E·XFL

Altera - EP2S130F780C5 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	534
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	780-BBGA
Supplier Device Package	780-FBGA (29x29)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=ep2s130f780c5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Stratix II devices are available in space-saving FineLine BGA[®] packages (see Tables 1–2 and 1–3).

Table 1–2. S	Stratix II Package	Options & I/O	Pin Counts	Notes (1), (2)		
Device	484-Pin FineLine BGA	484-Pin Hybrid FineLine BGA	672-Pin FineLine BGA	780-Pin FineLine BGA	1,020-Pin FineLine BGA	1,508-Pin FineLine BGA
EP2S15	342		366			
EP2S30	342		500			
EP2S60 (3)	334		492		718	
EP2S90 (3)		308		534	758	902
EP2S130 (3)				534	742	1,126
EP2S180 (3)					742	1,170

Notes to Table 1–2:

All I/O pin counts include eight dedicated clock input pins (clk1p, clk1n, clk3p, clk3n, clk9p, clk9n, clk1p, and clk11n) that can be used for data inputs.

(2) The Quartus II software I/O pin counts include one additional pin, PLL_ENA, which is not available as generalpurpose I/O pins. The PLL_ENA pin can only be used to enable the PLLs within the device.

(3) The I/O pin counts for the EP2S60, EP2S90, EP2S130, and EP2S180 devices in the 1020-pin and 1508-pin packages include eight dedicated fast PLL clock inputs (FPLL7CLKp/n, FPLL8CLKp/n, FPLL9CLKp/n, and FPLL10CLKp/n) that can be used for data inputs.

Table 1–3. St	Table 1–3. Stratix II FineLine BGA Package Sizes											
Dimension	484 Pin	484-Pin Hybrid	672 Pin	780 Pin	1,020 Pin	1,508 Pin						
Pitch (mm)	1.00	1.00	1.00	1.00	1.00	1.00						
Area (mm2)	529	729	729	841	1,089	1,600						
Length × width (mm × mm)	23 × 23	27 × 27	27 × 27	29 × 29	33 × 33	40 × 40						

All Stratix II devices support vertical migration within the same package (for example, you can migrate between the EP2S15, EP2S30, and EP2S60 devices in the 672-pin FineLine BGA package). Vertical migration means that you can migrate to devices whose dedicated pins, configuration pins, and power pins are the same for a given package across device densities.

To ensure that a board layout supports migratable densities within one package offering, enable the applicable vertical migration path within the Quartus II software (Assignments menu > Device > Migration Devices).

The Quartus II Compiler automatically creates carry chain logic during design processing, or you can create it manually during design entry. Parameterized functions such as LPM functions automatically take advantage of carry chains for the appropriate functions.

The Quartus II Compiler creates carry chains longer than 16 (8 ALMs in arithmetic or shared arithmetic mode) by linking LABs together automatically. For enhanced fitting, a long carry chain runs vertically allowing fast horizontal connections to TriMatrix memory and DSP blocks. A carry chain can continue as far as a full column.

To avoid routing congestion in one small area of the device when a high fan-in arithmetic function is implemented, the LAB can support carry chains that only utilize either the top half or the bottom half of the LAB before connecting to the next LAB. This leaves the other half of the ALMs in the LAB available for implementing narrower fan-in functions in normal mode. Carry chains that use the top four ALMs in the first LAB carry into the top half of the ALMs in the next LAB within the column. Carry chains that use the bottom four ALMs in the first LAB carry into the bottom half of the ALMs in the next LAB within the column. Every other column of LABs is top-half bypassable, while the other LAB columns are bottom-half bypassable.

See the "MultiTrack Interconnect" on page 2–22 section for more information on carry chain interconnect.

Shared Arithmetic Mode

In shared arithmetic mode, the ALM can implement a three-input add. In this mode, the ALM is configured with four 4-input LUTs. Each LUT either computes the sum of three inputs or the carry of three inputs. The output of the carry computation is fed to the next adder (either to adder1 in the same ALM or to adder0 of the next ALM in the LAB) via a dedicated connection called the shared arithmetic chain. This shared arithmetic chain can significantly improve the performance of an adder tree by reducing the number of summation stages required to implement an adder tree. Figure 2–13 shows the ALM in shared arithmetic mode.

