of the Stratix II ALM while Figure 2–6 shows a detailed view of all the connections in the ALM.



Note to Figure 2–10:

(1) If the seven-input function is unregistered, the unused eighth input is available for register packing. The second register, reg1, is not available.

Arithmetic Mode

The arithmetic mode is ideal for implementing adders, counters, accumulators, wide parity functions, and comparators. An ALM in arithmetic mode uses two sets of two four-input LUTs along with two dedicated full adders. The dedicated adders allow the LUTs to be available to perform pre-adder logic; therefore, each adder can add the output of two four-input functions. The four LUTs share the dataa and datab inputs. As shown in Figure 2–11, the carry-in signal feeds to adder0, and the carry-out from adder0 feeds to carry-in of adder1. The carry-out from adder1 drives to adder0 of the next ALM in the LAB. ALMs in arithmetic mode can drive out registered and/or unregistered versions of the adder outputs.

(1) Only R24 and C16 interconnects cross the M-RAM block boundaries.

The DSP block is divided into four block units that interface with four LAB rows on the left and right. Each block unit can be considered one complete 18 × 18-bit multiplier with 36 inputs and 36 outputs. A local interconnect region is associated with each DSP block. Like an LAB, this interconnect region can be fed with 16 direct link interconnects from the LAB to the left or right of the DSP block in the same row. R4 and C4 routing resources can access the DSP block's local interconnect region. The outputs also work similarly to LAB outputs as well. Eighteen outputs from the DSP block can drive to the left LAB through direct link interconnects. All 36 outputs can drive to R4 and C4 routing interconnects. Outputs can drive right- or left-column routing. Figures 2–29 and 2–30 show the DSP block interfaces to LAB rows.

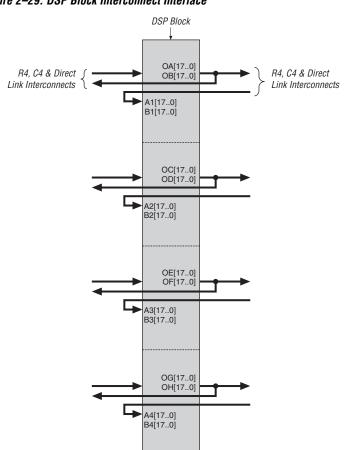


Figure 2–29. DSP Block Interconnect Interface

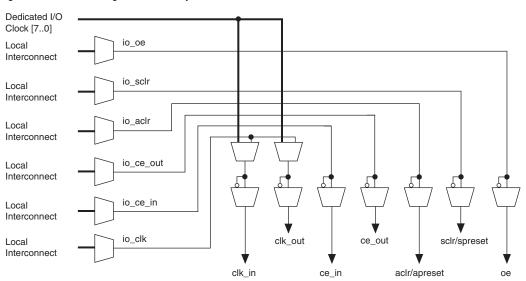


Figure 2–50. Control Signal Selection per IOE

Notes to Figure 2–50:

(1) Control signals ce_in, ce_out, aclr/apreset, sclr/spreset, and oe can be global signals even though their control selection multiplexers are not directly fed by the ioe_clk[7..0] signals. The ioe_clk signals can drive the I/O local interconnect, which then drives the control selection multiplexers.

In normal bidirectional operation, the input register can be used for input data requiring fast setup times. The input register can have its own clock input and clock enable separate from the OE and output registers. The output register can be used for data requiring fast clock-to-output performance. The OE register can be used for fast clock-to-output enable timing. The OE and output register share the same clock source and the same clock enable source from local interconnect in the associated LAB, dedicated I/O clocks, and the column and row interconnects.

device, PLL 1 can drive a maximum of 10 transmitter channels in I/O bank 1 or a maximum of 19 transmitter channels in I/O banks 1 and 2. The Quartus II software may also merge receiver and transmitter PLLs when a receiver is driving a transmitter. In this case, one fast PLL can drive both the maximum numbers of receiver and transmitter channels.

