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are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.
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FPGAs
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of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
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efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
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for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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About this Handbook

This handbook provides comprehensive information about the Altera® 
Stratix® II family of devices. 

How to Contact 
Altera

For the most up-to-date information about Altera products, refer to the 
following table.

Typographic 
Conventions

This document uses the typographic conventions shown below.

Contact (1) Contact 
Method Address

Technical support Website www.altera.com/support

Technical training Website www.altera.com/training

Email custrain@altera.com

Product literature Email www.altera.com/literature

Altera literature services Website literature@altera.com

Non-technical support (General)
(Software Licensing)

Email nacomp@altera.com

Email authorization@altera.com

Note to table:
(1) You can also contact your local Altera sales office or sales representative.

Visual Cue Meaning

Bold Type with Initial 
Capital Letters 

Command names, dialog box titles, checkbox options, and dialog box options are 
shown in bold, initial capital letters. Example: Save As dialog box. 

bold type External timing parameters, directory names, project names, disk drive names, 
filenames, filename extensions, and software utility names are shown in bold 
type. Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital 
Letters 

Document titles are shown in italic type with initial capital letters. Example: AN 75: 
High-Speed Board Design.
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www.altera.com/literature

literature@altera.com
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Figure 2–3. Direct Link Connection 

LAB Control Signals

Each LAB contains dedicated logic for driving control signals to its ALMs. 
The control signals include three clocks, three clock enables, two 
asynchronous clears, synchronous clear, asynchronous preset/load, and 
synchronous load control signals. This gives a maximum of 11 control 
signals at a time. Although synchronous load and clear signals are 
generally used when implementing counters, they can also be used with 
other functions.

Each LAB can use three clocks and three clock enable signals. However, 
there can only be up to two unique clocks per LAB, as shown in the LAB 
control signal generation circuit in Figure 2–4. Each LAB's clock and clock 
enable signals are linked. For example, any ALM in a particular LAB 
using the labclk1 signal also uses labclkena1. If the LAB uses both 
the rising and falling edges of a clock, it also uses two LAB-wide clock 
signals. De-asserting the clock enable signal turns off the corresponding 
LAB-wide clock.

Each LAB can use two asynchronous clear signals and an asynchronous 
load/preset signal. By default, the Quartus II software uses a NOT gate 
push-back technique to achieve preset. If you disable the NOT gate 
push-up option or assign a given register to power up high using the 
Quartus II software, the preset is achieved using the asynchronous load 

ALMs

Direct link
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right LAB, TriMatrix memory
block, DSP block, or IOE output

Direct link interconnect from
left LAB, TriMatrix memory

block, DSP block, or IOE output
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datae1 and dataf1 are utilized, the output drives to register1 
and/or bypasses register1 and drives to the interconnect using the 
bottom set of output drivers. The Quartus II Compiler automatically 
selects the inputs to the LUT. Asynchronous load data for the register 
comes from the datae or dataf input of the ALM. ALMs in normal 
mode support register packing.

Figure 2–9. 6-Input Function in Normal Mode Notes (1), (2)

Notes to Figure 2–9:
(1) If datae1 and dataf1 are used as inputs to the six-input function, then datae0 

and dataf0 are available for register packing.
(2) The dataf1 input is available for register packing only if the six-input function is 

un-registered.

Extended LUT Mode

The extended LUT mode is used to implement a specific set of 
seven-input functions. The set must be a 2-to-1 multiplexer fed by two 
arbitrary five-input functions sharing four inputs. Figure 2–10 shows the 
template of supported seven-input functions utilizing extended LUT 
mode. In this mode, if the seven-input function is unregistered, the 
unused eighth input is available for register packing.

Functions that fit into the template shown in Figure 2–10 occur naturally 
in designs. These functions often appear in designs as “if-else” statements 
in Verilog HDL or VHDL code.