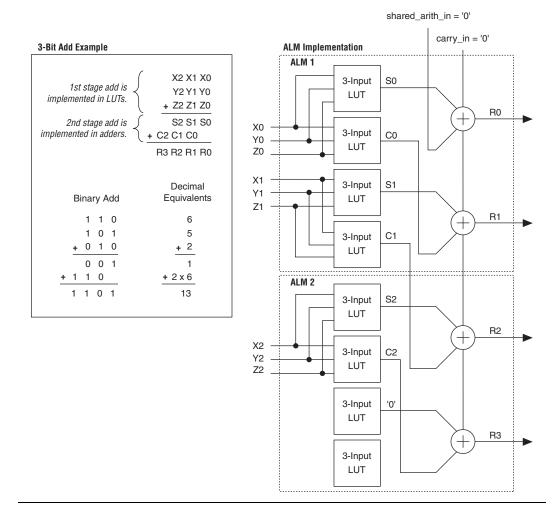


Figure 2–14. Example of a 3-bit Add Utilizing Shared Arithmetic Mode

Shared Arithmetic Chain

In addition to the dedicated carry chain routing, the shared arithmetic chain available in shared arithmetic mode allows the ALM to implement a three-input add. This significantly reduces the resources necessary to implement large adder trees or correlator functions.

The shared arithmetic chains can begin in either the first or fifth ALM in an LAB. The Quartus II Compiler creates shared arithmetic chains longer than 16 (8 ALMs in arithmetic or shared arithmetic mode) by linking LABs together automatically. For enhanced fitting, a long shared C16 column interconnects span a length of 16 LABs and provide the fastest resource for long column connections between LABs, TriMatrix memory blocks, DSP blocks, and IOEs. C16 interconnects can cross M-RAM blocks and also drive to row and column interconnects at every fourth LAB. C16 interconnects drive LAB local interconnects via C4 and R4 interconnects and do not drive LAB local interconnects directly.

All embedded blocks communicate with the logic array similar to LABto-LAB interfaces. Each block (that is, TriMatrix memory and DSP blocks) connects to row and column interconnects and has local interconnect regions driven by row and column interconnects. These blocks also have direct link interconnects for fast connections to and from a neighboring LAB. All blocks are fed by the row LAB clocks, labclk[5..0].

Table 2–2 shows the Stratix II device's routing scheme.

							[Desti	natio	n						
Source	Shared Arithmetic Chain	Carry Chain	Register Chain	Local Interconnect	Direct Link Interconnect	R4 Interconnect	R24 Interconnect	C4 Interconnect	C16 Interconnect	ALM	M512 RAM Block	M4K RAM Block	M-RAM Block	DSP Blocks	Column IOE	Row IOE
Shared arithmetic chain										\checkmark						
Carry chain										>						
Register chain										\checkmark						
Local interconnect										\checkmark	\checkmark	\checkmark	\checkmark	>	>	\checkmark
Direct link interconnect				>												
R4 interconnect				~		\checkmark	\checkmark	\checkmark	\checkmark							
R24 interconnect						\checkmark	\checkmark	\checkmark	\checkmark							
C4 interconnect				\checkmark		\checkmark		\checkmark								
C16 interconnect						\checkmark	\checkmark	\checkmark	\checkmark							
ALM	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark								
M512 RAM block				\checkmark	\checkmark	\checkmark		\checkmark								
M4K RAM block				\checkmark	\checkmark	\checkmark		\checkmark								
M-RAM block					\checkmark	\checkmark	\checkmark	\checkmark								
DSP blocks					\checkmark	\checkmark		~								

