Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 780 | | Number of Logic Elements/Cells | 15600 | | Total RAM Bits | 419328 | | Number of I/O | 366 | | Number of Gates | - | | Voltage - Supply | 1.15V ~ 1.25V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 672-BBGA | | Supplier Device Package | 672-FBGA (27x27) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep2s15f672i4n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong arithmetic chain runs vertically allowing fast horizontal connections to TriMatrix memory and DSP blocks. A shared arithmetic chain can continue as far as a full column. Similar to the carry chains, the shared arithmetic chains are also top- or bottom-half bypassable. This capability allows the shared arithmetic chain to cascade through half of the ALMs in a LAB while leaving the other half available for narrower fan-in functionality. Every other LAB column is top-half bypassable, while the other LAB columns are bottom-half bypassable. See the "MultiTrack Interconnect" on page 2–22 section for more information on shared arithmetic chain interconnect. ### **Register Chain** In addition to the general routing outputs, the ALMs in an LAB have register chain outputs. The register chain routing allows registers in the same LAB to be cascaded together. The register chain interconnect allows an LAB to use LUTs for a single combinational function and the registers to be used for an unrelated shift register implementation. These resources speed up connections between ALMs while saving local interconnect resources (see Figure 2–15). The Quartus II Compiler automatically takes advantage of these resources to improve utilization and performance. Figure 2-39. External PLL Output Clock Control Blocks Notes to Figure 2–39: - These clock select signals can only be set through a configuration file (.sof or .pof) and cannot be dynamically controlled during user mode operation. - (2) The clock control block feeds to a multiplexer within the PLL_OUT pin's IOE. The PLL_OUT pin is a dual-purpose pin. Therefore, this multiplexer selects either an internal signal or the output of the clock control block. For the global clock control block, the clock source selection can be controlled either statically or dynamically. The user has the option of statically selecting the clock source by using the Quartus II software to set specific configuration bits in the configuration file (.sof or .pof) or the user can control the selection dynamically by using internal logic to drive the multiplexor select inputs. When selecting statically, the clock source can be set to any of the inputs to the select multiplexor. When selecting the clock source dynamically, you can either select between two PLL outputs (such as the C0 or C1 outputs from one PLL), between two PLLs (such as the C0/C1 clock output of one PLL or the C0/C1 clock output of the other PLL), between two clock pins (such as CLK0 or CLK1), or between a combination of clock pins or PLL outputs. The clock outputs from corner PLLs cannot be dynamically selected through the global control block. For the regional and PLL_OUT clock control block, the clock source selection can only be controlled statically using configuration bits. Any of the inputs to the clock select multiplexor can be set as the clock source. Figure 2–40 shows a top-level diagram of the Stratix II device and PLL floorplan. Figures 2–41 and 2–42 shows the global and regional clocking from the fast PLL outputs and the side clock pins. | Table 2–11. Global & Region of 2) | Table 2–11. Global & Regional Clock Connections from Top Clock Pins & Enhanced PLL Outputs (Part 1 of 2) | | | | | | | | anced | PLL O | utputs | (Pa | art 1 | |--|--|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Top Side Global & Regional