6-Input
LUT
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datae0

dataa
datab
datac
datad

datae1
dataf1

D Q

D Q
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local routing

To general or
local routing
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reg1These inputs are available for register packing.
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MultiTrack Interconnect

R24 row interconnects span 24 LABs and provide the fastest resource for 
long row connections between LABs, TriMatrix memory, DSP blocks, and 
Row IOEs. The R24 row interconnects can cross M-RAM blocks. R24 row 
interconnects drive to other row or column interconnects at every fourth 
LAB and do not drive directly to LAB local interconnects. R24 row 
interconnects drive LAB local interconnects via R4 and C4 interconnects. 
R24 interconnects can drive R24, R4, C16, and C4 interconnects.

The column interconnect operates similarly to the row interconnect and 
vertically routes signals to and from LABs, TriMatrix memory, DSP 
blocks, and IOEs. Each column of LABs is served by a dedicated column 
interconnect. These column resources include:

■ Shared arithmetic chain interconnects in an LAB
■ Carry chain interconnects in an LAB and from LAB to LAB
■ Register chain interconnects in an LAB
■ C4 interconnects traversing a distance of four blocks in up and down 

direction
■ C16 column interconnects for high-speed vertical routing through 

the device

Stratix II devices include an enhanced interconnect structure in LABs for 
routing shared arithmetic chains and carry chains for efficient arithmetic 
functions. The register chain connection allows the register output of one 
ALM to connect directly to the register input of the next ALM in the LAB 
for fast shift registers. These ALM to ALM connections bypass the local 
interconnect. The Quartus II Compiler automatically takes advantage of 
these resources to improve utilization and performance. Figure 2–17 
shows the shared arithmetic chain, carry chain and register chain 
interconnects.
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Memory Block Size

TriMatrix memory provides three different memory sizes for efficient 
application support. The Quartus II software automatically partitions the 
user-defined memory into the embedded memory blocks using the most 
efficient size combinations. You can also manually assign the memory to 
a specific block size or a mixture of block sizes.

When applied to input registers, the asynchronous clear signal for the 
TriMatrix embedded memory immediately clears the input registers. 
However, the output of the memory block does not show the effects until 
the next clock edge. When applied to output registers, the asynchronous 
clear signal clears the output registers and the effects are seen 
immediately.

Simple dual-port memory 
mixed width support

v v v

True dual-port memory 
mixed width support

v v

Power-up conditions Outputs cleared Outputs cleared Outputs unknown

Register clears Output registers Output registers Output registers

Mixed-port read-during-write Unknown output/old data Unknown output/old data Unknown output

Configurations 512 × 1
256 × 2
128 × 4
64 × 8
64 × 9
32 × 16
32 × 18

4K × 1
2K × 2
1K × 4
512 × 8
512 × 9
256 × 16
256 × 18
128 × 32
128 × 36

64K × 8
64K × 9
32K × 16
32K × 18
16K × 32
16K × 36
8K × 64
8K × 72
4K × 128
4K × 144

Notes to Table 2–3:
(1) The M-RAM block does not support memory initializations. However, the M-RAM block can emulate a ROM 

function using a dual-port RAM bock. The Stratix II device must write to the dual-port memory once and then 
disable the write-enable ports afterwards.

Table 2–3. TriMatrix Memory Features (Part 2 of 2)

Memory Feature M512 RAM Block 
(32 × 18 Bits)

M4K RAM Block 
(128 × 36 Bits)

M-RAM Block 
(4K × 144 Bits)
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global clock networks can also be driven by internal logic for internally 
generated global clocks and asynchronous clears, clock enables, or other 
control signals with large fanout. Figure 2–31 shows the 16 dedicated CLK 
pins driving global clock networks.

Figure 2–31. Global Clocking

Regional Clock Network

There are eight regional clock networks RCLK[7..0] in each quadrant of 
the Stratix II device that are driven by the dedicated CLK[15..0] input 
pins, by PLL outputs, or by internal logic. The regional clock networks 
provide the lowest clock delay and skew for logic contained in a single 
quadrant. The CLK clock pins symmetrically drive the RCLK networks in 
a particular quadrant, as shown in Figure 2–32.

 Global Clock [15..0]

CLK[15..12]

CLK[3..0]

CLK[7..4]

CLK[11..8] Global Clock [15..0]
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Figure 2–36. EP2S60, EP2S90, EP2S130 & EP2S180 Device I/O Clock Groups

You can use the Quartus II software to control whether a clock input pin 
drives either a global, regional, or dual-regional clock network. The 
Quartus II software automatically selects the clocking resources if not 
specified.