Table 2–21. EP2S15 Device Differential Channels Note (1)										
	Transmitter/	Total	Total Center Fast PLLs							
Package	Receiver	Channels	PLL 1	PLL 2	PLL 3	PLL 4				
484-pin FineLine BGA	Transmitter	38 <i>(2)</i>	10	9	9	10				
		(3)	19	19	19	19				
	Receiver	42 <i>(2)</i>	11	10	10	11				
		(3)	21	21	21	21				
672-pin FineLine BGA	Transmitter	38 (2)	10	9	9	10				
		(3)	19	19	19	19				
	Receiver	42 <i>(2)</i>	11	10	10	11				
		(3)	21	21	21	21				

Table 2–22. EP2S30 Device Differential Channels Note (1)									
	Transmitter/	Total		Center F	ast PLLs				
Package	Receiver	Channels	PLL 1	PLL 2	PLL 3	PLL 4			
484-pin FineLine BGA	Transmitter	38 <i>(2)</i>	10	9	9	10			
		(3)	19	19	19	19			
	Receiver	42 <i>(2)</i>	11	10	10	11			
		(3)	21	21	21	21			
672-pin FineLine BGA	Transmitter	58 <i>(2)</i>	16	13	13	16			
		(3)	29	29	29	29			
	Receiver	62 <i>(2)</i>	17	14	14	17			
		(3)	31	31	31	31			

•••	For more information on JTAG, see the following documents:
	 The IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing for Stratix II & Stratix II GX Devices chapter of the Stratix II Device Handbook, Volume 2 or the Stratix II GX Device Handbook, Volume 2 Jam Programming & Test Language Specification
SignalTap II Embedded Logic Analyzer	Stratix II devices feature the SignalTap II embedded logic analyzer, which monitors design operation over a period of time through the IEEE Std. 1149.1 (JTAG) circuitry. You can analyze internal logic at speed without bringing internal signals to the I/O pins. This feature is particularly important for advanced packages, such as FineLine BGA [®] packages, because it can be difficult to add a connection to a pin during the debugging process after a board is designed and manufactured.
Configuration	The logic, circuitry, and interconnects in the Stratix II architecture are configured with CMOS SRAM elements. Altera [®] FPGA devices are reconfigurable and every device is tested with a high coverage production test program so you do not have to perform fault testing and can instead focus on simulation and design verification.
	Stratix II devices are configured at system power-up with data stored in an Altera configuration device or provided by an external controller (e.g., a MAX [®] II device or microprocessor). Stratix II devices can be configured using the fast passive parallel (FPP), active serial (AS), passive serial (PS), passive parallel asynchronous (PPA), and JTAG configuration schemes. The Stratix II device's optimized interface allows microprocessors to configure it serially or in parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat Stratix II devices as memory and configure them by writing to a virtual memory location, making reconfiguration easy.
	In addition to the number of configuration methods supported, Stratix II devices also offer the design security, decompression, and remote system upgrade features. The design security feature, using configuration bitstream encryption and AES technology, provides a mechanism to protect your designs. The decompression feature allows Stratix II FPGAs to receive a compressed configuration bitstream and decompress this data in real-time, reducing storage requirements and configuration time. The remote system upgrade feature allows real-time system upgrades from remote locations of your Stratix II designs. For more information, see "Configuration Schemes" on page 3–7.

Devices Can Be Driven Before Power-Up

You can drive signals into the I/O pins, dedicated input pins and dedicated clock pins of Stratix II devices before or during power-up or power-down without damaging the device. Stratix II devices support any power-up or power-down sequence (V_{CCIO} , V_{CCINT} , and V_{CCPD}) in order to simplify system level design.

I/O Pins Remain Tri-Stated During Power-Up

A device that does not support hot-socketing may interrupt system operation or cause contention by driving out before or during power-up. In a hot socketing situation, Stratix II device's output buffers are turned off during system power-up or power-down. Stratix II device also does not drive out until the device is configured and has attained proper operating conditions.

Signal Pins Do Not Drive the $V_{\text{CCIO}},\,V_{\text{CCINT}}$ or V_{CCPD} Power Supplies

Devices that do not support hot-socketing can short power supplies together when powered-up through the device signal pins. This irregular power-up can damage both the driving and driven devices and can disrupt card power-up.