Clock Network Connectivity | DLLCLK | CLK12 | CLK13 | CLK14 | CLK15 | RCLK24 | RCLK25 | RCLK26 | RCLK27 | RCLK28 | RCLK29 | RCLK30 | RCLK31 | | clock pins | | | | | | | | | | | | | | | CLK12p | \ | ~ | < | | | ~ | | | | \ | | | | | CLK13p | ✓ | ✓ | \ | | | | ~ | | | | | | ~ | | CLK14p | ✓ | | | ✓ | ✓ | | | ✓ | | | | ✓ | | | CLK15p | ✓ | | | ✓ | ✓ | | | | ✓ | | ✓ | | | | CLK12n | | ✓ | | | | ✓ | | | | ✓ | | | | | CLK13n | | | ✓ | | | | ✓ | | | | | | ✓ | | CLK14n | | | | ✓ | | | | ✓ | | | | ✓ | | | CLK15n | | | | | ✓ | | | | ✓ | | ✓ | | | | Drivers from internal logic | | ı | | ı | | ı | ı | | ı | ı | | ı | | | GCLKDRV0 | | ~ | | | | | | | | | | | | | GCLKDRV1 | | | ✓ | | | | | | | | | | | | GCLKDRV2 | | | | ✓ | | | | | | | | | | | GCLKDRV3 | | | | | ✓ | | | | | | | | | | RCLKDRV0 | | | | | | ✓ | | | | ✓ | | | | | RCLKDRV1 | | | | | | | ✓ | | | | ✓ | | | | RCLKDRV2 | | | | | | | | ✓ | | | | ✓ | | | RCLKDRV3 | | | | | | | | | ✓ | | | | ✓ | | RCLKDRV4 | | | | | | ✓ | | | | ✓ | | | | | RCLKDRV5 | | | | | | | ✓ | | | | ✓ | | | | RCLKDRV6 | | | | | | | | ✓ | | | | ✓ | | | RCLKDRV7 | | | | | | | | | ✓ | | | | ✓ | | Enhanced PLL 5 outputs | | I | 1 | I | 1 | I. | I | 1 | I. | I. | 1 | I | | | c0 | ✓ | ✓ | ✓ | | | ✓ | | | | ✓ | | | | | c1 | ✓ | ✓ | ✓ | | | | ✓ | | | | ✓ | | | | c2 | ✓ | | | ✓ | ✓ | | | ✓ | | | | ✓ | | | c3 | ✓ | | | ✓ | ✓ | | | | ✓ | | | | ✓ | - Output drive strength control - Tri-state buffers - Bus-hold circuitry - Programmable pull-up resistors - Programmable input and output delays - Open-drain outputs - DQ and DQS I/O pins - Double data rate (DDR) registers The IOE in Stratix II devices contains a bidirectional I/O buffer, six registers, and a latch for a complete embedded bidirectional single data rate or DDR transfer. Figure 2–46 shows the Stratix II IOE structure. The IOE contains two input registers (plus a latch), two output registers, and two output enable registers. The design can use both input registers and the latch to capture DDR input and both output registers to drive DDR outputs. Additionally, the design can use the output enable (OE) register for fast clock-to-output enable timing. The negative edge-clocked OE register is used for DDR SDRAM interfacing. The Quartus II software automatically duplicates a single OE register that controls multiple output or bidirectional pins. Figure 2-46. Stratix II IOE Structure The IOEs are located in I/O blocks around the periphery of the Stratix II device. There are up to four IOEs per row I/O block and four IOEs per column I/O block. The row I/O blocks drive row, column, or direct link interconnects. The column I/O blocks drive column interconnects. Figure 2–47 shows how a row I/O block connects to the logic array. Figure 2–48 shows how a column I/O block connects to the logic array. For high-speed source synchronous interfaces such as POS-PHY 4, Parallel RapidIO, and HyperTransport, the source synchronous clock rate is not a byte- or SERDES-rate multiple of the data rate. Byte alignment is necessary for these protocols since the source synchronous clock does not provide a byte or word boundary since the clock is one half the data rate, not one eighth. The Stratix II device's high-speed differential I/O circuitry provides dedicated data realignment circuitry for user-controlled byte boundary shifting. This simplifies designs while saving ALM resources. You can use an ALM-based state machine to signal the shift of receiver byte boundaries until a specified pattern is detected to indicate byte alignment. ### **Fast PLL & Channel Layout** The receiver and transmitter channels are interleaved such that each I/O bank on the left and right side of the device has one receiver channel and one transmitter channel per LAB row. Figure 2–60 shows the fast PLL and channel layout