Clock Control Block

Each global clock, regional clock, and PLL external clock output has its 
own clock control block. The control block has two functions:

■ Clock source selection (dynamic selection for global clocks)
■ Clock power-down (dynamic clock enable/disable)
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Each I/O bank has its own VCCIO pins. A single device can support 
1.5-, 1.8-, 2.5-, and 3.3-V interfaces; each bank can support a different 
VCCIO level independently. Each bank also has dedicated VREF pins to 
support the voltage-referenced standards (such as SSTL-2). The PLL 
banks utilize the adjacent VREF group when voltage-referenced 
standards are implemented. For example, if an SSTL input is 
implemented in PLL bank 10, the voltage level at VREFB7 is the reference 
voltage level for the SSTL input.

I/O pins that reside in PLL banks 9 through 12 are powered by the 
VCC_PLL<5, 6, 11, or 12>_OUT pins, respectively. The EP2S60F484, 
EP2S60F780, EP2S90H484, EP2S90F780, and EP2S130F780 devices do not 
support PLLs 11 and 12. Therefore, any I/O pins that reside in bank 11 are 
powered by the VCCIO3 pin, and any I/O pins that reside in bank 12 are 
powered by the VCCIO8 pin.

Each I/O bank can support multiple standards with the same VCCIO for 
input and output pins. Each bank can support one VREF voltage level. For 
example, when VCCIO is 3.3 V, a bank can support LVTTL, LVCMOS, and 
3.3-V PCI for inputs and outputs.

On-Chip Termination

Stratix II devices provide differential (for the LVDS or HyperTransport 
technology I/O standard), series, and parallel on-chip termination to 
reduce reflections and maintain signal integrity. On-chip termination 
simplifies board design by minimizing the number of external 
termination resistors required. Termination can be placed inside the 
package, eliminating small stubs that can still lead to reflections.

Stratix II devices provide four types of termination:

■ Differential termination (RD)
■ Series termination (RS) without calibration
■ Series termination (RS) with calibration
■ Parallel termination (RT) with calibration
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Series termination with 
calibration

3.3-V LVTTL v
3.3-V LVCMOS v
2.5-V LVTTL v
2.5-V LVCMOS v
1.8-V LVTTL v
1.8-V LVCMOS v
1.5-V LVTTL v
1.5-V LVCMOS v
SSTL-2 Class I and II v
SSTL-18 Class I and II v
1.8-V HSTL Class I v
1.8-V HSTL Class II v
1.5-V HSTL Class I v
1.2-V HSTL v

Parallel termination with 
calibration

SSTL-2 Class I and II v
SSTL-18 Class I and II v
1.8-V HSTL Class I v
1.8-V HSTL Class II v
1.5-V HSTL Class I and II v
1.2-V HSTL v

Differential termination (1) LVDS v
HyperTransport technology v

Note to Table 2–17:
(1) Clock pins CLK1, CLK3, CLK9, CLK11, and pins FPLL[7..10]CLK do not support differential on-chip 

termination. Clock pins CLK0, CLK2, CLK8, and CLK10 do support differential on-chip termination. Clock pins in 
the top and bottom banks (CLK[4..7, 12..15]) do not support differential on-chip termination.

Table 2–17. On-Chip Termination Support by I/O Banks (Part 2 of 2)

On-Chip Termination Support I/O Standard Support Top & Bottom Banks Left & Right Banks
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device, PLL 1 can drive a maximum of 10 transmitter channels in I/O 
bank 1 or a maximum of 19 transmitter channels in I/O banks 1 and 2. The 
Quartus II software may also merge receiver and transmitter PLLs when 
a receiver is driving a transmitter. In this case, one fast PLL can drive both 
the maximum numbers of receiver and transmitter channels.