Stratix II devices do not have a current path from I/O pins, dedicated input pins, or dedicated clock pins to the V_{CCIO} , V_{CCINT} , or V_{CCPD} pins before or during power-up. A Stratix II device may be inserted into (or removed from) a powered-up system board without damaging or interfering with system-board operation. When hot-socketing, Stratix II devices may have a minimal effect on the signal integrity of the backplane.

- You can power up or power down the V_{CCIO}, V_{CCINT}, and V_{CCPD} pins in any sequence. The power supply ramp rates can range from 100 µs to 100 ms. All V_{CC} supplies must power down within 100 ms of each other to prevent I/O pins from driving out. During hot socketing, the I/O pin capacitance is less than 15 pF and the clock pin capacitance is less than 20 pF. Stratix II devices meet the following hot socketing specification.
- The hot socketing DC specification is: $|I_{IOPIN}| < 300 \,\mu$ A.
- The hot socketing AC specification is: | I_{IOPIN} | < 8 mA for 10 ns or less.</p>

Table 5∙	Table 5–21. SSTL-2 Class I & II Differential Specifications										
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit					
V _{CCIO}	Output supply voltage		2.375	2.500	2.625	V					
V _{SWING} (DC)	DC differential input voltage		0.36			V					
V _X (AC)	AC differential input cross point voltage		(V _{CCIO} /2) - 0.2		(V _{CCIO} /2) + 0.2	V					
V _{SWING} (AC)	AC differential input voltage		0.7			V					
V _{ISO}	Input clock signal offset voltage			$0.5 \times V_{CCIO}$		V					
$\Delta V_{\rm ISO}$	Input clock signal offset voltage variation			±200		mV					
V _{OX} (AC)	AC differential output cross point voltage		$(V_{CCIO}/2) - 0.2$		(V _{CCIO} /2) + 0.2	V					

Table 5-	-22. 1.2-V HSTL Specificatio	ons				
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
V _{CCIO}	Output supply voltage		1.14	1.20	1.26	V
V_{REF}	Reference voltage		$0.48 \times V_{CCIO}$	$0.50 \times V_{CCIO}$	$0.52 \times V_{CCIO}$	V
$V_{IH}(DC)$	High-level DC input voltage		$V_{REF} + 0.08$		V _{CCIO} + 0.15	V
$V_{IL}(DC)$	Low-level DC input voltage		-0.15		$V_{\text{REF}} - 0.08$	V
$V_{\text{IH}}\left(\text{AC}\right)$	High-level AC input voltage		V _{REF} + 0.15		$V_{CC10} + 0.24$	V
V_{IL} (AC)	Low-level AC input voltage		-0.24		$V_{REF} - 0.15$	V
V _{OH}	High-level output voltage	I _{ОН} = 8 mA	V _{REF} + 0.15		V _{CCIO} + 0.15	V
V _{OL}	Low-level output voltage	I _{OH} = -8 mA	-0.15		$V_{REF} - 0.15$	V

 Table 5–30. Series On-Chip Termination Specification for Top & Bottom I/O Banks (Part 2 of 2)
 Notes (1), 2

			Resist	ance Toleranc	e
Symbol	Description	Conditions	Commercial Max	Industrial Max	Unit
50-Ω R _S 3.3/2.5	Internal series termination with calibration (50- Ω setting)	V _{CCIO} = 3.3/2.5 V	±5	±10	%
	Internal series termination without calibration (50- Ω setting)	V _{CCIO} = 3.3/2.5 V	±30	±30	%
50-Ω R _T 2.5	Internal parallel termination with calibration (50- Ω setting)	V _{CCIO} = 1.8 V	±30	±30	%
25-Ω R _S 1.8	Internal series termination with calibration ($25-\Omega$ setting)	V _{CCIO} = 1.8 V	±5	±10	%
	Internal series termination without calibration (25- Ω setting)	V _{CCIO} = 1.8 V	±30	±30	%
50-Ω R _S 1.8	Internal series termination with calibration (50- Ω setting)	V _{CCIO} = 1.8 V	±5	±10	%
	Internal series termination without calibration ($50-\Omega$ setting)	V _{CCIO} = 1.8 V	±30	±30	%
50-Ω R _T 1.8	Internal parallel termination with calibration (50- Ω setting)	V _{CCIO} = 1.8 V	±10	±15	%
50–Ω R _S 1.5	Internal series termination with calibration (50- Ω setting)	V _{CCIO} = 1.5 V	±8	±10	%
	Internal series termination without calibration (50- Ω setting)	V _{CCIO} = 1.5 V	±36	±36	%
50-Ω R _T 1.5	Internal parallel termination with calibration (50- Ω setting)	V _{CCIO} = 1.5 V	±10	±15	%
50–Ω R _S 1.2	Internal series termination with calibration (50- Ω setting)	V _{CCIO} = 1.2 V	±8	±10	%
	Internal series termination without calibration (50- Ω setting)	V _{CCIO} = 1.2 V	±50	±50	%
50-Ω R _T 1.2	Internal parallel termination with calibration (50- Ω setting)	V _{CCIO} = 1.2 V	±10	±15	%

