E·XFL

Altera - EP2S180F1020C4N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	8970
Number of Logic Elements/Cells	179400
Total RAM Bits	9383040
Number of I/O	742
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1020-BBGA, FCBGA
Supplier Device Package	1020-FBGA (33x33)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=ep2s180f1020c4n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

datae1 and dataf1 are utilized, the output drives to register1 and/or bypasses register1 and drives to the interconnect using the bottom set of output drivers. The Quartus II Compiler automatically selects the inputs to the LUT. Asynchronous load data for the register comes from the datae or dataf input of the ALM. ALMs in normal mode support register packing.

Figure 2–9. 6-Input Function in Normal Mode Notes (1), (2)

Notes to Figure 2–9:

- If datae1 and dataf1 are used as inputs to the six-input function, then datae0 and dataf0 are available for register packing.
- (2) The dataf1 input is available for register packing only if the six-input function is un-registered.

Extended LUT Mode

The extended LUT mode is used to implement a specific set of seven-input functions. The set must be a 2-to-1 multiplexer fed by two arbitrary five-input functions sharing four inputs. Figure 2–10 shows the template of supported seven-input functions utilizing extended LUT mode. In this mode, if the seven-input function is unregistered, the unused eighth input is available for register packing.

Functions that fit into the template shown in Figure 2–10 occur naturally in designs. These functions often appear in designs as "if-else" statements in Verilog HDL or VHDL code.

Table 2–2. Stratix II Device Routing Scheme (Part 2 of 2)																
							[Destir	natio	n						
Source	Shared Arithmetic Chain	Carry Chain	Register Chain	Local Interconnect	Direct Link Interconnect	R4 Interconnect	R24 Interconnect	C4 Interconnect	C16 Interconnect	ALM	M512 RAM Block	M4K RAM Block	M-RAM Block	DSP Blocks	Column IOE	Row IOE
Column IOE					\checkmark			\checkmark	\checkmark							
Row IOE					\checkmark	\checkmark	\checkmark	\checkmark								

TriMatrix Memory

TriMatrix memory consists of three types of RAM blocks: M512, M4K, and M-RAM. Although these memory blocks are different, they can all implement various types of memory with or without parity, including true dual-port, simple dual-port, and single-port RAM, ROM, and FIFO buffers. Table 2–3 shows the size and features of the different RAM blocks.

Table 2–3. TriMatrix Memory Features (Part 1 of 2)								
Memory Feature	M512 RAM Block (32 × 18 Bits)	M4K RAM Block (128 × 36 Bits)	M-RAM Block (4K × 144 Bits)					
Maximum performance	500 MHz	550 MHz	420 MHz					
True dual-port memory		\checkmark	\checkmark					
Simple dual-port memory	\checkmark	\checkmark	\checkmark					
Single-port memory	\checkmark	\checkmark	\checkmark					
Shift register	\checkmark	\checkmark						
ROM	\checkmark	\checkmark	(1)					
FIFO buffer	\checkmark	\checkmark	\checkmark					
Pack mode		\checkmark	\checkmark					
Byte enable	\checkmark	\checkmark	\checkmark					
Address clock enable		\checkmark	\checkmark					
Parity bits	\checkmark	\checkmark	\checkmark					
Mixed clock mode	\checkmark	\checkmark	\checkmark					
Memory initialization (.mif)	\checkmark	\checkmark						

Figure 2–22. M4K RAM Block LAB Row Interface

M-RAM Block

The largest TriMatrix memory block, the M-RAM block, is useful for applications where a large volume of data must be stored on-chip. Each block contains 589,824 RAM bits (including parity bits). The M-RAM block can be configured in the following modes:

- True dual-port RAM
- Simple dual-port RAM
- Single-port RAM
- FIFO

You cannot use an initialization file to initialize the contents of an M-RAM block. All M-RAM block contents power up to an undefined value. Only synchronous operation is supported in the M-RAM block, so all inputs are registered. Output registers can be bypassed.

Similar to all RAM blocks, M-RAM blocks can have different clocks on their inputs and outputs. Either of the two clocks feeding the block can clock M-RAM block registers (renwe, address, byte enable, datain, and output registers). The output register can be bypassed. The six labclk signals or local interconnect can drive the control signals for the A and B ports of the M-RAM block. ALMs can also control the clock_a, clock_b, renwe_a, renwe_b, clr_a, clr_b, clocken_a, and clocken_b signals as shown in Figure 2–23.

