Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 780 | | Number of Logic Elements/Cells | 15600 | | Total RAM Bits | 419328 | | Number of I/O | 366 | | Number of Gates | - | | Voltage - Supply | 1.15V ~ 1.25V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 672-BBGA | | Supplier Device Package | 672-FBGA (27x27) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep2s15f672c4 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong vi Altera Corporation | Visual Cue | Meaning | |-------------------------------------|---| | Italic type | Internal timing parameters and variables are shown in italic type. Examples: t_{PlA} , $n+1$. | | | Variable names are enclosed in angle brackets (< >) and shown in italic type. Example: <file name="">, <project name="">.pof file.</project></file> | | Initial Capital Letters | Keyboard keys and menu names are shown with initial capital letters. Examples: Delete key, the Options menu. | | "Subheading Title" | References to sections within a document and titles of on-line help topics are shown in quotation marks. Example: "Typographic Conventions." | | Courier type | Signal and port names are shown in lowercase Courier type. Examples: \mathtt{datal} , \mathtt{tdi} , \mathtt{input} . Active-low signals are denoted by suffix \mathtt{n} , $\mathtt{e.g.}$, \mathtt{resetn} . | | | Anything that must be typed exactly as it appears is shown in Courier type. For example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an actual file, such as a Report File, references to parts of files (e.g., the AHDL keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in Courier. | | 1., 2., 3., and
a., b., c., etc. | Numbered steps are used in a list of items when the sequence of the items is important, such as the steps listed in a procedure. | | ••• | Bullets are used in a list of items when the sequence of the items is not important. | | ✓ | The checkmark indicates a procedure that consists of one step only. | | | The hand points to information that requires special attention. | | CAUTION | The caution indicates required information that needs special consideration and understanding and should be read prior to starting or continuing with the procedure or process. | | WARNING | The warning indicates information that should be read prior to starting or continuing the procedure or processes | | 4 | The angled arrow indicates you should press the Enter key. | | ••• | The feet direct you to more information on a particular topic. | ii Altera Corporation Figure 2–7. ALM in Normal Mode Note (1) Note to Figure 2-7: (1) Combinations of functions with fewer inputs than those shown are also supported. For example, combinations of functions with the following number of inputs are supported: 4 and 3, 3 and 3, 3 and 2, 5 and 2, etc. The normal mode provides complete backward compatibility with fourinput LUT architectures. Two independent functions of four inputs or less can be implemented in one Stratix II ALM. In addition, a five-input function and an independent three-input function can be implemented without sharing inputs. For the packing of two five-input functions into one ALM, the functions must have at least two common inputs. The common inputs are dataa and datab. The combination of a four-input function with a five-input function requires one common input (either dataa or datab). In the case of implementing two six-input functions in one ALM, four inputs must be shared and the combinational function must be the same. For example, a 4×2 crossbar switch (two 4-to-1 multiplexers with common inputs and unique select lines) can be implemented in one ALM, as shown in Figure 2–8. The shared inputs are dataa, datab, datac, and datad, while the unique select lines are datae0 and dataf0 for function0, and datae1 and dataf1 for function1. This crossbar switch consumes four LUTs in a four-input LUT-based architecture. Figure 2-8. 