Notes for Table 5–30:

(1) The resistance tolerances for calibrated SOCT and POCT are for the moment of calibration. If the temperature or voltage changes over time, the tolerance may also change.

(2) On-chip parallel termination with calibration is only supported for input pins.

I/O Standard		Measurement Point					
	R_S (Ω)	R _D (Ω) R _T (Ω)		V _{ccio} (V)	V _{CCIO} (V) V _{TT} (V)		V _{MEAS} (V)
LVTTL (4)				3.135		0	1.5675
LVCMOS (4)				3.135		0	1.5675
2.5 V (4)				2.375		0	1.1875
1.8 V (4)				1.710		0	0.855
1.5 V (4)				1.425		0	0.7125
PCI (5)				2.970		10	1.485
PCI-X (5)				2.970		10	1.485
SSTL-2 Class I	25		50	2.325	1.123	0	1.1625
SSTL-2 Class II	25		25	2.325	1.123	0	1.1625
SSTL-18 Class I	25		50	1.660	0.790	0	0.83
SSTL-18 Class II	25		25	1.660	0.790	0	0.83
1.8-V HSTL Class I	50		50	1.660	0.790	0	0.83
1.8-V HSTL Class II	25		25	1.660	0.790	0	0.83
1.5-V HSTL Class I	50		50	1.375	0.648	0	0.6875
1.5-V HSTL Class II			25	1.375	0.648	0	0.6875
1.2-V HSTL with OCT	50			1.140		0	0.570
Differential SSTL-2 Class I	50		50	2.325	1.123	0	1.1625
Differential SSTL-2 Class II	25		25	2.325	1.123	0	1.1625
Differential SSTL-18 Class I	50		50	1.660	0.790	0	0.83
Differential SSTL-18 Class II	25		25	1.660	0.790	0	0.83
1.5-V Differential HSTL Class I	50		50	1.375	0.648	0	0.6875
1.5-V Differential HSTL Class II			25	1.375	0.648	0	0.6875
1.8-V Differential HSTL Class I	50		50	1.660	0.790	0	0.83
1.8-V Differential HSTL Class II	25		25	1.660	0.790	0	0.83
LVDS		100		2.325		0	1.1625
HyperTransport		100		2.325		0	1.1625
LVPECL		100		3.135		0	1.5675

T. 64 5 04 0 . --..... ~ **D**:-.... (0)

Notes to Table 5–34:

(1) Input measurement point at internal node is $0.5 \times V_{CCINT}$.

(2) Output measuring point for V_{MEAS} at buffer output is $0.5 \times V_{CCIO}$.

(3) Input stimulus edge rate is 0 to V_{CC} in 0.2 ns (internal signal) from the driver preceding the I/O buffer.