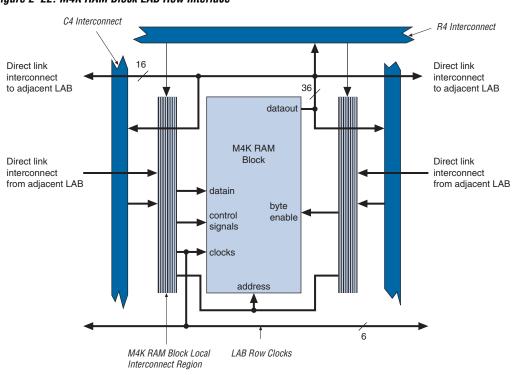



Figure 2–22. M4K RAM Block LAB Row Interface

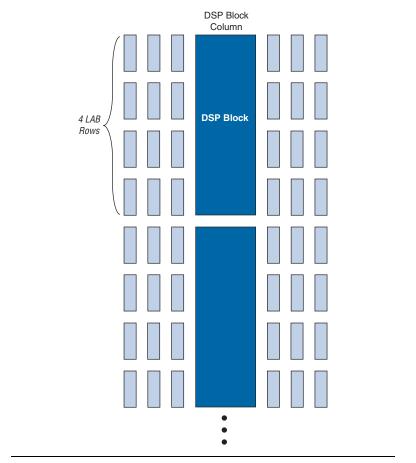
M-RAM Block

The largest TriMatrix memory block, the M-RAM block, is useful for applications where a large volume of data must be stored on-chip. Each block contains 589,824 RAM bits (including parity bits). The M-RAM block can be configured in the following modes:

- True dual-port RAM
- Simple dual-port RAM
- Single-port RAM
- FIFO

You cannot use an initialization file to initialize the contents of an M-RAM block. All M-RAM block contents power up to an undefined value. Only synchronous operation is supported in the M-RAM block, so all inputs are registered. Output registers can be bypassed.

(1) Only R24 and C16 interconnects cross the M-RAM block boundaries.


t Interface Block	Input Signals	Output Signals
LO	datain_a[140] byteena_a[10]	dataout_a[110]
L1	datain_a[2915] byteena_a[32]	dataout_a[2312]
L2	datain_a[3530] addressa[40] addr_ena_a clock_a clocken_a renwe_a aclr_a	dataout_a[3524]
L3	addressa[155] datain_a[4136]	dataout_a[4736]
L4	datain_a[5642] byteena_a[54]	dataout_a[5948]
L5	datain_a[7157] byteena_a[76]	dataout_a[7160]
R0	datain_b[140] byteena_b[10]	dataout_b[110]
R1	datain_b[2915] byteena_b[32]	dataout_b[2312]
R2	datain_b[3530] addressb[40] addr_ena_b clock_b clocken_b renwe_b aclr_b	dataout_b[3524]
R3	addressb[155] datain_b[4136]	dataout_b[4736]
R4	datain_b[5642] byteena_b[54]	dataout_b[5948]
R5	datain_b[7157] byteena_b[76]	dataout_b[7160]

••••

See the *TriMatrix Embedded Memory Blocks in Stratix II & Stratix II GX Devices* chapter in volume 2 of the *Stratix II Device Handbook* or the *Stratix II GX Device Handbook* for more information on TriMatrix memory.

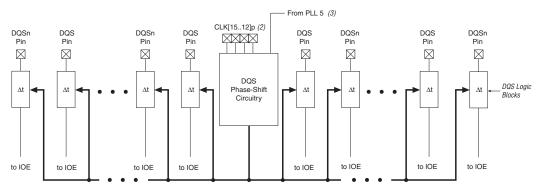
Figure 2–27 shows one of the columns with surrounding LAB rows.

The Stratix II clock networks can be disabled (powered down) by both static and dynamic approaches. When a clock net is powered down, all the logic fed by the clock net is in an off-state thereby reducing the overall power consumption of the device.

The global and regional clock networks can be powered down statically through a setting in the configuration (**.sof** or **.pof**) file. Clock networks that are not used are automatically powered down through configuration bit settings in the configuration file generated by the Quartus II software.

The dynamic clock enable/disable feature allows the internal logic to control power up/down synchronously on GCLK and RCLK nets and PLL_OUT pins. This function is independent of the PLL and is applied directly on the clock network or PLL_OUT pin, as shown in Figures 2–37 through 2–39.

The following restrictions for the input clock pins apply:


CLK0 pin -> inclk[0] of CLKCTRL
CLK1 pin -> inclk[1] of CLKCTRL
CLK2 pin -> inclk[0] of CLKCTRL
CLK3 pin -> inclk[1] of CLKCTRL

In general, even CLK numbers connect to the inclk[0] port of CLKCTRL, and odd CLK numbers connect to the inclk[1] port of CLKCTRL.

Failure to comply with these restrictions will result in a no-fit error.