Table 2–21. EP2S15 Device Differential Channels Note (1)

Package Transmitter/
Receiver

Total 
Channels

Center Fast PLLs

PLL 1 PLL 2 PLL 3 PLL 4

484-pin FineLine BGA Transmitter 38 (2) 10 9 9 10

(3) 19 19 19 19

Receiver 42 (2) 11 10 10 11

(3) 21 21 21 21

672-pin FineLine BGA Transmitter 38 (2) 10 9 9 10

(3) 19 19 19 19

Receiver 42 (2) 11 10 10 11

(3) 21 21 21 21

Table 2–22. EP2S30 Device Differential Channels Note (1)

Package Transmitter/
Receiver

Total 
Channels

Center Fast PLLs

PLL 1 PLL 2 PLL 3 PLL 4

484-pin FineLine BGA Transmitter 38 (2) 10 9 9 10

(3) 19 19 19 19

Receiver 42 (2) 11 10 10 11

(3) 21 21 21 21

672-pin FineLine BGA Transmitter 58 (2) 16 13 13 16

(3) 29 29 29 29

Receiver 62 (2) 17 14 14 17

(3) 31 31 31 31
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SignalTap II Embedded Logic Analyzer

f For more information on JTAG, see the following documents:

■ The IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing for Stratix II & 
Stratix II GX Devices chapter of the Stratix II Device Handbook, 
Volume 2 or the Stratix II GX Device Handbook, Volume 2

■ Jam Programming & Test Language Specification

SignalTap II 
Embedded Logic 
Analyzer

Stratix II devices feature the SignalTap II embedded logic analyzer, which 
monitors design operation over a period of time through the IEEE 
Std. 1149.1 (JTAG) circuitry. You can analyze internal logic at speed 
without bringing internal signals to the I/O pins. This feature is 
particularly important for advanced packages, such as FineLine BGA® 
packages, because it can be difficult to add a connection to a pin during 
the debugging process after a board is designed and manufactured.

Configuration The logic, circuitry, and interconnects in the Stratix II architecture are 
configured with CMOS SRAM elements. Altera® FPGA devices are 
reconfigurable and every device is tested with a high coverage 
production test program so you do not have to perform fault testing and 
can instead focus on simulation and design verification.

Stratix II devices are configured at system power-up with data stored in 
an Altera configuration device or provided by an external controller (e.g., 
a MAX® II device or microprocessor). Stratix II devices can be configured 
using the fast passive parallel (FPP), active serial (AS), passive serial (PS), 
passive parallel asynchronous (PPA), and JTAG configuration schemes. 
The Stratix II device’s optimized interface allows microprocessors to 
configure it serially or in parallel, and synchronously or asynchronously. 
The interface also enables microprocessors to treat Stratix II devices as 
memory and configure them by writing to a virtual memory location, 
making reconfiguration easy.

In addition to the number of configuration methods supported, Stratix II 
devices also offer the design security, decompression, and remote system 
upgrade features. The design security feature, using configuration 
bitstream encryption and AES technology, provides a mechanism to 
protect your designs. The decompression feature allows Stratix II FPGAs 
to receive a compressed configuration bitstream and decompress this 
data in real-time, reducing storage requirements and configuration time. 
The remote system upgrade feature allows real-time system upgrades 
from remote locations of your Stratix II designs. For more information, 
see “Configuration Schemes” on page 3–7.



Altera Corporation 3–5
May 2007 Stratix II Device Handbook, Volume 1

Configuration & Testing

Operating Modes

The Stratix II architecture uses SRAM configuration elements that require 
configuration data to be loaded each time the circuit powers up. The 
process of physically loading the SRAM data into the device is called 
configuration. During initialization, which occurs immediately after 
configuration, the device resets registers, enables I/O pins, and begins to 
operate as a logic device. The I/O pins are tri-stated during power-up, 
and before and during configuration. Together, the configuration and 
initialization processes are called command mode. Normal device 
operation is called user mode.

SRAM configuration elements allow Stratix II devices to be reconfigured 
in-circuit by loading new configuration data into the device. With real-
time reconfiguration, the device is forced into command mode with a 
device pin. The configuration process loads different configuration data, 
reinitializes the device, and resumes user-mode operation. You can 
perform in-field upgrades by distributing new configuration files either 
within the system or remotely.