(4) Less than 50-mV ripple on V_{CCIO} and V_{CCPD} , $V_{CCINT} = 1.15$ V with less than 30-mV ripple

(5) $V_{CCPD} = 2.97 \text{ V}$, less than 50-mV ripple on V_{CCIO} and V_{CCPD} , $V_{CCINT} = 1.15 \text{ V}$

Table 5–38. IOE Internal Timing Microparameters											
Question		-3 Speed Grade (1)		-3 Speed Grade (2)		-4 Speed Grade		-5 Speed Grade			
Symbol	Parameter	Min <i>(3)</i>	Max	Min <i>(3)</i>	Max	Min (4)	Max	Min <i>(3)</i>	Max	Unit	
t _{SU}	IOE input and output register setup time before clock	122		128		140 140		163		ps	
t _H	IOE input and output register hold time after clock	72		75		82 82		96		ps	
t _{co}	IOE input and output register clock-to- output delay	101	169	101	177	97 101	194	101	226	ps	
t _{PIN2COMBOUT_R}	Row input pin to IOE combinational output	410	760	410	798	391 410	873	410	1,018	ps	
t _{PIN2COMBOUT_C}	Column input pin to IOE combinational output	428	787	428	825	408 428	904	428	1,054	ps	
t _{COMBIN2PIN_R}	Row IOE data input to combinational output pin	1,101	2,026	1,101	2,127	1,049 1,101	2,329	1,101	2,439	ps	
t _{сомвіл2ріл_с}	Column IOE data input to combinational output pin	991	1,854	991	1,946	944 991	2,131	991	2,246	ps	
t _{CLR}	Minimum clear pulse width	200		210		229 229		268		ps	
t _{PRE}	Minimum preset pulse width	200		210		229 229		268		ps	
t _{CLKL}	Minimum clock low time	600		630		690 690		804		ps	
t _{CLKH}	Minimum clock high time	600		630		690 690		804		ps	

Notes to Table 5–38:

(1) These numbers apply to -3 speed grade EP2S15, EP2S30, EP2S60, and EP2S90 devices.

(2) These numbers apply to -3 speed grade EP2S130 and EP2S180 devices.

- (3) For the -3 and -5 speed grades, the minimum timing is for the commercial temperature grade. Only -4 speed grade devices offer the industrial temperature grade.
- (4) For the -4 speed grade, the first number is the minimum timing parameter for industrial devices. The second number is the minimum timing parameter for commercial devices.

Table 5–47. EP2S15 Row Pins Global Clock Timing Parameters										
Parameter	Minimu	m Timing	-3 Speed	-4 Speed	-5 Speed	Unit				
	Industrial	Commercial	Grade	Grade	Grade	UIII				
t _{CIN}	1.206	1.262	2.113	2.422	2.815	ns				
t _{COUT}	1.211	1.267	2.109	2.418	2.810	ns				
t _{PLLCIN}	-0.125	-0.138	-0.023	-0.038	-0.056	ns				
t _{PLLCOUT}	-0.12	-0.133	-0.027	-0.042	-0.061	ns				

EP2S30 Clock Timing Parameters

Tables 5–48 through 5–51 show the maximum clock timing parameters for EP2S30 devices.

Table 5–48. EP2S30 Column Pins Regional Clock Timing Parameters											
Parameter	Minimu	m Timing	-3 Speed	-4 Speed	-5 Speed	Unit					
Farallieler	Industrial	Crodo C		Grade	Grade	Unit					
t _{CIN}	1.553	1.627	2.639	3.025	3.509	ns					
t _{COUT}	1.396	1.462	2.397	2.747	3.185	ns					
t _{PLLCIN}	0.114	0.113	0.225	0.248	0.28	ns					
t _{PLLCOUT}	-0.043	-0.052	-0.017	-0.03	-0.044	ns					

Table 5–49. EP2S30 Column Pins Global Clock Timing Parameters											
Devenuetev	Minimu	m Timing	-3 Speed	-4 Speed	-5 Speed	Unit					
Parameter	Industrial	-		Grade	Grade	Unit					
t _{CIN}	1.539	1.613	2.622	3.008	3.501	ns					
t _{COUT}	1.382	1.448	2.380	2.730	3.177	ns					
t _{PLLCIN}	0.101	0.098	0.209	0.229	0.267	ns					
t _{PLLCOUT}	-0.056	-0.067	-0.033	-0.049	-0.057	ns					