4 × 2 Crossbar Switch Example In a sparsely used device, functions that could be placed into one ALM may be implemented in separate ALMs. The Quartus II Compiler spreads a design out to achieve the best possible performance. As a device begins to fill up, the Quartus II software automatically utilizes the full potential of the Stratix II ALM. The Quartus II Compiler automatically searches for functions of common inputs or completely independent functions to be placed into one ALM and to make efficient use of the device resources. In addition, you can manually control resource usage by setting location assignments. Any six-input function can be implemented utilizing inputs dataa, datab, datac, datad, and either datae0 and dataf0 or datae1 and dataf1. If datae0 and dataf0 are utilized, the output is driven to register0, and/or register0 is bypassed and the data drives out to the interconnect using the top set of output drivers (see Figure 2–9). If Figure 2–17. Shared Arithmetic Chain, Carry Chain & Register Chain Interconnects The C4 interconnects span four LABs, M512, or M4K blocks up or down from a source LAB. Every LAB has its own set of C4 interconnects to drive either up or down. Figure 2–18 shows the C4 interconnect connections from an LAB in a column. The C4 interconnects can drive and be driven by all types of architecture blocks, including DSP blocks, TriMatrix memory blocks, and column and row IOEs. For LAB interconnection, a primary LAB or its LAB neighbor can drive a given C4 interconnect. C4 interconnects can drive each other to extend their range as well as drive row interconnects for column-to-column connections. CLKp CLKn Pin Pin (2) PLL Counter Outputs (3) Static Clock Select (1) Enable/ Disable Internal Logic RCLK Figure 2-38. Regional Clock Control Blocks #### Notes to Figure 2-38: - These clock select signals can only be set through a configuration file (.sof or .pof) and cannot be dynamically controlled during user mode operation. - (2) Only the CLKn pins on the top and bottom of the device feed to regional clock select blocks. The clock outputs from corner PLLs cannot be dynamically selected through the global clock control block. - (3) The clock outputs from corner PLLs cannot be dynamically selected through the global clock control block. - Output drive strength control - Tri-state buffers - Bus-hold circuitry - Programmable pull-up resistors - Programmable input and output delays - Open-drain outputs - DQ and DQS I/O pins - Double data rate (DDR) registers The IOE in Stratix II devices contains a bidirectional I/O buffer, six registers, and a latch for a complete embedded bidirectional single data rate or DDR transfer. Figure 2–46 shows the Stratix II IOE structure. The IOE contains two input registers (plus a latch), two output registers, and two output enable registers. The design can use both input registers and the latch to capture DDR input and both output registers to drive DDR outputs. Additionally, the design can use the output enable (OE) register for fast clock-to-output enable timing. The negative edge-clocked OE register is used for DDR SDRAM interfacing. The Quartus II software automatically duplicates a single OE register that controls multiple output or bidirectional pins. - 1.5-V HSTL Class I and II - 1.8-V HSTL Class I and II - 1.2-V HSTL - SSTL-2 Class I and II - SSTL-18 Class I and II Table 2–16 describes the I/O standards supported by Stratix II devices. | Table 2–16. Stratix II Supp | orted I/O Standards | (Part 1 of 2) | | | |---|---------------------|--|---|---| | I/O Standard | Туре | Input Reference
Voltage (V _{REF}) (V) | Output Supply
Voltage (V _{CCIO}) (V) | Board Termination
Voltage (V _{TT}) (V) | | LVTTL | Single-ended | - | 3.3 | - | | LVCMOS | Single-ended | - | 3.3 | - | | 2.5 V | Single-ended | - | 2.5 | - | | 1.8 V | Single-ended | - | 1.8 | - | | 1.5-V LVCMOS | Single-ended | - | 1.5 | - | | 3.3-V PCI | Single-ended | - | 3.3 | - | | 3.3-V PCI-X mode 1 | Single-ended | - | 3.3 | - | | LVDS | Differential | - | 2.5 (3) | - | | LVPECL (1) | Differential | - | 3.3 | - | | HyperTransport technology | Differential | - | 2.5 | - | | Differential 1.5-V HSTL
Class I and II (2) | Differential | 0.75 | 1.5 | 0.75 | | Differential 1.8-V HSTL