Dedicated 6 Row LAB Clocks Local Local Interconnect Interconnect Local Local Interconnect Interconnect Local Local Interconnect Interconnect L ocal Local Interconnect Interconnect Local Local Interconnect Interconnect clocken_a clock_b renwe a aclr b Local Local Interconnect Interconnect clocken_b clock a aclr a renwe b

The R4, R24, C4, and direct link interconnects from adjacent LABs on either the right or left side drive the M-RAM block local interconnect. Up to 16 direct link input connections to the M-RAM block are possible from the left adjacent LABs and another 16 possible from the right adjacent LAB. M-RAM block outputs can also connect to left and right LABs through direct link interconnect. Figure 2–24 shows an example floorplan for the EP2S130 device and the location of the M-RAM interfaces. Figures 2–25 and 2–26 show the interface between the M-RAM block and the logic array.

Figure 2–23. M-RAM Block Control Signals

The LAB row source for control signals, data inputs, and outputs is shown in Table 2–7.

Table 2–7. l	Table 2–7. DSP Block Signal Sources & Destinations							
LAB Row at Interface	Control Signals Generated	Data Inputs	Data Outputs					
0	clock0 aclr0 ena0 mult01_saturate addnsub1_round/ accum_round addnsub1 signa sourcea sourceb	A1[170] B1[170]	OA[170] OB[170]					
1	clock1 aclr1 ena1 accum_saturate mult01_round accum_sload sourcea sourceb mode0	A2[170] B2[170]	OC[170] OD[170]					
2	clock2 aclr2 ena2 mult23_saturate addnsub3_round/ accum_round addnsub3 sign_b sourcea sourceb	A3[170] B3[170]	OE[170] OF[170]					
3	clock3 aclr3 ena3 accum_saturate mult23_round accum_sload sourcea sourceb mode1	A4[170] B4[170]	OG[170] OH[170]					

See the *DSP Blocks in Stratix II & Stratix II GX Devices* chapter in volume 2 of the *Stratix II Device Handbook* or the *Stratix II GX Device Handbook*, for more information on DSP blocks.

global clock networks can also be driven by internal logic for internally generated global clocks and asynchronous clears, clock enables, or other control signals with large fanout. Figure 2–31 shows the 16 dedicated CLK pins driving global clock networks.

Figure 2–31. Global Clocking

Regional Clock Network

There are eight regional clock networks RCLK [7..0] in each quadrant of the Stratix II device that are driven by the dedicated CLK [15..0] input pins, by PLL outputs, or by internal logic. The regional clock networks provide the lowest clock delay and skew for logic contained in a single quadrant. The CLK clock pins symmetrically drive the RCLK networks in a particular quadrant, as shown in Figure 2–32.

Figure 2–36. EP2S60, EP2S90, EP2S130 & EP2S180 Device I/O Clock Groups

You can use the Quartus II software to control whether a clock input pin drives either a global, regional, or dual-regional clock network. The Quartus II software automatically selects the clocking resources if not specified.

Clock Control Block

Each global clock, regional clock, and PLL external clock output has its own clock control block. The control block has two functions:

- Clock source selection (dynamic selection for global clocks)
- Clock power-down (dynamic clock enable/disable)

Table 2–10 shows the enhanced PLL and fast PLL features in Stratix II devices.

Table 2–10. Stratix II PLL Features						
Feature	Enhanced PLL	Fast PLL				
Clock multiplication and division	$m/(n \times \text{post-scale counter})$ (1)	$m/(n \times \text{post-scale counter})$ (2)				
Phase shift	Down to 125-ps increments (3), (4)	Down to 125-ps increments (3), (4)				
Clock switchover	\checkmark	✓ (5)				
PLL reconfiguration	\checkmark	\checkmark				
Reconfigurable bandwidth	\checkmark	\checkmark				
Spread spectrum clocking	\checkmark					
Programmable duty cycle	\checkmark	\checkmark				
Number of internal clock outputs	6	4				
Number of external clock outputs	Three differential/six single-ended	(6)				
Number of feedback clock inputs	One single-ended or differential (7), (8)					