Enhanced & Fast PLLs

Stratix II devices provide robust clock management and synthesis using up to four enhanced PLLs and eight fast PLLs. These PLLs increase performance and provide advanced clock interfacing and clockfrequency synthesis. With features such as clock switchover, spread-spectrum clocking, reconfigurable bandwidth, phase control, and reconfigurable phase shifting, the Stratix II device's enhanced PLLs provide you with complete control of clocks and system timing. The fast PLLs provide general purpose clocking with multiplication and phase shifting as well as high-speed outputs for high-speed differential I/O support. Enhanced and fast PLLs work together with the Stratix II high-speed I/O and advanced clock architecture to provide significant improvements in system performance and bandwidth.

Figure 2–56. DQS Phase-Shift Circuitry Notes (1), (2), (3), (4)

Notes to Figure 2–56:

- (1) There are up to 18 pairs of DQS and DQSn pins available on the top or the bottom of the Stratix II device. There are up to 10 pairs on the right side and 8 pairs on the left side of the DQS phase-shift circuitry.
- (2) The Δt module represents the DQS logic block.
- (3) Clock pins CLK[15..12]p feed the phase-shift circuitry on the top of the device and clock pins CLK[7..4]p feed the phase circuitry on the bottom of the device. You can also use a PLL clock output as a reference clock to the phaseshift circuitry.
- (4) You can only use PLL 5 to feed the DQS phase-shift circuitry on the top of the device and PLL 6 to feed the DQS phase-shift circuitry on the bottom of the device.

These dedicated circuits combined with enhanced PLL clocking and phase-shift ability provide a complete hardware solution for interfacing to high-speed memory.

For more information on external memory interfaces, refer to the *External Memory Interfaces in Stratix II & Stratix II GX Devices* chapter in volume 2 of the *Stratix II Device Handbook* or the *Stratix II GX Device Handbook*.

Programmable Drive Strength

The output buffer for each Stratix II device I/O pin has a programmable drive strength control for certain I/O standards. The LVTTL, LVCMOS, SSTL, and HSTL standards have several levels of drive strength that the user can control. The default setting used in the Quartus II software is the maximum current strength setting that is used to achieve maximum I/O performance. For all I/O standards, the minimum setting is the lowest drive strength that guarantees the I_{OH}/I_{OL} of the standard. Using minimum settings provides signal slew rate control to reduce system noise and signal overshoot.

Devices Can Be Driven Before Power-Up

You can drive signals into the I/O pins, dedicated input pins and dedicated clock pins of Stratix II devices before or during power-up or power-down without damaging the device. Stratix II devices support any power-up or power-down sequence (V_{CCIO} , V_{CCINT} , and V_{CCPD}) in order to simplify system level design.

I/O Pins Remain Tri-Stated During Power-Up

A device that does not support hot-socketing may interrupt system operation or cause contention by driving out before or during power-up. In a hot socketing situation, Stratix II device's output buffers are turned off during system power-up or power-down. Stratix II device also does not drive out until the device is configured and has attained proper operating conditions.

Signal Pins Do Not Drive the $V_{\text{CCIO}},\,V_{\text{CCINT}}$ or V_{CCPD} Power Supplies

Devices that do not support hot-socketing can short power supplies together when powered-up through the device signal pins. This irregular power-up can damage both the driving and driven devices and can disrupt card power-up.

Stratix II devices do not have a current path from I/O pins, dedicated input pins, or dedicated clock pins to the V_{CCIO} , V_{CCINT} , or V_{CCPD} pins before or during power-up. A Stratix II device may be inserted into (or removed from) a powered-up system board without damaging or interfering with system-board operation. When hot-socketing, Stratix II devices may have a minimal effect on the signal integrity of the backplane.

- You can power up or power down the V_{CCIO}, V_{CCINT}, and V_{CCPD} pins in any sequence. The power supply ramp rates can range from 100 µs to 100 ms. All V_{CC} supplies must power down within 100 ms of each other to prevent I/O pins from driving out. During hot socketing, the I/O pin capacitance is less than 15 pF and the clock pin capacitance is less than 20 pF. Stratix II devices meet the following hot socketing specification.
- The hot socketing DC specification is: $|I_{IOPIN}| < 300 \,\mu$ A.
- The hot socketing AC specification is: | I_{IOPIN} | < 8 mA for 10 ns or less.</p>