Class I and II (2) | Differential | 0.90 | 1.8 | 0.90 | | Differential SSTL-18 Class I and II (2) | Differential | 0.90 | 1.8 | 0.90 | | Differential SSTL-2 Class I and II (2) | Differential | 1.25 | 2.5 | 1.25 | | 1.2-V HSTL(4) | Voltage-referenced | 0.6 | 1.2 | 0.6 | | 1.5-V HSTL Class I and II | Voltage-referenced | 0.75 | 1.5 | 0.75 | | 1.8-V HSTL Class I and II | Voltage-referenced | 0.9 | 1.8 | 0.9 | | SSTL-18 Class I and II | Voltage-referenced | 0.90 | 1.8 | 0.90 | Figure 3-1. External Temperature-Sensing Diode Table 3–6 shows the specifications for bias voltage and current of the Stratix II temperature sensing diode. | Table 3–6. Temperature-Sensing Diode Electrical Characteristics | | | | | | | | | |---|---------|---------|---------|------|--|--|--|--| | Parameter | Minimum | Typical | Maximum | Unit | | | | | | IBIAS high | 80 | 100 | 120 | μΑ | | | | | | IBIAS low | 8 | 10 | 12 | μΑ | | | | | | VBP - VBN | 0.3 | | 0.9 | V | | | | | | VBN | | 0.7 | | V | | | | | | Series resistance | | | 3 | Ω | | | | | | Table 5- | Table 5–3. Stratix II Device Recommended Operating Conditions (Part 2 of 2) Note (1) | | | | | | | | | |----------|--|----------------------|-------------|---------|------|--|--|--|--| | Symbol | Parameter | Conditions | Minimum | Maximum | Unit | | | | | | T_{J} | Operating junction temperature | For commercial use | 0 | 85 | °C | | | | | | | | For industrial use | -40 | 100 | °C | | | | | | | | For military use (7) | - 55 | 125 | °C | | | | | #### Notes to Table 5-3: - (1) Supply voltage specifications apply to voltage readings taken at the device pins, not at the power supply. - (2) During transitions, the inputs may overshoot to the voltage shown in Table 5–2 based upon the input duty cycle. The DC case is equivalent to 100% duty cycle. During transitions, the inputs may undershoot to –2.0 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically from ground to V_{CC} . - (4) V_{CCPD} must ramp-up from 0 V to 3.3 V within 100 μs to 100 ms. If V_{CCPD} is not ramped up within this specified time, your Stratix II device does not configure successfully. If your system does not allow for a V_{CCPD} ramp-up time of 100 ms or less, you must hold nCONFIG low until all power supplies are reliable. - (5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT}, V_{CCPD}, and V_{CCIO} are powered. - (6) V_{CCIO} maximum and minimum conditions for PCI and PCI-X are shown in parentheses. - (7) For more information, refer to the Stratix II Military Temperature Range Support technical brief. #### **DC Electrical Characteristics** Table 5–4 shows the Stratix II device family DC electrical characteristics. | Table 5- | 4. Stratix II Device DC Op | erating Conditions | (Part 1 of 2) | Note (1) | | | | |---------------------|------------------------------------|--|---------------|----------|---------|---------|------| | Symbol | Parameter | Conditio | ons | Minimum | Typical | Maximum | Unit | | I _I | Input pin leakage current | V _I = V _{CCIOmax} to 0 \ | <i>I (2)</i> | -10 | | 10 | μА | | I _{OZ} | Tri-stated I/O pin leakage current | $V_O = V_{CCIOmax}$ to 0 | V (2) | -10 | | 10 | μА | | I _{CCINTO} | V _{CCINT} supply current | V _I = ground, no | EP2S15 | | 0.25 | (3) | Α | | (standby) | | load, no toggling | EP2S30 | | 0.30 | (3) | Α | | | | inputs $T_J = 25^{\circ} \text{ C}$ | EP2S60 | | 0.50 | (3) | Α | | | | | EP2S90 | | 0.62 | (3) | Α | | | | | EP2S130 | | 0.82 | (3) | Α | | | | | EP2S180 | | 1.12 | (3) | Α | | I _{CCPD0} | V _{CCPD} supply current | V _I = ground, no | EP2S15 | | 2.2 | (3) | mA | | | (standby) | load, no toggling | EP2S30 | | 2.7 | (3) | mA | | | | inputs