PORSEL is a dedicated input pin used to select POR delay times of 12 ms 
or 100 ms during power-up. When the PORSEL pin is connected to 
ground, the POR time is 100 ms; when the PORSEL pin is connected to 
VCC, the POR time is 12 ms.

The nIO PULLUP pin is a dedicated input that chooses whether the 
internal pull-ups on the user I/O pins and dual-purpose configuration 
I/O pins (nCSO, ASDO, DATA[7..0], nWS, nRS, RDYnBSY, nCS, CS, 
RUnLU, PGM[2..0], CLKUSR, INIT_DONE, DEV_OE, DEV_CLR) are on or 
off before and during configuration. A logic high (1.5, 1.8, 2.5, 3.3 V) turns 
off the weak internal pull-ups, while a logic low turns them on.

Stratix II devices also offer a new power supply, VCCPD, which must be 
connected to 3.3 V in order to power the 3.3-V/2.5-V buffer available on 
the configuration input pins and JTAG pins. VCCPD applies to all the JTAG 
input pins (TCK, TMS, TDI, and TRST) and the configuration input pins 
when VCCSEL is connected to ground. See Table 3–4 for more information 
on the pins affected by VCCSEL.

The VCCSEL pin allows the VCCIO setting (of the banks where the 
configuration inputs reside) to be independent of the voltage required by 
the configuration inputs. Therefore, when selecting the VCCIO, the VIL and 
VIH levels driven to the configuration inputs do not have to be a concern. 
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Operating Conditions

VIL Low-level input voltage –0.3 0.3 × VCCIO V

VOH High-level output voltage IOUT = –500 μA 0.9 × VCCIO V

VOL Low-level output voltage IOUT = 1,500 μA 0.1 × VCCIO V

Table 5–15. PCI-X Mode 1 Specifications

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage 3.0 3.6 V

VIH High-level input voltage 0.5 × VCCIO VCCIO + 0.5 V

VIL Low-level input voltage –0.30 0.35 × VCCIO V

VIPU Input pull-up voltage 0.7 × VCCIO V

VOH High-level output voltage IOUT = –500 μA 0.9 × VCCIO V

VOL Low-level output voltage IOUT = 1,500 μA 0.1 × VCCIO V

Table 5–16. SSTL-18 Class I Specifications

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage 1.71 1.80 1.89 V

VREF Reference voltage 0.855 0.900 0.945 V

VTT Termination voltage VREF – 0.04 VREF VREF + 0.04 V

VIH (DC) High-level DC input voltage VREF + 0.125 V

VIL (DC) Low-level DC input voltage VREF – 0.125 V

VIH (AC) High-level AC input voltage VREF + 0.25 V

VIL (AC) Low-level AC input voltage VREF – 0.25 V

VOH High-level output voltage IOH = –6.7 mA (1) VTT + 0.475 V

VOL Low-level output voltage IOL = 6.7 mA (1) VTT – 0.475 V

Note to Table 5–16:
(1) This specification is supported across all the programmable drive settings available for this I/O standard as shown 

in the Stratix II Architecture chapter in volume 1 of the Stratix II Device Handbook.

Table 5–14. 3.3-V PCI Specifications (Part 2 of 2)

Symbol Parameter Conditions Minimum Typical Maximum Unit
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Pin Capacitance

Table 5–32 shows the Stratix II device family pin capacitance.

Table 5–31. Series & Differential On-Chip Termination Specification for Left & Right I/O Banks

Symbol Description Conditions

Resistance Tolerance

Commercial 
Max

Industrial 
Max Unit

25-Ω RS 
3.3/2.5

Internal series termination without 
calibration (25-Ω setting)

VC CI O = 3.3/2.5 V ±30 ±30 %

50-Ω RS 
3.3/2.5/1.8

Internal series termination without 
calibration (50-Ω setting)

VC CI O = 3.3/2.5/1.8 V ±30 ±30 %

50-Ω RS 1.5 Internal series termination without 
calibration (50-Ω setting)

VC CI O = 1.5 V ±36 ±36 %

RD Internal differential termination for 
LVDS or HyperTransport technology 
(100-Ω setting)

VC CI O = 2.5 V ±20 ±25 %

Table 5–32. Stratix II Device Capacitance Note (1)

Symbol Parameter Typical Unit

CI OT B Input capacitance on I/O pins in I/O banks 3, 4, 7, and 8. 5.0 pF

CI O L R Input capacitance on I/O pins in I/O banks 1, 2, 5, and 6, including high-
speed differential receiver and transmitter pins.