Table 5–65. EP2	Table 5–65. EP2S180 Column Pins Global Clock Timing Parameters											
Parameter	Minimu	m Timing	-3 Speed	-4 Speed	-5 Speed	Unit						
Farameter	Industrial	Commercial	Grade	Grade	Grade	Unit						
t _{CIN}	2.003	2.100	3.652	3.993	4.648	ns						
t _{COUT}	1.846	1.935	3.398	3.715	4.324	ns						
t _{PLLCIN}	-0.3	-0.29	0.053	0.054	0.058	ns						
t _{PLLCOUT}	-0.457	-0.455	-0.201	-0.224	-0.266	ns						

Table 5–66. EP2	Table 5–66. EP2S180 Row Pins Regional Clock Timing Parameters											
Parameter	Minimu	m Timing	-3 Speed	-4 Speed	-5 Speed	Unit						
Parameter	Industrial	Commercial	Grade	Grade	Grade	Unit						
t _{CIN}	1.759	1.844	3.273	3.577	4.162	ns						
t _{COUT}	1.764	1.849	3.269	3.573	4.157	ns						
t _{PLLCIN}	-0.542	-0.541	-0.317	-0.353	-0.414	ns						
t _{PLLCOUT}	-0.537	-0.536	-0.321	-0.357	-0.419	ns						

Table 5–67. EP23	Table 5–67. EP2S180 Row Pins Global Clock Timing Parameters											
Parameter	Minimu	m Timing	-3 Speed	-4 Speed	-5 Speed	Unit						
Farailieler	Industrial	Commercial	Grade	Grade	Grade	Unit						
t _{CIN}	1.763	1.850	3.285	3.588	4.176	ns						
t _{COUT}	1.768	1.855	3.281	3.584	4.171	ns						
t _{PLLCIN}	-0.542	-0.542	-0.319	-0.355	-0.42	ns						
t _{PLLCOUT}	-0.537	-0.537	-0.323	-0.359	-0.425	ns						

Clock Network Skew Adders

The Quartus II software models skew within dedicated clock networks such as global and regional clocks. Therefore, intra-clock network skew adder is not specified. Table 5–68 specifies the clock skew between any two clock networks driving registers in the IOE.

Table 5–68. Clock Net	vork Specifications				
Name	Description	Min	Тур	Max	Unit
Clock skew adder	Inter-clock network, same side			±50	ps
EP2S15, EP2S30, EP2S60 (1)	Inter-clock network, entire chip			±100	ps
Clock skew adder	Inter-clock network, same side			±55	ps
EP2S90 (1)	Inter-clock network, entire chip			±110	ps
Clock skew adder	Inter-clock network, same side			±63	ps
EP2S130 (1)	Inter-clock network, entire chip			±125	ps
Clock skew adder	Inter-clock network, same side			±75	ps
EP2S180 (1)	Inter-clock network, entire chip			±150	ps

Note to Table 5–68:

(1) This is in addition to intra-clock network skew, which is modeled in the Quartus II software.

Table 5–78. Maxi	mum Outpu	t Toggle R	Rate on St	ratix II De	vices (Pa	art 1 of 5)	No	ote (1)		
1/0 Standard	Drive	Colum	n I/O Pins	(MHz)	Row I	/O Pins (I	/IHz)	Clock	Outputs	: (MHz)
I/O Standard	Strength	-3	-4	-5	-3	-4	-5	-3	-4	-5
3.3-V LVTTL	4 mA	270	225	210	270	225	210	270	225	210
	8 mA	435	355	325	435	355	325	435	355	325
	12 mA	580	475	420	580	475	420	580	475	420
	16 mA	720	594	520	-	-	-	720	594	520
	20 mA	875	700	610	-	-	-	875	700	610
	24 mA	1,030	794	670	-	-	-	1,030	794	670
3.3-V LVCMOS	4 mA	290	250	230	290	250	230	290	250	230
	8 mA	565	480	440	565	480	440	565	480	440
	12 mA	790	710	670	-	-	-	790	710	670
	16 mA	1,020	925	875	-	-	-	1,020	925	875
	20 mA	1,066	985	935	-	-	-	1,066	985	935
	24 mA	1,100	1,040	1,000	-	-	-	1,100	1,040	1,000
2.5-V	4 mA	230	194	180	230	194	180	230	194	180
LVTTL/LVCMOS	8 mA	430	380	380	430	380	380	430	380	380
	12 mA	630	575	550	630	575	550	630	575	550
	16 mA	930	845	820	-	-	-	930	845	820
1.8-V	2 mA	120	109	104	120	109	104	120	109	104
LVTTL/LVCMOS	4 mA	285	250	230	285	250	230	285	250	230
	6 mA	450	390	360	450	390	360	450	390	360
	8 mA	660	570	520	660	570	520	660	570	520
	10 mA	905	805	755	-	-	-	905	805	755
	12 mA	1,131	1,040	990	-	-	-	1,131	1,040	990
1.5-V	2 mA	244	200	180	244	200	180	244	200	180
LVTTL/LVCMOS	4 mA	470	370	325	470	370	325	470	370	325
	6 mA	550	430	375	-	-	-	550	430	375
	8 mA	625	495	420	-	-	-	625	495	420
SSTL-2 Class I	8 mA	400	300	300	-	-	-	400	300	300
	12 mA	400	400	350	400	350	350	400	400	350
SSTL-2 Class II	16 mA	350	350	300	350	350	300	350	350	300
	20 mA	400	350	350	-	-	-	400	350	350
	24 mA	400	400	350	-	-	-	400	400	350