T _{.l} = 25° C, | EP2S60 | | 3.6 | (3) | mA | | | | $V_{CCPD} = 3.3V$ | EP2S90 | | 4.3 | (3) | mA | | | | | EP2S130 | | 5.4 | (3) | mA | | | | | EP2S180 | | 6.8 | (3) | mA | | Table 5-1 | Table 5–12. LVPECL Specifications | | | | | | | | | | |-----------------------|---|------------------------|---------|---------|---------|------|--|--|--|--| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | | | | | V _{CCIO} (1) | I/O supply voltage | | 3.135 | 3.300 | 3.465 | V | | | | | | V _{ID} | Input differential voltage swing (single-ended) | | 300 | 600 | 1,000 | mV | | | | | | V _{ICM} | Input common mode voltage | | 1.0 | | 2.5 | ٧ | | | | | | V _{OD} | Output differential voltage (single-ended) | R _L = 100 Ω | 525 | | 970 | mV | | | | | | V _{OCM} | Output common mode voltage | R _L = 100 Ω | 1,650 | | 2,250 | mV | | | | | | R _L | Receiver differential input resistor | | 90 | 100 | 110 | Ω | | | | | #### Note to Table 5-12: (1) The top and bottom clock input differential buffers in I/O banks 3, 4, 7, and 8 are powered by V_{CCINT} , not V_{CCIO} . The PLL clock output/feedback differential buffers are powered by VCC_PLL_OUT. For differential clock output/feedback operation, VCC_PLL_OUT should be connected to 3.3 V. | Table 5–1 | Table 5–13. HyperTransport Technology Specifications | | | | | | | | |--------------------|--|------------------------|---------|---------|---------|------|--|--| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | | | V _{CCIO} | I/O supply voltage for left and right I/O banks (1, 2, 5, and 6) | | 2.375 | 2.500 | 2.625 | V | | | | V _{ID} | Input differential voltage swing (single-ended) | $R_L = 100 \Omega$ | 300 | 600 | 900 | mV | | | | V _{ICM} | Input common mode voltage | $R_L = 100 \Omega$ | 385 | 600 | 845 | mV | | | | V _{OD} | Output differential voltage (single-ended) | R _L = 100 Ω | 400 | 600 | 820 | mV | | | | ΔV _{OD} | Change in V _{OD} between high and low | R _L = 100 Ω | | | 75 | mV | | | | V _{OCM} | Output common mode voltage | $R_L = 100 \Omega$ | 440 | 600 | 780 | mV | | | | Δ V _{OCM} | Change in V _{OCM} between high and low | R _L = 100 Ω | | | 50 | mV | | | | R _L | Receiver differential input resistor | | 90 | 100 | 110 | Ω | | | | Table 5–14. 3.3-V PCI Specifications (Part 1 of 2) | | | | | | | | | |--|--------------------------|------------|-----------------------|---------|-------------------------|------|--|--| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | | | V _{CCIO} | Output supply voltage | | 3.0 | 3.3 | 3.6 | V | | | | V _{IH} | High-level input voltage | | $0.5 \times V_{CCIO}$ | | V _{CCIO} + 0.5 | V | | | | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | |----------------------|-----------------------------|----------------------------------|--------------------------|-----------|--------------------------|------| | V_{CCIO} | Output supply voltage | | 1.71 | 1.80 | 1.89 | ٧ | | V_{REF} | Reference voltage | | 0.855 | 0.900 | 0.945 | ٧ | | V _{TT} | Termination voltage | | V _{REF} - 0.04 | V_{REF} | V _{REF} + 0.04 | ٧ | | V _{IH} (DC) | High-level DC input voltage | | V _{REF} + 0.125 | | | V | | V _{IL} (DC) | Low-level DC input voltage | | | | V _{REF} - 0.125 | ٧ | | V _{IH} (AC) | High-level AC input voltage | | V _{REF} + 0.25 | | | V | | V _{IL} (AC) | Low-level AC input voltage | | | | V _{REF} - 0.25 | V | | V _{OH} | High-level output voltage | $I_{OH} = -13.4 \text{ mA } (1)$ | V _{CCIO} - 0.28 | | | ٧ | | V _{OL} | Low-level output voltage | I _{OL} = 13.4 mA (1) | | | 0.28 | ٧ | #### Note to Table 5–17: ⁽¹⁾ This specification is supported across all the programmable drive settings available for this I/O standard as shown in the *Stratix II Architecture* chapter in volume 1 of the *Stratix II Device Handbook*. | Table 5 | Table 5–18. SSTL-18 Class I & II Differential Specifications | | | | | | | | | | |-------------------------|--|------------|--------------------------------|-----------------------|--------------------------------|------|--|--|--|--| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | | | | | V_{CCIO} | Output supply voltage | | 1.71 | 1.80 | 1.89 | V | | | | | | V _{SWING} (DC) | DC differential input voltage | | 0.25 | | | ٧ | | | | | | V _X (AC) | AC differential input cross point voltage | | (V _{CCIO} /2) - 0.175 | | (V _{CCIO} /2) + 0.175 | ٧ | | | | | | V _{SWING} (AC) | AC differential input voltage | | 0.5 | | | V | | | | | | V _{ISO} | Input clock signal offset voltage | | | $0.5 \times V_{CCIO}$ | | ٧ | | | | | | ΔV_{ISO} | Input clock signal offset voltage variation | | | ±200 | | mV | | | | | | V _{OX} (AC) | AC differential cross point voltage | | (V _{CCIO} /2) - 0.125 | | (V _{CCIO} /2) + 0.125 | V | | | | | | Table 5-1 | 9. SSTL-2 Class I Specification | ons | | | | | |----------------------|---------------------------------|---------------------------------|-------------------------|-----------|-------------------------|------| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | V _{CCIO} | Output supply voltage | | 2.375 | 2.500 | 2.625 | ٧ | | V_{TT} | Termination voltage | | V _{REF} - 0.04 | V_{REF} | V _{REF} + 0.04 | ٧ | | V _{REF} | Reference voltage | | 1.188 | 1.250 | 1.313 | V | | V _{IH} (DC) | High-level DC input voltage | | V _{REF} + 0.18 | | 3.00 | V | | V _{IL} (DC) | Low-level DC input voltage | | -0.30 | | V _{REF} - 0.18 | ٧ | | V _{IH} (AC) | High-level AC input voltage | | V _{REF} + 0.35 | | | V | | V _{IL} (AC) | Low-level AC input voltage | | | | V _{REF} - 0.35 | ٧ | | V _{OH} | High-level output voltage | $I_{OH} = -8.1 \text{ mA } (1)$ | V _{TT} + 0.57 | | | V | | V _{OL} | Low-level output voltage | I _{OL} = 8.1 mA (1) | | | V _{TT} – 0.57 | ٧ | #### Note to Table 5-19: (1) This specification is supported across all the programmable drive settings available for this I/O standard as shown in the *Stratix II Architecture* chapter in volume 1 of the *Stratix II Device Handbook*. | Table 5-2 | O. SSTL-2 Class II Specificati | ons | | | | | |----------------------|--------------------------------|----------------------------------|-------------------------|-----------|--------------------------|------| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | V _{CCIO} | Output supply voltage | | 2.375 | 2.500 | 2.625 | V | | V _{TT} | Termination voltage | | V _{REF} - 0.04 | V_{REF} | V _{REF} + 0.04 | ٧ | | V _{REF} | Reference voltage | | 1.188 | 1.250 | 1.313 | ٧ | | V _{IH} (DC) | High-level DC input voltage | | V _{REF} + 0.18 | | V _{CCIO} + 0.30 | ٧ | | V _{IL} (DC) | Low-level DC input voltage | | -0.30 | | V _{REF} – 0.18 | ٧ | | V _{IH} (AC) | High-level AC input voltage | | V _{REF} + 0.35 | | | ٧ | | V _{IL} (AC) | Low-level AC input voltage | | | | V _{REF} - 0.35 | ٧ | | V _{OH} | High-level output voltage | $I_{OH} = -16.4 \text{ mA } (1)$ | V _{TT} + 0.76 | | | ٧ | | V _{OL} | Low-level output voltage | I _{OL} = 16.4 mA (1) | | | V _{TT} – 0.76 | V | #### Note to Table 5-20: (1) This specification is supported across all the programmable drive settings available for this I/O standard as shown in the *Stratix II Architecture* chapter in volume 1 of the *Stratix II Device Handbook*. | | | | Resista | nce Toleran | ce | |------------------------------------|---|------------------------------------|-------------------|-------------------|------| | Symbol | Description | Conditions | Commercial
Max | Industrial
Max | Unit | | 25-Ω R _S
3.3/2.5 | Internal series termination without calibration (25- Ω setting) | V _{CCIO} = 3.3/2.5 V | ±30 | ±30 | % | | 50-Ω R _S
3.3/2.5/1.8 | Internal series termination without calibration (50- Ω setting) | $V_{CCIO} = 3.3/2.5/1.8 \text{ V}$ | ±30 | ±30 | % | | 50-Ω R _S 1.5 | Internal series termination without calibration (50- Ω setting) | V _{CCIO} = 1.5 V | ±36 | ±36 | % | | R _D | Internal differential termination for LVDS or HyperTransport technology (100-Ω setting) | V _{CCIO} = 2.5 V | ±20 | ±25 | % | # **Pin Capacitance** Table 5–32 shows the Stratix II device family pin capacitance. | Table 5–32. Stratix II Device Capacitance Note (1) | | | | | | | | | | |--|---|---------|------|--|--|--|--|--|--| | Symbol | Parameter | Typical | Unit | | | | | | | | C_{IOTB} | Input capacitance on I/O pins in I/O banks 3, 4, 7, and 8. | 5.0 | pF | | | | | | | | C _{IOLR} | Input capacitance on I/O pins in I/O banks 1, 2, 5, and 6, including high-speed differential receiver and transmitter pins. | 6.1 | pF | | | | | | | | C _{CLKTB} | Input capacitance on top/bottom clock input pins: CLK [47] and CLK [1215]. | 6.0 | pF | | | | | | | | C _{CLKLR} | Input capacitance on left/right clock inputs: CLK0, CLK2, CLK8, CLK10. | 6.1 | pF | | | | | | | | C _{CLKLR+} | Input capacitance on left/right clock inputs: CLK1, CLK3, CLK9, and CLK11. | 3.3 | pF | | | | | | | | C _{OUTFB} | Input capacitance on dual-purpose clock output/feedback pins in PLL banks 9, 10, 11, and 12. | 6.7 | pF | | | | | | | #### Note to Table 5–32: (1) Capacitance is sample-tested only. Capacitance is measured using time-domain reflections (TDR). Measurement accuracy is within $\pm 0.5 pF$ | Table 5–59. EP2S90 Row Pins Global Clock Timing Parameters | | | | | | | | | | | | | |--|----------------|------------|----------|----------|----------|-------|--|--|--|--|--|--| | Donomotor | Minimum Timing | | -3 Speed | -4 Speed | -5 Speed | Unit | | | | | | | | Parameter | Industrial | Commercial | Grade | Grade | Grade | Ullit | | | | | | | | t _{CIN} | 1.585 | 1.658 | 2.757 | 3.154 | 3.665 | ns | | | | | | | | t _{COUT} | 1.590 | 1.663 | 2.753 | 3.150 | 3.660 | ns | | | | | | | | t _{PLLCIN} | -0.341 | -0.341 | -0.193 | -0.235 | -0.278 | ns | | | | | | | | t _{PLLCOUT} | -0.336 | -0.336 | -0.197 | -0.239 | -0.283 | ns | | | | | | | # EP2S130 Clock Timing Parameters Tables 5–60 through 5–63 show the maximum clock timing parameters for EP2S130 devices. | Table 5–60. EP2S130 Column Pins Regional Clock Timing Parameters | | | | | | | | | | | | | |--|------------|------------|----------|----------|----------|-------|--|--|--|--|--|--| | Parameter | Minimu | m Timing | -3 Speed | -4 Speed | -5 Speed | Unit | | | | | | | | | Industrial | Commercial | Grade | Grade | Grade | UIIII | | | | | | | | t _{CIN} | 1.889 | 1.981 | 3.405 | 3.722 | 4.326 | ns | | | | | | | | t _{COUT} | 1.732 | 1.816 | 3.151 | 3.444 | 4.002 | ns | | | | | | | | t _{PLLCIN} | 0.105 | 0.106 | 0.226 | 0.242 | 0.277 | ns | | | | | | | | t _{PLLCOUT} | -0.052 | -0.059 | -0.028 | -0.036 | -0.047 | ns | | | | | | | | Table 5–61. EP23 | Table 5–61. EP2S130 Column Pins Global Clock Timing Parameters | | | | | | | | | | | | | |----------------------|--|------------|----------|----------|----------|-------|--|--|--|--|--|--|--| | Parameter | Minimum Timing | | -3 Speed | -4 Speed | -5 Speed | Unit | | | | | | | | | | Industrial | Commercial | Grade | Grade | Grade | Ullit | | | | | | | | | t _{CIN} | 1.907 | 1.998 | 3.420 | 3.740 | 4.348 | ns | | | | | | | | | t _{COUT} | 1.750 | 1.833 | 3.166 | 3.462 | 4.024 | ns | | | | | | | | | t _{PLLCIN} | 0.134 | 0.136 | 0.276 | 0.296 | 0.338 | ns | | | | | | | | | t _{PLLCOUT} | -0.023 | -0.029 | 0.022 | 0.018 | 0.014 | ns | | | | | | | | | Table 5-75. St | Table 5–75. Stratix II I/O Output Delay for Column Pins (Part 2 of 8) | | | | | | | | | | | | | |----------------|---|------------------|-----------------------|----------------|----------------|------|------|------|----|--|--|--|--| | | | | Minimu | m Timing | -3 | -3 | -4 | -5 | | | | | | | I/O Standard | Drive
Strength | Parameter | Speed
Grade
(4) | Speed
Grade | Speed
Grade | Unit | | | | | | | | | LVCMOS | 4 mA | t _{OP} | 1041 | 1091 | 2036 | 2136 | 2340 | 2448 | ps | | | | | | | | t _{DIP} | 1061 | 1113 | 2102 | 2206 | 2416 | 2538 | ps | | | | | | | 8 mA | t _{OP} | 952 | 999 | 1786 | 1874 | 2053 | 2153 | ps | | | | | | | | t _{DIP} | 972 | 1021 | 1852 | 1944 | 2129 | 2243 | ps | | | | | | | 12 mA | t _{OP} | 926 | 971 | 1720 | 1805 | 1977 | 2075 | ps | | | | | | | | t _{DIP} | 946 | 993 | 1786 | 1875 | 2053 | 2165 | ps | | | | | | | 16 mA | t _{OP} | 933 | 978 | 1693 | 1776 | 1946 | 2043 | ps | | | | | | | | t _{DIP} | 953 | 1000 | 1759 | 1846 | 2022 | 2133 | ps | | | | | | | 20 mA | t _{OP} | 921 | 965 | 1677 | 1759 | 1927 | 2025 | ps | | | | | | | | t _{DIP} | 941 | 987 | 1743 | 1829 | 2003 | 2115 | ps | | | | | | | 24 mA | t _{OP} | 909 | 954 | 1659 | 1741 | 1906 | 2003 | ps | | | | | | | (1) | t _{DIP} | 929 | 976 | 1725 | 1811 | 1982 | 2093 | ps | | | | | | 2.5 V | 4 mA | t _{OP} | 1004 | 1053 | 2063 | 2165 | 2371 | 2480 | ps | | | | | | | | t _{DIP} | 1024 | 1075 | 2129 | 2235 | 2447 | 2570 | ps | | | | | | | 8 mA | t _{OP} | 955 | 1001 | 1841 | 1932 | 2116 | 2218 | ps | | | | | | | | t _{DIP} | 975 | 1023 | 1907 | 2002 | 2192 | 2308 | ps | | | | | | | 12 