in the EP2S15 and EP2S30 devices. Figure 2–61 shows the fast PLL and channel layout in the EP2S60 to EP2S180 devices. LVDS DPA DΡΔ LVDS Clock Clock Clock Clock Quadrant Quadrant 2 Fast Fast PLL 1 PLL 4 Fast Fast PLL 3 PLL 2 2 Quadrant Quadrant LVDS DPA DΡΔ LVDS Clock Clock Clock Clock Figure 2–60. Fast PLL & Channel Layout in the EP2S15 & EP2S30 Devices Note (1) *Note to Figure 2–60:* (1) See Table 2–21 for the number of channels each device supports. ## 3. Configuration & Testing SII51003-4.2 ### IEEE Std. 1149.1 JTAG Boundary-Scan Support All Stratix[®] II devices provide Joint Test Action Group (JTAG) boundary-scan test (BST) circuitry that complies with the IEEE Std. 1149.1. JTAG boundary-scan testing can be performed either before or after, but not during configuration. Stratix II devices can also use the JTAG port for configuration with the Quartus[®] II software or hardware using either Jam Files (.jam) or Jam Byte-Code Files (.jbc). Stratix II devices support IOE I/O standard setting reconfiguration through the JTAG BST chain. The JTAG chain can update the I/O standard for all input and output pins any time before or during user mode through the CONFIG_IO instruction. You can use this capability for JTAG testing before configuration when some of the Stratix II pins drive or receive from other devices on the board using voltage-referenced standards. Because the Stratix II device may not be configured before JTAG testing, the I/O pins may not be configured for appropriate electrical standards for chip-to-chip communication. Programming those I/O standards via JTAG allows you to fully test I/O connections to other devices. A device operating in JTAG mode uses four required pins, TDI,TDO, TMS, and TCK, and one optional pin, TRST. The TCK pin has an internal weak pull-down resistor, while the TDI,TMS and TRST pins have weak internal pull-ups. The JTAG input pins are powered by the 3.3-V VCCPD pins. The TDO output pin is powered by the $V_{\rm CCIO}$ power supply of bank 4. Stratix II devices also use the JTAG port to monitor the logic operation of the device with the SignalTap[®] II embedded logic analyzer. Stratix II devices support the JTAG instructions shown in Table 3–1. Stratix II, Stratix, Cyclone[®] II, and Cyclone devices must be within the first 17 devices in a JTAG chain. All of these devices have the same JTAG controller. If any of the Stratix II, Stratix, Cyclone II, or Cyclone devices are in the 18th of further position, they fail configuration. This does not affect SignalTap II. The Stratix II device instruction register length is 10 bits and the USERCODE register length is 32 bits. Tables 3–2 and 3–3 show the boundary-scan register length and device IDCODE information for Stratix II devices. | Table 3–7. Dod | cument Revision History (Part 2 of 2) | <u> </u> | |---------------------------------|---|--------------------| | Date and
Document
Version | Changes Made | Summary of Changes | | April 2006,
v4.1 | Updated "Device Security Using Configuration Bitstream Encryption" section. | _ | | December
2005, v4.0 | Updated "Software Interface" section. | _ | | May 2005, v3.0 | Updated "IEEE Std. 1149.1 JTAG Boundary-Scan
Support" section. Updated "Operating Modes" section. | _ | | January 2005,
v2.1 | Updated JTAG chain device limits. | _ | | January 2005,
v2.0 | Updated Table 3–3. | _ | | July 2004, v1.1 | Added "Automated Single Event Upset (SEU) Detection" section. Updated "Device Security Using Configuration Bitstream Encryption" section. Updated Figure 3–2. | _ | | February 2004,