Notes to Table 2–10:

- (1) For enhanced PLLs, *m* ranges from 1 to 256, while *n* and post-scale counters range from 1 to 512 with 50% duty cycle.
- (2) For fast PLLs, *m*, and post-scale counters range from 1 to 32. The *n* counter ranges from 1 to 4.
- (3) The smallest phase shift is determined by the voltage controlled oscillator (VCO) period divided by 8.
- (4) For degree increments, Stratix II devices can shift all output frequencies in increments of at least 45. Smaller degree increments are possible depending on the frequency and divide parameters.
- (5) Stratix II fast PLLs only support manual clock switchover.
- (6) Fast PLLs can drive to any I/O pin as an external clock. For high-speed differential I/O pins, the device uses a data channel to generate txclkout.
- (7) If the feedback input is used, you lose one (or two, if FBIN is differential) external clock output pin.
- (8) Every Stratix II device has at least two enhanced PLLs with one single-ended or differential external feedback input per PLL.

- Output drive strength control
- Tri-state buffers
- Bus-hold circuitry
- Programmable pull-up resistors
- Programmable input and output delays
- Open-drain outputs
- DQ and DQS I/O pins
- Double data rate (DDR) registers

The IOE in Stratix II devices contains a bidirectional I/O buffer, six registers, and a latch for a complete embedded bidirectional single data rate or DDR transfer. Figure 2–46 shows the Stratix II IOE structure. The IOE contains two input registers (plus a latch), two output registers, and two output enable registers. The design can use both input registers and the latch to capture DDR input and both output registers to drive DDR outputs. Additionally, the design can use the output enable (OE) register for fast clock-to-output enable timing. The negative edge-clocked OE register is used for DDR SDRAM interfacing. The Quartus II software automatically duplicates a single OE register that controls multiple output or bidirectional pins.

For high-speed source synchronous interfaces such as POS-PHY 4, Parallel RapidIO, and HyperTransport, the source synchronous clock rate is not a byte- or SERDES-rate multiple of the data rate. Byte alignment is necessary for these protocols since the source synchronous clock does not provide a byte or word boundary since the clock is one half the data rate, not one eighth. The Stratix II device's high-speed differential I/O circuitry provides dedicated data realignment circuitry for usercontrolled byte boundary shifting. This simplifies designs while saving ALM resources. You can use an ALM-based state machine to signal the shift of receiver byte boundaries until a specified pattern is detected to indicate byte alignment.

Fast PLL & Channel Layout

The receiver and transmitter channels are interleaved such that each I/O bank on the left and right side of the device has one receiver channel and one transmitter channel per LAB row. Figure 2–60 shows the fast PLL and channel layout in the EP2S15 and EP2S30 devices. Figure 2–61 shows the fast PLL and channel layout in the EP2S60 to EP2S180 devices.

Note to Figure 2-60:

(1) See Table 2–21 for the number of channels each device supports.

The Quartus II software has an Auto Usercode feature where you can choose to use the checksum value of a programming file as the JTAG user code. If selected, the checksum is automatically loaded to the USERCODE register. Turn on the **Auto Usercode** option by clicking **Device & Pin Options**, then **General**, in the **Settings** dialog box (Assignments menu).

Table 3–2. Stratix II Boundary-Scan Register Length					
Device	Boundary-Scan Register Length				
EP2S15	1,140				
EP2S30	1,692				
EP2S60	2,196				
EP2S90	2,748				
EP2S130	3,420				
EP2S180	3,948				

Table 3–3. 32-Bit Stratix II Device IDCODE							
		IDCODE (32	Bits) (1)				
Device	Version (4 Bits)	Part Number (16 Bits)	Manufacturer Identity (11 Bits)	LSB (1 Bit) (2)			
EP2S15	0000	0010 0000 1001 0001	000 0110 1110	1			
EP2S30	0000	0010 0000 1001 0010	000 0110 1110	1			
EP2S60	0001	0010 0000 1001 0011	000 0110 1110	1			
EP2S90	0000	0010 0000 1001 0100	000 0110 1110	1			
EP2S130	0000	0010 0000 1001 0101	000 0110 1110	1			
EP2S180	0000	0010 0000 1001 0110	000 0110 1110	1			

Notes to Table 3–3:

(1) The most significant bit (MSB) is on the left.