6.1 pF 

CC L K T B Input capacitance on top/bottom clock input pins: CLK[4..7] and 
CLK[12..15].

6.0 pF 

CC L K L R Input capacitance on left/right clock inputs: CLK0, CLK2, CLK8, CLK10. 6.1 pF 

CC L K L R + Input capacitance on left/right clock inputs: CLK1, CLK3, CLK9, and 
CLK11.

3.3 pF

CO U T F B Input capacitance on dual-purpose clock output/feedback pins in PLL 
banks 9, 10, 11, and 12.

6.7 pF

Note to Table 5–32:
(1) Capacitance is sample-tested only. Capacitance is measured using time-domain reflections (TDR). Measurement 

accuracy is within ±0.5pF
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Table 5–34. Output Timing Measurement Methodology for Output Pins Notes (1), (2), (3)

I/O Standard
Loading and Termination Measurement 

Point

RS (Ω) RD (Ω) RT (Ω) VCCIO (V) VTT (V) CL (pF) VMEAS (V)

LVTTL (4) 3.135 0 1.5675

LVCMOS (4) 3.135 0 1.5675

2.5 V (4) 2.375 0 1.1875

1.8 V (4) 1.710 0 0.855

1.5 V (4) 1.425 0 0.7125

PCI (5) 2.970 10 1.485

PCI-X (5) 2.970 10 1.485

SSTL-2 Class I 25 50 2.325 1.123 0 1.1625

SSTL-2 Class II 25 25 2.325 1.123 0 1.1625

SSTL-18 Class I 25 50 1.660 0.790 0 0.83

SSTL-18 Class II 25 25 1.660 0.790 0 0.83

1.8-V HSTL Class I 50 50 1.660 0.790 0 0.83

1.8-V HSTL Class II 25 25 1.660 0.790 0 0.83

1.5-V HSTL Class I 50 50 1.375 0.648 0 0.6875

1.5-V HSTL Class II 25 1.375 0.648 0 0.6875

1.2-V HSTL with OCT 50 1.140 0 0.570

Differential SSTL-2 Class I 50 50 2.325 1.123 0 1.1625

Differential SSTL-2 Class II 25 25 2.325 1.123 0 1.1625

Differential SSTL-18 Class I 50 50 1.660 0.790 0 0.83

Differential SSTL-18 Class II 25 25 1.660 0.790 0 0.83

1.5-V Differential HSTL Class I 50 50 1.375 0.648 0 0.6875

1.5-V Differential HSTL Class II 25 1.375 0.648 0 0.6875

1.8-V Differential HSTL Class I 50 50 1.660 0.790 0 0.83

1.8-V Differential HSTL Class II 25 25 1.660 0.790 0 0.83

LVDS 100 2.325 0 1.1625

HyperTransport 100 2.325 0 1.1625

LVPECL 100 3.135 0 1.5675

Notes to Table 5–34:
(1) Input measurement point at internal node is 0.5 × VCCINT.
(2) Output measuring point for VMEAS at buffer output is 0.5 × VCCIO.
(3) Input stimulus edge rate is 0 to VCC in 0.2 ns (internal signal) from the driver preceding the I/O buffer.
(4) Less than 50-mV ripple on VCCIO and VCCPD, VCCINT = 1.15 V with less than 30-mV ripple
(5) VCCPD = 2.97 V, less than 50-mV ripple on VCCIO and VCCPD, VCCINT = 1.15 V
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Table 5–38. IOE Internal Timing Microparameters

Symbol Parameter

-3 Speed 
Grade (1)

-3 Speed 
Grade (2)