	Drive	Colum	n I/O Pins	: (MHz)	Row I	/O Pins (I	MHz)	Clock	Outputs	s (MHz)
I/O Standard	Strength	-3	-4	-5	-3	-4	-5	-3	-4	-5
Differential	4 mA	200	150	150	200	150	150	200	150	150
SSTL-18 Class I	6 mA	350	250	200	350	250	200	350	250	200
(3)	8 mA	450	300	300	450	300	300	450	300	300
	10 mA	500	400	400	500	400	400	500	400	400
	12 mA	700	550	400	350	350	297	650	550	400
Differential	8 mA	200	200	150	-	-	-	200	200	150
SSTL-18 Class II (3)	16 mA	400	350	350	-	-	-	400	350	350
(3)	18 mA	450	400	400	-	-	-	450	400	400
	20 mA	550	500	450	-	-	-	550	500	450
1.8-V Differential	4 mA	300	300	300	-	-	-	300	300	300
HSTL Class I (3)	6 mA	500	450	450	-	-	-	500	450	450
	8 mA	650	600	600	-	-	-	650	600	600
	10 mA	700	650	600	-	-	-	700	650	600
	12 mA	700	700	650	-	-	-	700	700	650
1.8-V Differential	16 mA	500	500	450	-	-	-	500	500	450
HSTL Class II (3)	18 mA	550	500	500	-	-	-	550	500	500
	20 mA	650	550	550	-	-	-	550	550	550
1.5-V Differential	4 mA	350	300	300	-	-	-	350	300	300
HSTL Class I (3)	6 mA	500	500	450	-	-	-	500	500	450
	8 mA	700	650	600	-	-	-	700	650	600
	10 mA	700	700	650	-	-	-	700	700	650
	12 mA	700	700	700	-	-	-	700	700	700
1.5-V Differential	16 mA	600	600	550	-	-	-	600	600	550
HSTL Class II (3)	18 mA	650	600	600	-	-	-	650	600	600
	20 mA	700	650	600	-	-	-	700	650	600
3.3-V PCI		1,000	790	670	-	-	-	1,000	790	670
3.3-V PCI-X		1,000	790	670	-	-	-	1,000	790	670
LVDS (6)		-	-	-	500	500	500	450	400	300
HyperTransport technology (4), (6)					500	500	500	-	-	-
LVPECL (5)		-	-	-	-	-	-	450	400	300
3.3-V LVTTL	OCT 50 Ω	400	400	350	400	400	350	400	400	350
2.5-V LVTTL	OCT 50 Ω	350	350	300	350	350	300	350	350	300

Table 5–79. Max	Table 5–79. Maximum Output Clock Toggle Rate Derating Factors (Part 5 of 5)												
		Maximum Output Clock Toggle Rate Derating Factors (ps/pF)											
I/O Standard	Drive Strength	Column I/O Pins			Ro	ow I/O Pi	ns	Dedicated Clock Outputs					
	C	-3	-4	-5	-3	-4	-5	-3	-4	-5			
3.3-V LVTTL	ΟCT 50 Ω	133	152	152	133	152	152	147	152	152			
2.5-V LVTTL	ΟCT 50 Ω	207	274	274	207	274	274	235	274	274			
1.8-V LVTTL	ΟCT 50 Ω	151	165	165	151	165	165	153	165	165			
3.3-V LVCMOS	ΟCT 50 Ω	300	316	316	300	316	316	263	316	316			
1.5-V LVCMOS	ΟCT 50 Ω	157	171	171	157	171	171	174	171	171			
SSTL-2 Class I	ΟCT 50 Ω	121	134	134	121	134	134	77	134	134			
SSTL-2 Class II	ΟCT 25 Ω	56	101	101	56	101	101	58	101	101			
SSTL-18 Class I	ΟCT 50 Ω	100	123	123	100	123	123	106	123	123			
SSTL-18 Class II	ΟCT 25 Ω	61	110	110	-	-	-	59	110	110			
1.2-V HSTL (2)	ΟCT 50 Ω	95	-	-	-	-	-	-	-	95			