v1.0 | Added document to the Stratix II Device Handbook. | _ | | Table 5-1 | 9. SSTL-2 Class I Specification | ons | | | | | |----------------------|---------------------------------|---------------------------------|-------------------------|-----------|-------------------------|------| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | V _{CCIO} | Output supply voltage | | 2.375 | 2.500 | 2.625 | ٧ | | V_{TT} | Termination voltage | | V _{REF} - 0.04 | V_{REF} | V _{REF} + 0.04 | ٧ | | V _{REF} | Reference voltage | | 1.188 | 1.250 | 1.313 | V | | V _{IH} (DC) | High-level DC input voltage | | V _{REF} + 0.18 | | 3.00 | V | | V _{IL} (DC) | Low-level DC input voltage | | -0.30 | | V _{REF} - 0.18 | ٧ | | V _{IH} (AC) | High-level AC input voltage | | V _{REF} + 0.35 | | | V | | V _{IL} (AC) | Low-level AC input voltage | | | | V _{REF} - 0.35 | ٧ | | V _{OH} | High-level output voltage | $I_{OH} = -8.1 \text{ mA } (1)$ | V _{TT} + 0.57 | | | V | | V _{OL} | Low-level output voltage | I _{OL} = 8.1 mA (1) | | | V _{TT} – 0.57 | ٧ | #### Note to Table 5-19: (1) This specification is supported across all the programmable drive settings available for this I/O standard as shown in the *Stratix II Architecture* chapter in volume 1 of the *Stratix II Device Handbook*. | Table 5-2 | O. SSTL-2 Class II Specificati | ons | | | | | |----------------------|--------------------------------|----------------------------------|-------------------------|-----------|--------------------------|------| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | V _{CCIO} | Output supply voltage | | 2.375 | 2.500 | 2.625 | V | | V _{TT} | Termination voltage | | V _{REF} - 0.04 | V_{REF} | V _{REF} + 0.04 | ٧ | | V _{REF} | Reference voltage | | 1.188 | 1.250 | 1.313 | ٧ | | V _{IH} (DC) | High-level DC input voltage | | V _{REF} + 0.18 | | V _{CCIO} + 0.30 | ٧ | | V _{IL} (DC) | Low-level DC input voltage | | -0.30 | | V _{REF} – 0.18 | ٧ | | V _{IH} (AC) | High-level AC input voltage | | V _{REF} + 0.35 | | | ٧ | | V _{IL} (AC) | Low-level AC input voltage | | | | V _{REF} - 0.35 | ٧ | | V _{OH} | High-level output voltage | $I_{OH} = -16.4 \text{ mA } (1)$ | V _{TT} + 0.76 | | | ٧ | | V _{OL} | Low-level output voltage | I _{OL} = 16.4 mA (1) | | | V _{TT} – 0.76 | V | #### Note to Table 5-20: (1) This specification is supported across all the programmable drive settings available for this I/O standard as shown in the *Stratix II Architecture* chapter in volume 1 of the *Stratix II Device Handbook*. | Table 5-2 | Table 5–25. 1.5-V HSTL Class I & II Differential Specifications | | | | | | | | | |-----------------------|---|------------|---------|---------|---------|------|--|--|--| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | | | | V _{CCIO} | I/O supply voltage | | 1.425 | 1.500 | 1.575 | V | | | | | V _{DIF} (DC) | DC input differential voltage | | 0.2 | | | V | | | | | V _{CM} (DC) | DC common mode input voltage | | 0.68 | | 0.90 | V | | | | | V _{DIF} (AC) | AC differential input voltage | | 0.4 | | | V | | | | | V _{OX} (AC) | AC differential cross point voltage | | 0.68 | | 0.90 | V | | | | | Table 5–2 | 6. 1.8-V HSTL Class I Specifi | cations | | | | | |----------------------|-------------------------------|-----------------------------|-------------------------|---------|------------------------|------| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | V_{CCIO} | Output supply voltage | | 1.71 | 1.80 | 1.89 | V | | V_{REF} | Input reference voltage | | 0.85 | 0.90 | 0.95 | ٧ | | V _{TT} | Termination voltage | | 0.85 | 0.90 | 0.95 | ٧ | | V _{IH} (DC) | DC high-level input voltage | | V _{REF} + 0.1 | | | ٧ | | V _{IL} (DC) | DC low-level input voltage | | -0.3 | | V _{REF} - 0.1 | ٧ | | V _{IH} (AC) | AC high-level input voltage | | V _{REF} + 0.2 | | | ٧ | | V _{IL} (AC) | AC low-level input voltage | | | | V _{REF} - 0.2 | ٧ | | V _{OH} | High-level output voltage | I _{OH} = 8 mA (1) | V _{CCIO} - 0.4 | | | V | | V _{OL} | Low-level output voltage | I _{OH} = -8 mA (1) | | | 0.4 | V | #### *Note to Table 5–26:* ⁽¹⁾ This specification is supported across all the programmable drive settings available for this I/O standard as shown in the *Stratix II Architecture* chapter in volume 1 of the *Stratix II Device Handbook*. Figure 5–5. Measurement Setup for t_{xz} Note (1) #### t_{XZ}, Driving High to Tristate #### $t_{\chi\chi}$, Driving Low to Tristate *Note to Figure 5–5:* (1) V_{CCINT} is 1.12 V for this measurement. | Table 5-53. EP23 | Table 5–53. EP2S60 Column Pins Global Clock Timing Parameters | | | | | | | | | | | |----------------------|---|------------|----------|----------|----------|-------|--|--|--|--|--| | Parameter | Minimu | m Timing | -3 Speed | -4 Speed | -5 Speed | Unit | | | | | | | Parameter | Industrial | Commercial | Grade | Grade | Grade | Ullit | | | | | | | t _{CIN} | 1.658 | 1.739 | 2.920 | 3.350 | 3.899 | ns | | | | | | | t _{COUT} | 1.501 | 1.574 | 2.678 | 3.072 | 3.575 | ns | | | | | | | t _{PLLCIN} | 0.06 | 0.057 | 0.278 | 0.304 | 0.355 | ns | | | | | | | t _{PLLCOUT} | -0.097 | -0.108 | 0.036 | 0.026 | 0.031 | ns | | | | | | | Table 5–54. EP2S60 Row Pins Regional Clock Timing Parameters | | | | | | | | | | | |--|------------|------------|----------|----------|-------------------|-------|--|--|--|--| | Parameter | Minimu | m Timing | -3 Speed | -4 Speed | -5 Speed
Grade | Unit | | | | | | rarameter | Industrial | Commercial | Grade | Grade | | Uiiii | | | | | | t _{CIN} | 1.463 | 1.532 | 2.591 | 2.972 | 3.453 | ns | | | | | | t _{COUT} | 1.468 | 1.537 | 2.587 | 2.968 | 3.448 | ns | | | | | | t _{PLLCIN} | -0.153 | -0.167 | -0.079 | -0.099 | -0.128 | ns | | | | | | t _{PLLCOUT} | -0.148 | -0.162 | -0.083 | -0.103 | -0.133 | ns | | | | | | Table 5–55. EP2S60 Row Pins Global Clock Timing Parameters | | | | | | | | | | | |--|------------|------------|----------|----------|----------|-------|--|--|--|--| | Parameter | Minimu | m Timing | -3 Speed | -4 Speed | -5 Speed | Unit | | | | | | ratameter | Industrial | Commercial | Grade | Grade | Grade | Ullit | | | | | | t _{CIN} | 1.439 | 1.508 | 2.562 | 2.940 | 3.421 | ns | | | | | | t _{COUT} | 1.444 | 1.513 | 2.558 | 2.936 | 3.416 | ns | | | | | | t _{PLLCIN} | -0.161 | -0.174 | -0.083 | -0.107 | -0.126 | ns | | | | | | t _{PLLCOUT} | -0.156 | -0.169 | -0.087 | -0.111 | -0.131 | ns | | | | | ### I/O Delays See Tables 5–72 through 5–76 for I/O delays. | Table 5–72. I/O Delay Parameters | | | | | | |----------------------------------|--|--|--|--|--| | Symbol | Parameter | | | | | | t _{DIP} | Delay from I/O datain to output pad | | | | | | t _{OP} | Delay from I/O output register to output pad | | | | | | t _{PCOUT} | Delay from input pad to I/O dataout to core | | | | | | t _{P1} | Delay from input pad to I/O input register | | | | | | | | Minimu | m Timing | -3 Speed | -3 Speed | -4 Speed | -5 Speed | | |------------------|--------------------|------------|------------|------------------|------------------|----------|----------|------| | I/O Standard | Parameter | Industrial | Commercial | Grade (2) | Grade (3) | Grade | Grade | Unit | | LVTTL | t _{PI} | 674 | 707 | 1223 | 1282 | 1405 | 1637 | ps | | | t _{PCOUT} | 408 | 428 | 787 | 825 | 904 | 1054 | ps | | 2.5 V | t _{PI} | 684 | 717 | 1210 | 1269 | 1390 | 1619 | ps | | | t _{PCOUT} | 418 | 438 | 774 | 812 | 889 | 1036 | ps | | 1.8 V | t _{PI} | 747 | 783 | 1366 | 1433 | 1570 | 1829 | ps | | | t _{PCOUT} | 481 | 504 | 930 | 976 | 1069 | 1246 | ps | | 1.5 V | t _{PI} | 749 | 786 | 1436 | 1506 | 1650 | 1922 | ps | | | t _{PCOUT} | 483 | 507 | 1000 | 1049 | 1149 | 1339 | ps | | LVCMOS | t _{PI} | 674 | 707 | 1223 | 1282 | 1405 | 1637 | ps | | | t _{PCOUT} | 408 | 428 | 787 | 825 | 904 | 1054 | ps | | SSTL-2 Class I | t _{PI} | 507 | 530 | 818 | 857 | 939 | 1094 | ps | | | t _{PCOUT} | 241 | 251 | 382 | 400 | 438 | 511 | ps | | SSTL-2 Class II | t _{PI} | 507 | 530 | 818 | 857 | 939 | 1094 | ps | | | t _{PCOUT} | 241 | 251 | 382 | 400 | 438 | 511 | ps | | SSTL-18 Class I | t _{PI} | 543 | 569 | 898 | 941 | 1031 | 1201 | ps | | | t _{PCOUT} | 277 | 290 | 462 | 484 | 530 | 618 | ps | | SSTL-18 Class II | t _{PI} | 543 | 569 | 898 | 941 | 1031 | 1201 | ps | | | t _{PCOUT} | 277 | 290 | 462 | 484 | 530 | 618 | ps | | 1.5-V HSTL | t _{PI} | 560 | 587 | 993 | 1041 | 1141 | 1329 | ps | | Class I | t _{PCOUT} | 294 | 308 | 557 | 584 | 640 | 746 | ps | | | Drive
Strength | Parameter | Minimu | -3 | -3 | -4 | -5 | | | |---------------------|-------------------|------------------|------------|------------|-----------------------|-----------------------|----------------|----------------|------| | I/O Standard | | | Industrial | Commercial | Speed
Grade
(3) | Speed
Grade
(4) | Speed
Grade | Speed
Grade | Unit | | Differential | 8 mA | t _{OP} | 913 | 957 | 1715 | 1799 | 1971 | 2041 | ps | | SSTL-2 Class I | | t _{DIP} | 933 | 979 | 1781 | 1869 | 2047 | 2131 | ps | | | 12 mA | t _{OP} | 896 | 940 | 1672 | 1754 | 1921 | 1991 | ps | | | | t _{DIP} | 916 | 962 | 1738 | 1824 | 1997 | 2081 | ps | | Differential | 16 mA | t _{OP} | 876 | 918 | 1609 | 1688 | 1849 | 1918 | ps | | SSTL-2 Class II | | t _{DIP} | 896 | 940 | 1675 | 1758 | 1925 | 2008 | ps | | | 20 mA | t _{OP} | 877 | 919 | 1598 | 1676 | 1836 | 1905 | ps | | | | t _{DIP} | 897 | 941 | 1664 | 1746 | 1912 | 1995 | ps | | | 24 mA | t _{OP} | 872 | 915 | 1596 | 1674 | 1834 | 1903 | ps | | | | t _{DIP} | 892 | 937 | 1662 | 1744 | 1910 | 1993 | ps | | Differential | 4 mA | t _{OP} | 909 | 953 | 1690 | 1773 | 1942 | 2012 | ps | | SSTL-18
Class I | | t _{DIP} | 929 | 975 | 1756 | 1843 | 2018 | 2102 | ps | | | 6 mA | t _{OP} | 914 | 958 | 1656 | 1737 | 1903 | 1973 | ps | | | | t _{DIP} | 934 | 980 | 1722 | 1807 | 1979 | 2063 | ps | | | 8 mA | t _{OP} | 894 | 937 | 1640 | 1721 | 1885 | 1954 | ps | | | | t _{DIP} | 914 | 959 | 1706 | 1791 | 1961 | 2044 | ps | | | 10 mA | t _{OP} | 898 | 942 | 1638 | 1718 | 1882 | 1952 | ps | | | | t _{DIP} | 918 | 964 | 1704 | 1788 | 1958 | 2042 | ps | | | 12 mA | t _{OP} | 891 | 936 | 1626 | 1706 | 1869 | 1938 | ps | | | | t _{DIP} | 911 | 958 | 1692 | 1776 | 1945 | 2028 | ps | | Differential | 8 mA | t _{OP} | 883 | 925 | 1597 | 1675 | 1835 | 1904 | ps | | SSTL-18
Class II | | t _{DIP} | 903 | 947 | 1663 | 1745 | 1911 | 1994 | ps | | Class II | 16 mA | t _{OP} | 894 | 937 | 1578 | 1655 | 1813 | 1882 | ps | | | | t _{DIP} | 914 | 959 | 1644 | 1725 | 1889 | 1972 | ps | | | 18 mA | t _{OP} | 890 | 933 | 1585 | 1663 | 1821 | 1890 | ps | | | | t _{DIP} | 910 | 955 | 1651 | 1733 | 1897 | 1980 | ps | | | 20 mA | t _{OP} | 890 | 933 | 1583 | 1661 | 1819 | 1888 | ps | | | | t _{DIP} | 910 | 955 | 1649 | 1731 | 1895 | 1978 | ps | | Table 5–78. Maximum Output Toggle Rate on Stratix II Devices (Part 3 of 5) Note (1) | | | | | | | | | | | |--|-----------------|-----------------------|-----|-----|--------------------|-----|-----|---------------------|-----|-----| | I/O Otomdond | Drive | Column I/O Pins (MHz) | | | Row I/O Pins (MHz) | | | Clock Outputs (MHz) | | | | I/O Standard | Strength | -3 | -4 | -5 | -3 | -4 | -5 | -3 | -4 | -5 | | Differential | 4 mA | 200 | 150 | 150 | 200 | 150 | 150 | 200 | 150 | 150 | | SSTL-18 Class I | 6 mA | 350 | 250 | 200 | 350 | 250 | 200 | 350 | 250 | 200 | | (0) | 8 mA | 450 | 300 | 300 | 450 | 300 | 300 | 450 | 300 | 300 | | | 10 mA | 500 | 400 | 400 | 500 | 400 | 400 | 500 | 400 | 400 | | | 12 mA | 700 | 550 | 400 | 350 | 350 | 297 | 650 | 550 | 400 | | Differential | 8 mA | 200 | 200 | 150 | - | - | - | 200 | 200 | 150 | | SSTL-18 Class II | 16 mA | 400 | 350 | 350 | - | - | - | 400 | 350 | 350 | | (3) | 18 mA | 450 | 400 | 400 | - | - | - | 450 | 400 | 400 | | | 20 mA | 550 | 500 | 450 | - | - | - | 550 | 500 | 450 | | 1.8-V Differential | 4 mA | 300 | 300 | 300 | - | - | - | 300 | 300 | 300 | | HSTL Class I (3) | 6 mA | 500 | 450 | 450 | - | - | - | 500 | 450 | 450 | | | 8 mA | 650 | 600 | 600 | - | - | - | 650 | 600 | 600 | | | 10 mA | 700 | 650 | 600 | - | - | - | 700 | 650 | 600 | | | 12 mA | 700 | 700 | 650 | - | - | - | 700 | 700 | 650 | | 1.8-V Differential