-4 Speed 
Grade

-5 Speed 
Grade

Unit
Min 
(3) Max Min 

(3) Max Min 
(4) Max Min 

(3) Max

tS U IOE input and output 
register setup time 
before clock

122   128  140
140

 163  ps 

tH IOE input and output 
register hold time after 
clock

72   75  82
82

 96  ps 

tC O IOE input and output 
register clock-to-
output delay

 101 169  101 177  97
101

194  101 226 ps 

tP IN 2C O M BO UT _R Row input pin to IOE 
combinational output

410 760 410 798 391
410

873 410 1,018 ps 

tP IN 2C O M BO UT _C Column input pin to 
IOE combinational 
output

428 787 428 825  408
428

904 428 1,054 ps 

tC O M B I N2 P I N _ R Row IOE data input to 
combinational output 
pin

1,101 2,026 1,101 2,127 1,049
1,101

2,329 1,101 2,439 ps 

tC O M B I N2 P I N _ C Column IOE data 
input to combinational 
output pin

991 1,854 991 1,946 944
991

2,131 991 2,246 ps

tC L R  Minimum clear pulse 
width

 200  210 229
229

 268  ps 

tP R E  Minimum preset pulse 
width

200  210  229
229

 268  ps 

tC L K L  Minimum clock low 
time

600  630  690
690

 804  ps 

tC L K H  Minimum clock high 
time

600  630  690
690

 804  ps 

Notes to Table 5–38:
(1) These numbers apply to -3 speed grade EP2S15, EP2S30, EP2S60, and EP2S90 devices.
(2) These numbers apply to -3 speed grade EP2S130 and EP2S180 devices.
(3) For the -3 and -5 speed grades, the minimum timing is for the commercial temperature grade. Only -4 speed grade 

devices offer the industrial temperature grade.
(4) For the -4 speed grade, the first number is the minimum timing parameter for industrial devices. The second 

number is the minimum timing parameter for commercial devices.
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Table 5–39. DSP Block Internal Timing Microparameters (Part 1 of 2)

Symbol Parameter

-3 Speed 
Grade (1)

-3 Speed 
Grade (2)

-4 Speed 
Grade

-5 Speed 
Grade

Unit
Min 
(3) Max Min 

(3) Max Min 
(4) Max Min 

(3) Max

tS U Input, pipeline, and 
output register setup 
time before clock

50  52  57
57

 67  ps 

tH Input, pipeline, and 
output register hold 
time after clock

180  189  206
206

 241  ps 

tC O  Input, pipeline, and 
output register clock-
to-output delay

0 0 0 0 0
0

0 0 0 ps 

tI N R E G 2 P I P E 9 Input register to DSP 
block pipeline register 
in 9 × 9-bit mode

1,312 2,030 1,312 2,030 1,250
1,312

2,334 1,312 2,720 ps 

tI N R E G 2 P I P E 1 8 Input register to DSP 
block pipeline register 
in 18 × 18-bit mode

1,302 2,010 1,302 2,110 1,240
1,302

2,311 1,302 2,693 ps 

tI N R E G 2 P I P E 3 6 Input register to DSP 
block pipeline register 
in 36 × 36-bit mode

1,302 2,010 1,302 2,110 1,240
1,302

2,311 1,302 2,693 ps 

tP I P E 2 O U T R E G 2 A D D DSP block pipeline 
register to output 
register delay in two-
multipliers adder 
mode

924 1,450 924 1,522 880
924

1,667 924 1,943 ps 

tP I P E 2 O U T R E G 4 A D D DSP block pipeline 
register to output 
register delay in four-
multipliers adder 
mode

1,134 1,850 1,134 1,942 1,080
1,134

2,127 1,134 2,479 ps 

tP D 9  Combinational input 
to output delay for 
9 × 9

2,100 2,880 2,100 3,024 2,000
2,100

3,312 2,100 3,859 ps 

tP D 1 8  Combinational input 
to output delay for 
18 × 18

2,110 2,990 2,110 3,139 2,010
2,110

3,438 2,110 4,006 ps 

tP D 3 6  Combinational input 
to output delay for 
36 × 36

2,939 4,450 2,939 4,672 2,800
2,939

5,117 2,939 5,962 ps 

tC L R Minimum clear pulse 
width

2,212  2,322  2,543
2,543

 2,964  ps 
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Stratix II Clock Timing Parameters