IOE Programmable Delay

Table 5–69. Str	Table 5–69. Stratix II IOE Programmable Delay on Column Pins Note (1)											
		Available	Minimum Timing (2)		-3 Speed Grade <i>(</i> 3)			peed ade	-5 Speed Grade			
Parameter	Paths Affected	Settings	Min Offset (ps)	Max Offset (ps)	Min Offset (ps)	Max Offset (ps)	Min Offset (ps)	Max Offset (ps)	Min Offset (ps)	Max Offset (ps)		
Input delay from pin to internal cells	Pad to I/O dataout to logic array	8	0 0	1,696 1,781	0 0	2,881 3,025	0	3,313	0	3,860		
Input delay from pin to input register	Pad to I/O input register	64	0 0	1,955 2,053	0 0	3,275 3,439	0	3,766	0	4,388		
Delay from output register to output pin	I/O output register to pad	2	0 0	316 332	0 0	500 525	0	575	0	670		
Output enable pin delay	t _{XZ} , t _{ZX}	2	0 0	305 320	0 0	483 507	0	556	0	647		

Notes to Table 5–69:

(1) The incremental values for the settings are generally linear. For the exact delay associated with each setting, use the latest version of the Quartus II software.

(2) The first number is the minimum timing parameter for industrial devices. The second number is the minimum timing parameter for commercial devices.

(3) The first number applies to -3 speed grade EP2S15, EP2S30, EP2S60, and EP2S90 devices. The second number applies to -3 speed grade EP2S130 and EP2S180 devices.

Table 5–76. St	Table 5–76. Stratix II I/O Output Delay for Row Pins (Part 3 of 3)												
			Minimu	m Timing	-3	-3	-4	-5					
I/O Standard	Drive Strength	Parameter	Industrial	Commercial	Speed Grade (2)	Speed Grade (3)	Speed Grade	Speed Grade	Unit				
1.8-V HSTL	4 mA	t _{OP}	972	1019	1610	1689	1850	1956	ps				
Class I		t _{DIP}	930	976	1555	1632	1787	1883	ps				
	6 mA	t _{OP}	975	1022	1580	1658	1816	1920	ps				
		t _{DIP}	933	979	1525	1601	1753	1847	ps				
	8 mA	t _{OP}	958	1004	1576	1653	1811	1916	ps				
10 n		t _{DIP}	916	961	1521	1596	1748	1843	ps				
	10 mA	t _{OP}	962	1008	1567	1644	1801	1905	ps				
		t _{DIP}	920	965	1512	1587	1738	1832	ps				
	12 mA	t _{OP}	953	999	1566	1643	1800	1904	ps				
	(1)	t _{DIP}	911	956	1511	1586	1737	1831	ps				
1.5-V HSTL	4 mA	t _{OP}	970	1018	1591	1669	1828	1933	ps				
Class I		t _{DIP}	928	975	1536	1612	1765	1860	ps				
	6 mA	t _{OP}	974	1021	1579	1657	1815	1919	ps				
		t _{DIP}	932	978	1524	1600	1752	1846	ps				
	8 mA (1)	t _{OP}	960	1006	1572	1649	1807	1911	ps				
		t _{DIP}	918	963	1517	1592	1744	1838	ps				
LVDS		t _{OP}	1018	1067	1723	1808	1980	2089	ps				
		t _{DIP}	976	1024	1668	1751	1917	2016	ps				
HyperTransport		t _{OP}	1005	1053	1723	1808	1980	2089	ps				
		t _{DIP}	963	1010	1668	1751	1917	2016	ps				

Notes to Table 5–76:

(1) This is the default setting in the Quartus II software.

(2) These numbers apply to -3 speed grade EP2S15, EP2S30, EP2S60, and EP2S90 devices.

(3) These numbers apply to -3 speed grade EP2S130 and EP2S180 devices.

Maximum Input & Output Clock Toggle Rate

Maximum clock toggle rate is defined as the maximum frequency achievable for a clock type signal at an I/O pin. The I/O pin can be a regular I/O pin or a dedicated clock I/O pin.