(2) The IDCODE's least significant bit (LSB) is always 1.

P

Stratix, Stratix II, Cyclone, and Cyclone II devices must be within the first 17 devices in a JTAG chain. All of these devices have the same JTAG controller. If any of the Stratix, Stratix II, Cyclone, and Cyclone II devices are in the 18th or after they fail configuration. This does not affect SignalTap II.

	For more information on JTAG, see the following documents:
	 The IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing for Stratix II & Stratix II GX Devices chapter of the Stratix II Device Handbook, Volume 2 or the Stratix II GX Device Handbook, Volume 2 Jam Programming & Test Language Specification
SignalTap II Embedded Logic Analyzer	Stratix II devices feature the SignalTap II embedded logic analyzer, which monitors design operation over a period of time through the IEEE Std. 1149.1 (JTAG) circuitry. You can analyze internal logic at speed without bringing internal signals to the I/O pins. This feature is particularly important for advanced packages, such as FineLine BGA [®] packages, because it can be difficult to add a connection to a pin during the debugging process after a board is designed and manufactured.
Configuration	The logic, circuitry, and interconnects in the Stratix II architecture are configured with CMOS SRAM elements. Altera [®] FPGA devices are reconfigurable and every device is tested with a high coverage production test program so you do not have to perform fault testing and can instead focus on simulation and design verification.
	Stratix II devices are configured at system power-up with data stored in an Altera configuration device or provided by an external controller (e.g., a MAX [®] II device or microprocessor). Stratix II devices can be configured using the fast passive parallel (FPP), active serial (AS), passive serial (PS), passive parallel asynchronous (PPA), and JTAG configuration schemes. The Stratix II device's optimized interface allows microprocessors to configure it serially or in parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat Stratix II devices as memory and configure them by writing to a virtual memory location, making reconfiguration easy.
	In addition to the number of configuration methods supported, Stratix II devices also offer the design security, decompression, and remote system upgrade features. The design security feature, using configuration bitstream encryption and AES technology, provides a mechanism to protect your designs. The decompression feature allows Stratix II FPGAs to receive a compressed configuration bitstream and decompress this data in real-time, reducing storage requirements and configuration time. The remote system upgrade feature allows real-time system upgrades from remote locations of your Stratix II designs. For more information, see "Configuration Schemes" on page 3–7.

Table 5–2. Maximum Duty Cycles in Voltage Transitions								
Symbol	Parameter	Condition	Maximum Duty Cycles	Unit				
VI	Maximum duty cycles in voltage transitions	V _I = 4.0 V	100	%				
		V _I = 4.1 V	90	%				
		V _I = 4.2 V	50	%				
		V _I = 4.3 V	30	%				
		V _I = 4.4 V	17	%				
		V _I = 4.5 V	10	%				

Recommended Operating Conditions

Table 5–3 contains the Stratix II device family recommended operating conditions.

Table 5-	Table 5–3. Stratix II Device Recommended Operating Conditions (Part 1 of 2) Note (1)								
Symbol	Parameter	Conditions	Minimum	Maximum	Unit				
V _{CCINT}	Supply voltage for internal logic	100 μ s \leq risetime \leq 100 ms <i>(3)</i>	1.15	1.25	V				
V _{CCIO}	Supply voltage for input and output buffers, 3.3-V operation	100 μ s \leq risetime \leq 100 ms (3), (6)	3.135 (3.00)	3.465 (3.60)	V				
	Supply voltage for input and output buffers, 2.5-V operation	100 μ s \leq risetime \leq 100 ms <i>(3)</i>	2.375	2.625	V				
	Supply voltage for input and output buffers, 1.8-V operation	100 μ s \leq risetime \leq 100 ms <i>(3)</i>	1.71	1.89	V				
	Supply voltage for output buffers, 1.5-V operation	100 μ s \leq risetime \leq 100 ms <i>(3)</i>	1.425	1.575	V				
	Supply voltage for input and output buffers, 1.2-V operation	100 μ s \leq risetime \leq 100 ms <i>(3)</i>	1.14	1.26	V				
V _{CCPD}	Supply voltage for pre-drivers as well as configuration and JTAG I/O buffers.	100 μ s \leq risetime \leq 100 ms (4)	3.135	3.465	V				
V _{CCA}	Analog power supply for PLLs	100 μ s \leq risetime \leq 100 ms <i>(3)</i>	1.15	1.25	V				
V _{CCD}	Digital power supply for PLLs	100 μ s \leq risetime \leq 100 ms <i>(3)</i>	1.15	1.25	V				
VI	Input voltage (see Table 5-2)	(2), (5)	-0.5	4.0	V				
Vo	Output voltage		0	V _{CCIO}	V				