See Tables 5–43 through 5–67 for Stratix II clock timing parameters.

tM E GAC L K H Minimum clock high 
time

1,250  1,312  1,437
1,437

 1,675  ps 

tM E GAC L R  Minimum clear pulse 
width

144  151  165
165

 192  ps 

Notes to Table 5–42:
(1) FMAX of M-RAM Block obtained using the Quartus II software does not necessarily equal to 1/TMEGARC.
(2) These numbers apply to -3 speed grade EP2S15, EP2S30, EP2S60, and EP2S90 devices.
(3) These numbers apply to -3 speed grade EP2S130 and EP2S180 devices.
(4) For the -3 and -5 speed grades, the minimum timing is for the commercial temperature grade. Only -4 speed grade 

devices offer the industrial temperature grade.
(5) For the -4 speed grade, the first number is the minimum timing parameter for industrial devices. The second 

number is the minimum timing parameter for commercial devices.

Table 5–42. M-RAM Block Internal Timing Microparameters (Part 2 of 2) Note (1)

Symbol Parameter

-3 Speed 
Grade (2)

-3 Speed 
Grade (3)

-4 Speed 
Grade

-5 Speed 
Grade

Unit
Min 
(4) Max Min 

(4) Max Min 
(5) Max Min 

(4) Max

Table 5–43. Stratix II Clock Timing Parameters

Symbol Parameter

tC I N  Delay from clock pad to I/O input register

tC O UT Delay from clock pad to I/O output register

tP L L C I N  Delay from PLL inclk pad to I/O input register

tP L L C O U T Delay from PLL inclk pad to I/O output register
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Figure 5–7. Duty Cycle Distortion

DCD expressed in absolution derivation, for example, D1 or D2 in 
Figure 5–7, is clock-period independent. DCD can also be expressed as a 
percentage, and the percentage number is clock-period dependent. DCD 
as a percentage is defined as

 (T/2 – D1) / T (the low percentage boundary) 

 (T/2 + D2) / T (the high percentage boundary)

DCD Measurement Techniques

DCD is measured at an FPGA output pin driven by registers inside the 
corresponding I/O element (IOE) block. When the output is a single data 
rate signal (non-DDIO), only one edge of the register input clock (positive 
or negative) triggers output transitions (Figure 5–8). Therefore, any DCD 
present on the input clock signal or caused by the clock input buffer or 
different input I/O standard does not transfer to the output signal.

Figure 5–8. DCD Measurement Technique for Non-DDIO (Single-Data Rate) Outputs
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Here is an example for calculating the DCD as a percentage for a 
non-DDIO output on a row I/O on a -3 device:

If the non-DDIO output I/O standard is SSTL-2 Class II, the maximum 
DCD is 95 ps (see Table 5–80). If the clock frequency is 267 MHz, the clock 
period T is:

T = 1/ f = 1 / 267 MHz = 3.745 ns = 3745 ps

To calculate the DCD as a percentage: 

 (T/2 – DCD) / T = (3745ps/2 – 95ps) / 3745ps = 47.5% (for low 
boundary)

 (T/2 + DCD) / T = (3745ps/2 + 95ps) / 3745ps = 52.5% (for high 
boundary)

1.8 V 180 180 ps

1.5-V LVCMOS 165 195 ps

SSTL-2 Class I 115 145 ps

SSTL-2 Class II 95 125 ps

SSTL-18 Class I 55 85 ps

1.8-V HSTL Class I 80 100 ps

1.5-V HSTL Class I 85 115 ps

LVDS/ 
HyperTransport 
technology

55 80 ps

Note to Table 5–80:
(1) The DCD specification is based on a no logic array noise condition.

Table 5–80. Maximum DCD for Non-DDIO Output on Row I/O Pins (Part 2 
of 2) Note (1)

Row I/O Output 
Standard

Maximum DCD for Non-DDIO Output

-3 Devices -4 & -5 Devices Unit