Table 5–78. Maximum Output Toggle Rate on Stratix II Devices (Part 4 of 5) Note (1)											
	Drive	Column I/O Pins (MHz)			Row I	Row I/O Pins (MHz)			Clock Outputs (MHz)		
I/O Standard	Strength	-3	-4	-5	-3	-4	-5	-3	-4	-5	
1.8-V LVTTL	OCT 50 Ω	700	550	450	700	550	450	700	550	450	
3.3-V LVCMOS	OCT 50 Ω	350	350	300	350	350	300	350	350	300	
1.5-V LVCMOS	OCT 50 Ω	550	450	400	550	450	400	550	450	400	
SSTL-2 Class I	OCT 50 Ω	600	500	500	600	500	500	600	500	500	
SSTL-2 Class II	OCT 25 Ω	600	550	500	600	550	500	600	550	500	
SSTL-18 Class I	OCT 50 Ω	560	400	350	590	400	350	450	400	350	
SSTL-18 Class II	OCT 25 Ω	550	500	450	-	-	-	550	500	450	
1.2-V HSTL (2)	OCT 50 Ω	280	-	-	-	-	-	280	-	-	
1.5-V HSTL Class I	OCT 50 Ω	600	550	500	600	550	500	600	550	500	
1.8-V HSTL Class I	OCT 50 Ω	650	600	600	650	600	600	650	600	600	
1.8-V HSTL Class II	OCT 25 Ω	500	500	450	-	-	-	500	500	450	
Differential SSTL-2 Class I	OCT 50 Ω	600	500	500	600	500	500	600	500	500	
Differential SSTL-2 Class II	OCT 25 Ω	600	550	500	600	550	500	600	550	500	
Differential SSTL-18 Class I	OCT 50 Ω	560	400	350	590	400	350	560	400	350	
Differential SSTL-18 Class II	OCT 25 Ω	550	500	450	-	-	-	550	500	450	
1.8-V Differential HSTL Class I	OCT 50 Ω	650	600	600	650	600	600	650	600	600	
1.8-V Differential HSTL Class II	OCT 25 Ω	500	500	450	-	-	-	500	500	450	
1.5-V Differential HSTL Class I	OCT 50 Ω	600	550	500	600	550	500	600	550	500	

Table 5–79. Max	Table 5–79. Maximum Output Clock Toggle Rate Derating Factors (Part 5 of 5)										
		Maximum Output Clock Toggle Rate Derating Factors (ps/pF)									
I/O Standard	Drive Strength	Col	umn I/O I	Pins	Ro	ow I/O Pi	ns	Dedica	ted Clo	ck Outputs	
	g	-3	-4	-5	-3	-4	-5	-3	-4	-5	
3.3-V LVTTL	ΟCT 50 Ω	133	152	152	133	152	152	147	152	152	
2.5-V LVTTL	ΟCT 50 Ω	207	274	274	207	274	274	235	274	274	
1.8-V LVTTL	ΟCT 50 Ω	151	165	165	151	165	165	153	165	165	
3.3-V LVCMOS	ΟCT 50 Ω	300	316	316	300	316	316	263	316	316	
1.5-V LVCMOS	ΟCT 50 Ω	157	171	171	157	171	171	174	171	171	
SSTL-2 Class I	ΟCT 50 Ω	121	134	134	121	134	134	77	134	134	
SSTL-2 Class II	ΟCT 25 Ω	56	101	101	56	101	101	58	101	101	
SSTL-18 Class I	ΟCT 50 Ω	100	123	123	100	123	123	106	123	123	
SSTL-18 Class II	ΟCT 25 Ω	61	110	110	-	-	-	59	110	110	
1.2-V HSTL (2)	ΟCT 50 Ω	95	-	-	-	-	-	-	-	95	

Notes to Table 5–79:

(1) For LVDS and HyperTransport technology output on row I/O pins, the toggle rate derating factors apply to loads larger than 5 pF. In the derating calculation, subtract 5 pF from the intended load value in pF for the correct result. For a load less than or equal to 5 pF, refer to Table 5-78 for output toggle rates.

(2) 1.2-V HSTL is only supported on column I/O pins in I/O banks 4,7, and 8.

(3) Differential HSTL and SSTL is only supported on column clock and DQS outputs.

(4) LVPECL is only supported on column clock outputs.

Duty Cycle Distortion

Duty cycle distortion (DCD) describes how much the falling edge of a clock is off from its ideal position. The ideal position is when both the clock high time (CLKH) and the clock low time (CLKL) equal half of the clock period (T), as shown in Figure 5–7. DCD is the deviation of the non-ideal falling edge from the ideal falling edge, such as D1 for the falling edge A and D2 for the falling edge B (Figure 5–7). The maximum DCD for a clock is the larger value of D1 and D2.