Table 5–19. SSTL-2 Class I Specifications									
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit			
V _{CCIO}	Output supply voltage		2.375	2.500	2.625	V			
V _{TT}	Termination voltage		$V_{REF} - 0.04$	V_{REF}	V _{REF} + 0.04	V			
V _{REF}	Reference voltage		1.188	1.250	1.313	V			
V _{IH} (DC)	High-level DC input voltage		V _{REF} + 0.18		3.00	V			
V _{IL} (DC)	Low-level DC input voltage		-0.30		$V_{REF} - 0.18$	V			
V _{IH} (AC)	High-level AC input voltage		$V_{REF} + 0.35$			V			
V _{IL} (AC)	Low-level AC input voltage				V _{REF} - 0.35	V			
V _{OH}	High-level output voltage	I _{OH} = -8.1 mA (1)	V _{TT} + 0.57			V			
V _{OL}	Low-level output voltage	I _{OL} = 8.1 mA <i>(1)</i>			V _{TT} – 0.57	V			

Note to Table 5–19:

(1) This specification is supported across all the programmable drive settings available for this I/O standard as shown in the *Stratix II Architecture* chapter in volume 1 of the *Stratix II Device Handbook*.

Table 5–20. SSTL-2 Class II Specifications									
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit			
V _{CCIO}	Output supply voltage		2.375	2.500	2.625	V			
V _{TT}	Termination voltage		$V_{\text{REF}} - 0.04$	V_{REF}	V _{REF} + 0.04	V			
V _{REF}	Reference voltage		1.188	1.250	1.313	V			
V _{IH} (DC)	High-level DC input voltage		V _{REF} + 0.18		$V_{CCIO} + 0.30$	V			
V _{IL} (DC)	Low-level DC input voltage		-0.30		$V_{REF} - 0.18$	V			
V _{IH} (AC)	High-level AC input voltage		$V_{REF} + 0.35$			V			
V _{IL} (AC)	Low-level AC input voltage				V _{REF} - 0.35	V			
V _{OH}	High-level output voltage	I _{OH} = -16.4 mA (1)	V _{TT} + 0.76			V			
V _{OL}	Low-level output voltage	I _{OL} = 16.4 mA (1)			V _{TT} – 0.76	V			

Note to Table 5–20:

(1) This specification is supported across all the programmable drive settings available for this I/O standard as shown in the *Stratix II Architecture* chapter in volume 1 of the *Stratix II Device Handbook*.

Table 5–31. Series & Differential On-Chip Termination Specification for Left & Right I/O Banks											
			Resistance Tolerance								
Symbol	Description	Conditions	Commercial Max	Industrial Max	Unit						
25-Ω R _S 3.3/2.5	Internal series termination without calibration (25- Ω setting)	V _{CCIO} = 3.3/2.5 V	±30	±30	%						
50-Ω R _S 3.3/2.5/1.8	Internal series termination without calibration (50- Ω setting)	V _{CCIO} = 3.3/2.5/1.8 V	±30	±30	%						
50-Ω R _S 1.5	Internal series termination without calibration (50- Ω setting)	V _{CCIO} = 1.5 V	±36	±36	%						
R _D	Internal differential termination for LVDS or HyperTransport technology (100- Ω setting)	V _{CCIO} = 2.5 V	±20	±25	%						

Pin Capacitance

Table 5–32 shows the Stratix II device family pin capacitance.