Notes to Table 5–79:

(1) For LVDS and HyperTransport technology output on row I/O pins, the toggle rate derating factors apply to loads larger than 5 pF. In the derating calculation, subtract 5 pF from the intended load value in pF for the correct result. For a load less than or equal to 5 pF, refer to Table 5-78 for output toggle rates.

(2) 1.2-V HSTL is only supported on column I/O pins in I/O banks 4,7, and 8.

(3) Differential HSTL and SSTL is only supported on column clock and DQS outputs.

(4) LVPECL is only supported on column clock outputs.

Duty Cycle Distortion

Duty cycle distortion (DCD) describes how much the falling edge of a clock is off from its ideal position. The ideal position is when both the clock high time (CLKH) and the clock low time (CLKL) equal half of the clock period (T), as shown in Figure 5–7. DCD is the deviation of the non-ideal falling edge from the ideal falling edge, such as D1 for the falling edge A and D2 for the falling edge B (Figure 5–7). The maximum DCD for a clock is the larger value of D1 and D2.

PLL Timing Specifications

Tables 5–92 and 5–93 describe the Stratix II PLL specifications when operating in both the commercial junction temperature range (0 to 85 °C) and the industrial junction temperature range (–40 to 100 °C).

Name	Description	Min	Тур	Max	Unit
f _{IN}	Input clock frequency	2		500	MHz
f _{INPFD}	Input frequency to the PFD	2		420	MHz
finduty	Input clock duty cycle	40		60	%
feinduty	External feedback input clock duty cycle	40		60	%
t _{injitter}	Input or external feedback clock input jitter tolerance in terms of period jitter. Bandwidth ≤ 0.85 MHz		0.5		ns (p-p)
	Input or external feedback clock input jitter tolerance in terms of period jitter. Bandwidth > 0.85 MHz		1.0		ns (p-p)
toutjitter	Dedicated clock output period jitter			250 ps for \geq 100 MHz <code>outclk</code> 25 mUl for < 100 MHz <code>outclk</code>	ps or mUI (p-p)
t _{fcomp}	External feedback compensation time			10	ns
f _{out}	Output frequency for internal global or regional clock	1.5 <i>(2)</i>		550.0	MHz
toutduty	Duty cycle for external clock output (when set to 50%).	45	50	55	%
f scanclk	Scanclk frequency			100	MHz
t _{configpll}	Time required to reconfigure scan chains for enhanced PLLs		174/f _{scanclk}		ns
fout_ext	PLL external clock output frequency	1.5 <i>(2)</i>		550.0 (1)	MHz

6. Reference & Ordering Information

SII51006-2.2

Software	Stratix [®] II devices are supported by the Altera [®] Quartus [®] II design software, which provides a comprehensive environment for system-on-a- programmable-chip (SOPC) design. The Quartus II software includes HDL and schematic design entry, compilation and logic synthesis, full simulation and advanced timing analysis, SignalTap [®] II logic analyzer, and device configuration. See the <i>Quartus II Handbook</i> for more information on the Quartus II software features.		
	The Quartus II software supports the Windows XP/2000/NT/98, Sun Solaris, Linux Red Hat v7.1 and HP-UX operating systems. It also supports seamless integration with industry-leading EDA tools through the NativeLink [®] interface.		
Device Pin-Outs	Device pin-outs for Stratix II devices are available on the Altera web site at (www.altera.com).		
Ordering Information	Figure 6–1 describes the ordering codes for Stratix II devices. For more information on a specific package, refer to the <i>Package Information for Stratix II & Stratix II GX Devices</i> chapter in volume 2 of the <i>Stratix II Device Handbook</i> or the <i>Stratix II GX Device Handbook</i> .		