HSTL Class II (3) | 16 mA | 500 | 500 | 450 | - | - | - | 500 | 500 | 450 | | | 18 mA | 550 | 500 | 500 | - | - | - | 550 | 500 | 500 | | | 20 mA | 650 | 550 | 550 | - | - | - | 550 | 550 | 550 | | 1.5-V Differential | 4 mA | 350 | 300 | 300 | - | - | - | 350 | 300 | 300 | | HSTL Class I (3) | 6 mA | 500 | 500 | 450 | - | - | - | 500 | 500 | 450 | | | 8 mA | 700 | 650 | 600 | - | - | - | 700 | 650 | 600 | | | 10 mA | 700 | 700 | 650 | - | - | - | 700 | 700 | 650 | | | 12 mA | 700 | 700 | 700 | - | - | - | 700 | 700 | 700 | | 1.5-V Differential | 16 mA | 600 | 600 | 550 | - | - | - | 600 | 600 | 550 | | HSTL Class II (3) | 18 mA | 650 | 600 | 600 | - | - | - | 650 | 600 | 600 | | | 20 mA | 700 | 650 | 600 | - | - | - | 700 | 650 | 600 | | 3.3-V PCI | | 1,000 | 790 | 670 | - | - | - | 1,000 | 790 | 670 | | 3.3-V PCI-X | | 1,000 | 790 | 670 | - | - | - | 1,000 | 790 | 670 | | LVDS (6) | | - | - | - | 500 | 500 | 500 | 450 | 400 | 300 | | HyperTransport technology (4), (6) | | | | | 500 | 500 | 500 | - | ı | - | | LVPECL (5) | | - | - | - | - | - | - | 450 | 400 | 300 | | 3.3-V LVTTL | OCT 50 Ω | 400 | 400 | 350 | 400 | 400 | 350 | 400 | 400 | 350 | | 2.5-V LVTTL | OCT 50 Ω | 350 | 350 | 300 | 350 | 350 | 300 | 350 | 350 | 300 | Therefore, the DCD percentage for the 267 MHz SSTL-2 Class II non-DDIO row output clock on a -3 device ranges from 47.5% to 52.5%. | Table 5–81. Maximum DCD for Non-DDIO Output on Column I/O
Pins Note (1) | | | | | | |--|-----------------|-----------------|------|--|--| | Column I/O Output | Maximum DCD for | | | | | | Standard I/O
Standard | -3 Devices | -4 & -5 Devices | Unit | | | | 3.3-V LVTTL | 190 | 220 | ps | | | | 3.3-V LVCMOS | 140 | 175 | ps | | | | 2.5 V | 125 | 155 | ps | | | | 1.8 V | 80 | 110 | ps | | | | 1.5-V LVCMOS | 185 | 215 | ps | | | | SSTL-2 Class I | 105 | 135 | ps | | | | SSTL-2 Class II | 100 | 130 | ps | | | | SSTL-18 Class I | 90 | 115 | ps | | | | SSTL-18 Class II | 70 | 100 | ps | | | | 1.8-V HSTL
Class I | 80 | 110 | ps | | | | 1.8-V HSTL
Class II | 80 | 110 | ps | | | | 1.5-V HSTL
Class I | 85 | 115 | ps | | | | 1.5-V HSTL
Class II | 50 | 80 | ps | | | | 1.2-V HSTL (2) | 170 | - | ps | | | | LVPECL | 55 | 80 | ps | | | #### Notes to Table 5–81: - (1) The DCD specification is based on a no logic array noise condition. (2) 1.2-V HSTL is only supported in -3 devices. Table 5–82. Maximum DCD for DDIO Output on Row I/O Pins Without PLL in the Clock Path for -3 Devices Notes (1), (2) | | Maximum DCD Based on I/O Standard of Input Feeding the DDIO Clock Port (No PLL in Clock Path) | | | | | | | |---------------------------------|---|-------------|--------|-------------|---------------------------------------|------|--| | Row DDIO Output I/O
Standard | TTL/CMOS | | SSTL-2 | SSTL/HSTL | LVDS/
HyperTransport