Table 5–32. Stratix II Device Capacitance Note (1)										
Symbol	Parameter	Typical	Unit							
CIOTB	Input capacitance on I/O pins in I/O banks 3, 4, 7, and 8.	5.0	pF							
CIOLR	Input capacitance on I/O pins in I/O banks 1, 2, 5, and 6, including high- speed differential receiver and transmitter pins.	6.1	pF							
C _{CLKTB}	Input capacitance on top/bottom clock input pins: $CLK[47]$ and $CLK[1215]$.	6.0	pF							
C _{CLKLR}	Input capacitance on left/right clock inputs: CLK0, CLK2, CLK8, CLK10.	6.1	pF							
C _{CLKLR+}	Input capacitance on left/right clock inputs: CLK1, CLK3, CLK9, and CLK11.	3.3	pF							
C _{OUTFB}	Input capacitance on dual-purpose clock output/feedback pins in PLL banks 9, 10, 11, and 12.	6.7	pF							

Note to Table 5–32:

(1) Capacitance is sample-tested only. Capacitance is measured using time-domain reflections (TDR). Measurement accuracy is within ±0.5pF

		-3 Speed Grade (2)		-3 Speed		-4 Speed		-5 Speed		
Symbol	Parameter	Min (4)	Max	Min (4)	Max	Min (5)	Max	Min (4)	Max	Unit
t _{m4kdataasu}	A port data setup time before clock	22		23		25 25		29		ps
t _{M4KDATAAH}	A port data hold time after clock	203		213		233 233		272		ps
t _{M4KADDRASU}	A port address setup time before clock	22		23		25 25		29		ps
t _{M4KADDRAH}	A port address hold time after clock	203		213		233 233		272		ps
t _{M4KDATABSU}	B port data setup time before clock	22		23		25 25		29		ps
t _{M4KDATABH}	B port data hold time after clock	203		213		233 233		272		ps
$t_{M4KRADDRBSU}$	B port address setup time before clock	22		23		25 25		29		ps
$t_{M4KRADDRBH}$	B port address hold time after clock	203		213		233 233		272		ps
t _{M4KDATACO1}	Clock-to-output delay when using output registers	334	524	334	549	319 334	601	334	701	ps
t _{M4KDATACO2} (6)	Clock-to-output delay without output registers	1,616	2,453	1,616	2,574	1,540 1,616	2,820	1,616	3,286	ps
t _{M4KCLKH}	Minimum clock high time	1,250		1,312		1,437 1,437		1,675		ps
t _{M4KCLKL}	Minimum clock low time	1,250		1,312		1,437 1,437		1,675		ps
t _{M4KCLR}	Minimum clear pulse width	144		151		165 165		192		ps

Notes to Table 5–41:

- (1) F_{MAX} of M4K Block obtained using the Quartus II software does not necessarily equal to 1/TM4KRC.
- (2) These numbers apply to -3 speed grade EP2S15, EP2S30, EP2S60, and EP2S90 devices.
- (3) These numbers apply to -3 speed grade EP2S130 and EP2S180 devices.
- (4) For the -3 and -5 speed grades, the minimum timing is for the commercial temperature grade. Only -4 speed grade devices offer the industrial temperature grade.
- (5) For the -4 speed grade, the first number is the minimum timing parameter for industrial devices. The second number is the minimum timing parameter for commercial devices.
- (6) Numbers apply to unpacked memory modes, true dual-port memory modes, and simple dual-port memory modes that use locally routed or non-identical sources for the A and B port registers.

Table 5–73. Stratix II I/O Input Delay for Column Pins (Part 3 of 3)												
I/O Standard	Devenuetev	Minimur	n Timing	-3 Speed	-3 Speed	-4 Speed	-5 Speed	11				
	Parameter	Industrial	Commercial	Grade (2)	Grade (3)	Grade	Grade	Unit				
1.2-V HSTL	t _{P1}	645	677	1194	1252	-	-	ps				
	t _{PCOUT}	379	398	758	795	-	-	ps				

Notes for Table 5–73:

(1) These I/O standards are only supported on DQS pins.

(2) These numbers apply to -3 speed grade EP2S15, EP2S30, EP2S60, and EP2S90 devices.

(3) These numbers apply to -3 speed grade EP2S130 and EP2S180 devices.