Table 5–89. High-Speed	I/O Specifications fo	r -3 Speed Gra	de (Part 2 o	f 2)	Notes ((1), (2)	
Sumhal	0	-3 S	peed G	Unit			
Symbol	U	Conditions					Unit
f _{HSDR} (data rate)	J = 4 to 10 (LVDS, H	150		1,040	Mbps		
	J = 2 (LVDS, Hyper	Fransport techno	ology)	(4)		760	Mbps
	J = 1 (LVDS only)	I = 1 (LVDS only)				500	Mbps
f _{HSDRDPA} (DPA data rate)	J = 4 to 10 (LVDS, H	lyperTransport	technology)	150		1,040	Mbps
TCCS	All differential stand	ards		-		200	ps
SW	All differential stand	330		-	ps		
Output jitter				190	ps		
Output t _{RISE}	All differential I/O sta				160	ps	
Output t _{FALL}	All differential I/O sta	andards				180	ps
t _{DUTY}				45	50	55	%
DPA run length						6,400	UI
DPA jitter tolerance	Data channel peak-	to-peak jitter		0.44			UI
DPA lock time	Standard	Training Pattern	Transition Density				Number of repetitions
	SPI-4	0000000000 1111111111	10%	256			
	Parallel Rapid I/O	Parallel Rapid I/O 00001111 25%					
	10010000 50						
	Miscellaneous	10101010	100%	256			
		01010101		256			

Notes to Table 5–89:

- (1) When J = 4 to 10, the SERDES block is used.
- (2) When J = 1 or 2, the SERDES block is bypassed.
- (3) The input clock frequency and the W factor must satisfy the following fast PLL VCO specification: $150 \le$ input clock frequency × W \le 1,040.
- (4) The minimum specification is dependent on the clock source (fast PLL, enhanced PLL, clock pin, and so on) and the clock routing resource (global, regional, or local) utilized. The I/O differential buffer and input register do not have a minimum toggle rate.

Name	Description	Min	Тур	Max	Unit
f _{IN}	Input clock frequency (for -3 and -4 speed grade devices)	16.08		717	MHz
	Input clock frequency (for -5 speed grade devices)	16.08		640	MHz
f _{INPFD}	Input frequency to the PFD	16.08		500	MHz
finduty	Input clock duty cycle	40		60	%
t _{injitter}	Input clock jitter tolerance in terms of period jitter. Bandwidth \leq 2 MHz		0.5		ns (p-p)
	Input clock jitter tolerance in terms of period jitter. Bandwidth > 2 MHz		1.0		ns (p-p)
f _{vco}	Upper VCO frequency range for -3 and -4 speed grades	300		1,040	MHz
	Upper VCO frequency range for –5 speed grades	300		840	MHz
	Lower VCO frequency range for -3 and -4 speed grades	150		520	MHz
	Lower VCO frequency range for -5 speed grades	150		420	MHz
fout	PLL output frequency to GCLK or RCLK	4.6875		550	MHz
	PLL output frequency to LVDS or DPA clock	150		1,040	MHz
f _{out_io}	PLL clock output frequency to regular I/O pin	4.6875		(1)	MHz
f _{scanclk}	Scanclk frequency			100	MHz
t _{CONFIGPLL}	Time required to reconfigure scan chains for fast PLLs		75/f _{scanclk}		ns
f _{CLBW}	PLL closed-loop bandwidth	1.16	5.00	28.00	MHz
t _{LOCK}	Time required for the PLL to lock from the time it is enabled or the end of the device configuration		0.03	1.00	ms
t _{pll_pserr}	Accuracy of PLL phase shift			±15	ps
tARESET	Minimum pulse width on areset signal.	10			ns
t _{areset_reconfig}	Minimum pulse width on the areset signal when using PLL reconfiguration. Reset the PLL after scandone goes high.	500			ns

Note to Table 5–93:

(1) Limited by I/O f_{MAX} . See Table 5–77 on page 5–67 for the maximum.