Technology | Unit | | | | 3.3 & 2.5 V | 1.8 & 1.5 V | 2.5 V | 1.8 & 1.5 V | 3.3 V | | | | 3.3-V LVTTL | 260 | 380 | 145 | 145 | 110 | ps | | | 3.3-V LVCMOS | 210 | 330 | 100 | 100 | 65 | ps | | | 2.5 V | 195 | 315 | 85 | 85 | 75 | ps | | | 1.8 V | 150 | 265 | 85 | 85 | 120 | ps | | | 1.5-V LVCMOS | 255 | 370 | 140 | 140 | 105 | ps | | | SSTL-2 Class I | 175 | 295 | 65 | 65 | 70 | ps | | | SSTL-2 Class II | 170 | 290 | 60 | 60 | 75 | ps | | | SSTL-18 Class I | 155 | 275 | 55 | 50 | 90 | ps | | | 1.8-V HSTL Class I | 150 | 270 | 60 | 60 | 95 | ps | | | 1.5-V HSTL Class I | 150 | 270 | 55 | 55 | 90 | ps | | | LVDS/ HyperTransport technology | 180 | 180 | 180 | 180 | 180 | ps | | Notes to Table 5-82: - (1) The information in Table 5–82 assumes the input clock has zero DCD. - (2) The DCD specification is based on a no logic array noise condition. Here is an example for calculating the DCD in percentage for a DDIO output on a row I/O on a -3 device: If the input I/O standard is SSTL-2 and the DDIO output I/O standard is SSTL-2 Class II, the maximum DCD is 60 ps (see Table 5–82). If the clock frequency is 267 MHz, the clock period T is: $$T = 1/f = 1/267 \text{ MHz} = 3.745 \text{ ns} = 3745 \text{ ps}$$ Calculate the DCD as a percentage: $$(T/2 - DCD) / T = (3745ps/2 - 60ps) / 3745ps = 48.4\%$$ (for low boundary) $$(T/2 + DCD) / T = (3745 ps/2 + 60 ps) / 3745ps = 51.6\%$$ (for high boundary) # External Memory Interface Specifications Tables 5–94 through 5–101 contain Stratix II device specifications for the dedicated circuitry used for interfacing with external memory devices. | Table 5–94. DLL Frequency Range Specifications | | | | | |---|-----------------------------|------|--|--| | Frequency Mode Frequency Range Resolu
(Degre | | | | | | 0 | 0 100 to 175 | | | | | 1 | 150 to 230 | 22.5 | | | | 2 | 200 to 310 | 30 | | | | 3 | 240 to 400 (-3 speed grade) | 36 | | | | 240 to 350 (-4 and -5 speed grades) 36 | | | | | Table 5–95 lists the maximum delay in the fast timing model for the Stratix II DQS delay buffer. Multiply the number of delay buffers that you are using in the DQS logic block to get the maximum delay achievable in your system. For example, if you implement a 90° phase shift at 200 MHz, you use three delay buffers in mode 2. The maximum achievable delay from the DQS block is then $3 \times .416$ ps = 1.248 ns. | Table 5–95. DQS Delay Buffer Maximum Delay in Fast Timing Model | | | | | | |---|--|----|--|--|--| | Frequency Mode | Frequency Mode Maximum Delay Per Delay Buffer (Fast Timing Model) Unit | | | | | | 0 0.833 | | ns | | | | | 1, 2, 3 | 0.416 | ns | | | | | Table 5–96. DQS Period Jitter Specifications for DLL-Delayed Clock (tDQS_JITTER) Note (1) | | | | | | | |---|------------|------------|------|--|--|--| | Number of DQS Delay Buffer
Stages (2) | Commercial | Industrial | Unit | | | | | 1 | 80 | 110 | ps | | | | | 2 | 110 | 130 | ps | | | | | 3 | 130 | 180 | ps | | | | | 4 | 160 | 210 | ps | | | | Notes to Table 5-96: - (1) Peak-to-peak period jitter on the phase shifted DQS clock. - (2) Delay stages used for requested DQS phase shift are reported in your project's Compilation Report in the Quartus II software. | Table 5–103. Document Revision History (Part 3 of 3) | | | | | | |--|--|--------------------|--|--|--| | Date and
Document
Version | Changes Made | Summary of Changes | | | | | January 2005,
v2.0 | Updated the "Power Consumption" section. Added the "High-Speed I/O Specifications" and "On-Chip Termination Specifications" sections. Removed the ESD Protection Specifications section. Updated Tables 5–3 through 5–13, 5–16 through 5–18, 5–21, 5–35, 5–39, and 5–40. Updated tables in "Timing Model" section. Added Tables 5–30 and 5–31. | _ | | | | | October 2004,
v1.2 | Updated Table 5–3. Updated introduction text in the "PLL Timing
Specifications" section. | _ | | | | | July 2004, v1.1 | Re-organized chapter. Added typical values and C_{OUTFB} to Table 5–32. Added undershoot specification to Note (4) for Tables 5–1 through 5–9. Added Note (1) to Tables 5–5 and 5–6. Added V_{ID} and V_{ICM} to Table 5–10. Added "I/O Timing Measurement Methodology" section. Added Table 5–72. Updated Tables 5–1 through 5–2 and Tables 5–24 through 5–29. | _ | | | | | February 2004,
v1.0 | Added document to the Stratix II Device Handbook. | _ | | | |