Table 5–74. Stratix II I/O Input Delay for Row Pins (Part 1 of 2)												
	_	Minimu	m Timing	-3 Speed	-3 Speed	-4 Speed	-5 Sneed					
I/O Standard	Parameter	Industrial Commercial		Grade (1)	Grade (2)	Grade	Grade	Unit				
LVTTL	t _{PI}	715	749	1287	1350	1477	1723	ps				
	t _{PCOUT}	391	410	760	798	873	1018	ps				
2.5 V	t _{P1}	726	761	1273	1335	1461	1704	ps				
	t _{PCOUT}	402	422	746	783	857	999	ps				
1.8 V	t _{P1}	788	827	1427	1497	1639	1911	ps				
	t _{PCOUT}	464	488	900	945	1035	1206	ps				
1.5 V	t _{PI}	792	830	1498	1571	1720	2006	ps				
	t _{PCOUT}	468	491	971	1019	1116	1301	ps				
LVCMOS	t _{P1}	715	749	1287	1350	1477	1723	ps				
	t _{PCOUT}	391	410	760	798	873	1018	ps				
SSTL-2 Class I	t _{PI}	547	573	879	921	1008	1176	ps				
	t _{PCOUT}	223	234	352	369	404	471	ps				
SSTL-2 Class II	t _{PI}	547	573	879	921	1008	1176	ps				
	t _{PCOUT}	223	234	352	369	404	471	ps				
SSTL-18 Class I	t _{PI}	577	605	960	1006	1101	1285	ps				
	t _{PCOUT}	253	266	433	454	497	580	ps				
SSTL-18 Class II	t _{PI}	577	605	960	1006	1101	1285	ps				
	t _{PCOUT}	253	266	433	454	497	580	ps				
1.5-V HSTL	t _{PI}	602	631	1056	1107	1212	1413	ps				
Class I	t _{PCOUT}	278	292	529	555	608	708	ps				

Table 5–77. Maximum Input Toggle Rate on Stratix II Devices (Part 2 of 2)												
Input I/O Standard	Column I/O Pins (MHz)			Row I/O Pins (MHz)			Dedicated Clock Inputs (MHz)					
	-3	-4	-5	-3	-4	-5	-3	-4	-5			
1.8-V HSTL Class II	500	500	500	500	500	500	500	500	500			
PCI (1)	500	500	450	-	-	-	500	500	400			
PCI-X (1)	500	500	450	-	-	-	500	500	400			
1.2-V HSTL (2)	280	-	-	-	-	-	280	-	-			
Differential SSTL-2 Class I (1), (3)	500	500	500	-	-	-	500	500	500			
Differential SSTL-2 Class II (1), (3)	500	500	500	-	-	-	500	500	500			
Differential SSTL-18 Class I (1), (3)	500	500	500	-	-	-	500	500	500			
Differential SSTL-18 Class II (1), (3)	500	500	500	-	-	-	500	500	500			
1.8-V Differential HSTL Class I (1), (3)	500	500	500	-	-	-	500	500	500			
1.8-V Differential HSTL Class II (1), (3)	500	500	500	-	-	-	500	500	500			
1.5-V Differential HSTL Class I (1), (3)	500	500	500	-	-	-	500	500	500			
1.5-V Differential HSTL Class II (1), (3)	500	500	500	-	-	-	500	500	500			
HyperTransport technology (4)	-	-	-	520	520	420	717	717	640			
LVPECL (1)	-	-	-	-	-	-	450	450	400			
LVDS (5)	-	-	-	520	520	420	717	717	640			
LVDS (6)	-	-	-	-	-	-	450	450	400			

Notes to Table 5–77:

(1) Row clock inputs don't support PCI, PCI-X, LVPECL, and differential HSTL and SSTL standards.

(2) 1.2-V HSTL is only supported on column I/O pins.

(3) Differential HSTL and SSTL standards are only supported on column clock and DQS inputs.

(4) HyperTransport technology is only supported on row I/O and row dedicated clock input pins.

(5) These numbers apply to I/O pins and dedicated clock pins in the left and right I/O banks.

(6) These numbers apply to dedicated clock pins in the top and bottom I/O banks.