mA | t _{OP} | 934 | 980 | 1742 | 1828 | 2002 | 2101 | ps | | | | | | | | t _{DIP} | 954 | 1002 | 1808 | 1898 | 2078 | 2191 | ps | | | | | | | 16 mA | t _{OP} | 918 | 962 | 1679 | 1762 | 1929 | 2027 | ps | | | | | | | (1) | t _{DIP} | 938 | 984 | 1745 | 1832 | 2005 | 2117 | ps | | | | | | Table 5–76. Sti | ratix II I/O | Output Delay | for Row Pins | (Part 2 of 3) | | | | | | |-----------------|-------------------|------------------|--------------|---------------|-----------------------|-----------------------|----------------|----------------|------| | | | | Minimu | m Timing | -3 | -3 | -4 | -5 | | | I/O Standard | Drive
Strength | Parameter | Industrial | Commercial | Speed
Grade
(2) | Speed
Grade
(3) | Speed
Grade | Speed
Grade | Unit | | 2.5 V | 4 mA | t _{OP} | 1128 | 1183 | 2091 | 2194 | 2403 | 2523 | ps | | | | t _{DIP} | 1086 | 1140 | 2036 | 2137 | 2340 | 2450 | ps | | | 8 mA | t _{OP} | 1030 | 1080 | 1872 | 1964 | 2152 | 2265 | ps | | | | t _{DIP} | 988 | 1037 | 1817 | 1907 | 2089 | 2192 | ps | | | 12 mA | t _{OP} | 1012 | 1061 | 1775 | 1862 | 2040 | 2151 | ps | | | (1) | t _{DIP} | 970 | 1018 | 1720 | 1805 | 1977 | 2078 | ps | | 1.8 V | 2 mA | t _{OP} | 1196 | 1253 | 2954 | 3100 | 3396 | 3542 | ps | | | | t _{DIP} | 1154 | 1210 | 2899 | 3043 | 3333 | 3469 | ps | | | 4 mA | t _{OP} | 1184 | 1242 | 2294 | 2407 | 2637 | 2763 | ps | | | | t _{DIP} | 1142 | 1199 | 2239 | 2350 | 2574 | 2690 | ps | | | 6 mA | t _{OP} | 1079 | 1131 | 2039 | 2140 | 2344 | 2462 | ps | | | | t _{DIP} | 1037 | 1088 | 1984 | 2083 | 2281 | 2389 | ps | | | 8 mA (1) | t _{OP} | 1049 | 1100 | 1942 | 2038 | 2232 | 2348 | ps | | | | t _{DIP} | 1007 | 1057 | 1887 | 1981 | 2169 | 2275 | ps | | 1.5 V | 2 mA | t _{OP} | 1158 | 1213 | 2530 | 2655 | 2908 | 3041 | ps | | | | t _{DIP} | 1116 | 1170 | 2475 | 2598 | 2845 | 2968 | ps | | | 4 mA | t _{OP} | 1055 | 1106 | 2020 | 2120 | 2322 | 2440 | ps | | | | t _{DIP} | 1013 | 1063 | 1965 | 2063 | 2259 | 2367 | ps | | SSTL-2 Class I | 8 mA | t _{OP} | 1002 | 1050 | 1759 | 1846 | 2022 | 2104 | ps | | | | t _{DIP} | 960 | 1007 | 1704 | 1789 | 1959 | 2031 | ps | | SSTL-2 Class II | 16 mA | t _{OP} | 947 | 992 | 1581 | 1659 | 1817 | 1897 | ps | | | (1) | t _{DIP} | 905 | 949 | 1526 | 1602 | 1754 | 1824 | ps | | SSTL-18 | 4 mA | t _{OP} | 990 | 1038 | 1709 | 1793 | 1964 | 2046 | ps | | Class I | | t _{DIP} | 948 | 995 | 1654 | 1736 | 1901 | 1973 | ps | | | 6 mA | t _{OP} | 994 | 1042 | 1648 | 1729 | 1894 | 1975 | ps | | | | t _{DIP} | 952 | 999 | 1593 | 1672 | 1831 | 1902 | ps | | | 8 mA | t _{OP} | 970 | 1018 | 1633 | 1713 | 1877 | 1958 | ps | | | | t _{DIP} | 928 | 975 | 1578 | 1656 | 1814 | 1885 | ps | | | 10 mA | t _{OP} | 974 | 1021 | 1615 | 1694 | 1856 | 1937 | ps | | | (1) | t _{DIP} | 932 | 978 | 1560 | 1637 | 1793 | 1864 | ps | Figure 5-7. Duty Cycle Distortion DCD expressed in absolution derivation, for example, D1 or D2 in Figure 5–7, is clock-period independent. DCD can also be expressed as a percentage, and the percentage number is clock-period dependent. DCD as a percentage is defined as (T/2 - D1) / T (the low percentage boundary) (T/2 + D2) / T (the high percentage boundary) ## **DCD Measurement Techniques** DCD is measured at an FPGA output pin driven by registers inside the corresponding I/O element (IOE) block. When the output is a single data rate signal (non-DDIO), only one edge of the register input clock (positive or negative) triggers output transitions (Figure 5–8). Therefore, any DCD present on the input clock signal or caused by the clock input buffer or different input I/O standard does not transfer to the output signal. Figure 5–8. DCD Measurement Technique for Non-DDIO (Single-Data Rate) Outputs # High-Speed I/O Specifications Table 5–88 provides high-speed timing specifications definitions. | Table 5–88. High-Speed Timing Specifications & Definitions | | | | | | | |--|--|--|--|--|--|--| | High-Speed Timing Specifications | Definitions | | | | | | | t _C | High-speed receiver/transmitter input and output clock period. | | | | | | | f _{HSCLK} | High-speed receiver/transmitter input and output clock frequency. | | | | | | | J | Deserialization factor (width of parallel data bus). | | | | | | | W | PLL multiplication factor. | | | | | | | t _{RISE} | Low-to-high transmission time. | | | | | | | t _{FALL} | High-to-low transmission time. | | | | | | | Timing unit interval (TUI) | The timing budget allowed for skew, propagation delays, and data sampling window. (TUI = $1/(\text{Receiver Input Clock Frequency} \times \text{Multiplication Factor}) = t_{\text{C}}/w$). | | | | | | | f _{HSDR} | Maximum/minimum LVDS data transfer rate (f _{HSDR} = 1/TUI), non-DPA. | | | | | | | f _{HSDRDPA} | Maximum/minimum LVDS data transfer rate (f _{HSDRDPA} = 1/TUI), DPA. | | | | | | | Channel-to-channel skew (TCCS) | The timing difference between the fastest and slowest output edges, including t_{CO} variation and clock skew. The clock is included in the TCCS measurement. | | | | | | | Sampling window (SW) | The period of time during which the data must be valid in order to capture it correctly. The setup and hold times determine the ideal strobe position within the sampling window. | | | | | | | Input jitter | Peak-to-peak input jitter on high-speed PLLs. | | | | | | | Output jitter | Peak-to-peak output jitter on high-speed PLLs. | | | | | | | t _{DUTY} | Duty cycle on high-speed transmitter output clock. | | | | | | | t _{LOCK} | Lock time for high-speed transmitter and receiver PLLs. | | | | | | Table 5–89 shows the high-speed I/O timing specifications for -3 speed grade Stratix II devices. | Table 5–89. High-Speed I/O Specifications for -3 Speed Grade (Part 1 of 2) Notes (1), (2) | | | | | | | | | | | |---|---|------|--------|------|-----|--|--|--|--|--| | Symbol | Conditions | -3 S | peed G | Unit | | | | | | | | Symbol | Conditions | | Тур | | Max | | | | | | | f_{HSCLK} (clock frequency)
$f_{HSCLK} = f_{HSDR} / W$ | W = 2 to 32 (LVDS, HyperTransport technology) (3) | 16 | | 520 | MHz | | | | | | | | W = 1 (SERDES bypass, LVDS only) | 16 | | 500 | MHz | | | | | | | | W = 1 (SERDES used, LVDS only) | 150 | | 717 | MHz | | | | | | | Table 5–89. High-Speed | I/O Specifications fo | r -3 Speed Gra | de (Part 2 o | f 2) | Notes | (1), (2) | | |--------------------------------------|-------------------------|-------------------------|-----------------------|------|--------|----------|-----------------------| | Cumbal | Conditions | | | | peed G | l lm:4 | | | Symbol | | Conditions | | | | Max | Unit | | f _{HSDR} (data rate) | J = 4 to 10 (LVDS, F | HyperTransport | technology) | 150 | | 1,040 | Mbps | | | J = 2 (LVDS, Hyper | Transport techno | ology) | (4) | | 760 | Mbps | | | J = 1 (LVDS only) | | | (4) | | 500 | Mbps | | f _{HSDRDPA} (DPA data rate) | J = 4 to 10 (LVDS, F | HyperTransport | technology) | 150 | | 1,040 | Mbps | | TCCS | All differential stand | ards | | - | | 200 | ps | | SW | All differential stand | ards | | 330 | | - | ps | | Output jitter | | | | | | 190 | ps | | Output t _{RISE} | All differential I/O st | andards | | | | 160 | ps | | Output t _{FALL} | All differential I/O st | andards | | | | 180 | ps | | t _{DUTY} | | | | 45 | 50 | 55 | % | | DPA run length | | | | | | 6,400 | UI | | DPA jitter tolerance | Data channel peak- | to-peak jitter | | 0.44 | | | UI | | DPA lock time | Standard | Training
Pattern | Transition
Density | | | | Number of repetitions | | | SPI-4 | 000000000
1111111111 | 10% | 256 | | | | | | Parallel Rapid I/O | 00001111 | 25% | 256 | | |] | | | | 10010000 | 50% | 256 | | | | | | Miscellaneous | 10101010 | 100% | 256 | | | | | | | 01010101 | | 256 | | | | #### Notes to Table 5–89: - (1) When J = 4 to 10, the SERDES block is used. - (2) When J = 1 or 2, the SERDES block is bypassed. - (3) The input clock frequency and the W factor must satisfy the following fast PLL VCO specification: $150 \le$ input clock frequency \times W \le 1,040. - (4) The minimum specification is dependent on the clock source (fast PLL, enhanced PLL, clock pin, and so on) and the clock routing resource (global, regional, or local) utilized. The I/O differential buffer and input register do not have a minimum toggle rate.