Table 5–78. Maximum Output Toggle Rate on Stratix II Devices (Part 3 of 5) Note (1)											
1/0 Stondard	Drive	Colum	n I/O Pins	(MHz)	Row I/	/IHz)	Clock Outputs (MHz)				
i/O Stalluaru	Strength	-3	-4	-5	-3	-4	-5	-3	-4	-5	
Differential	4 mA	200	150	150	200	150	150	200	150	150	
SSTL-18 Class I	6 mA	350	250	200	350	250	200	350	250	200	
(0)	8 mA	450	300	300	450	300	300	450	300	300	
	10 mA	500	400	400	500	400	400	500	400	400	
	12 mA	700	550	400	350	350	297	650	550	400	
Differential	8 mA	200	200	150	-	-	-	200	200	150	
SSTL-18 Class II	16 mA	400	350	350	-	-	-	400	350	350	
(0)	18 mA	450	400	400	-	-	-	450	400	400	
	20 mA	550	500	450	-	-	-	550	500	450	
1.8-V Differential	4 mA	300	300	300	-	-	-	300	300	300	
HSTL Class I (3)	6 mA	500	450	450	-	-	-	500	450	450	
	8 mA	650	600	600	-	-	-	650	600	600	
	10 mA	700	650	600	-	-	-	700	650	600	
	12 mA	700	700	650	-	-	-	700	700	650	
1.8-V Differential	16 mA	500	500	450	-	-	-	500	500	450	
HSTL Class II (3)	18 mA	550	500	500	-	-	-	550	500	500	
	20 mA	650	550	550	-	-	-	550	550	550	
1.5-V Differential	4 mA	350	300	300	-	-	-	350	300	300	
HSTL Class I (3)	6 mA	500	500	450	-	-	-	500	500	450	
	8 mA	700	650	600	-	-	-	700	650	600	
	10 mA	700	700	650	-	-	-	700	700	650	
	12 mA	700	700	700	-	-	-	700	700	700	
1.5-V Differential	16 mA	600	600	550	-	-	-	600	600	550	
HSTL Class II (3)	18 mA	650	600	600	-	-	-	650	600	600	
	20 mA	700	650	600	-	-	-	700	650	600	
3.3-V PCI		1,000	790	670	-	-	-	1,000	790	670	
3.3-V PCI-X		1,000	790	670	-	-	-	1,000	790	670	
LVDS (6)		-	-	-	500	500	500	450	400	300	
HyperTransport technology (4), (6)					500	500	500	-	-	-	
LVPECL (5)		-	-	-	-	-	-	450	400	300	
3.3-V LVTTL	OCT 50 Ω	400	400	350	400	400	350	400	400	350	
2.5-V LVTTL	OCT 50 Ω	350	350	300	350	350	300	350	350	300	

Devices (Part 2 of 2) Notes (1), (2)											
DDIO Column Output I/O Standard	Maximum DCD Based on I/O Standard of Input Feeding the DDIO Clock Port (No PLL in the Clock Path)										
	TTL/C	MOS	SSTL-2	SSTL/HSTL	1.2-V HSTL	Unit					
	3.3/2.5 V	1.8/1.5 V	2.5 V	1.8/1.5 V	1.2 V						
1.8 V	150	265	85	85	85	ps					
1.5-V LVCMOS	255	370	140	140	140	ps					
SSTL-2 Class I	175	295	65	65	65	ps					
SSTL-2 Class II	170	290	60	60	60	ps					
SSTL-18 Class I	155	275	55	50	50	ps					
SSTL-18 Class II	140	260	70	70	70	ps					
1.8-V HSTL Class I	150	270	60	60	60	ps					
1.8-V HSTL Class II	150	270	60	60	60	ps					
1.5-V HSTL Class I	150	270	55	55	55	ps					
1.5-V HSTL Class II	125	240	85	85	85	ps					
1.2-V HSTL	240	360	155	155	155	ps					
LVPECL	180	180	180	180	180	ps					

Table 5 04 Maximum DCD for DDIO Output on Column I/O Pine Without PI | in the Clock Path for -3

Notes to Table 5-84:

(1) Table 5–84 assumes the input clock has zero DCD.

(2) The DCD specification is based on a no logic array noise condition.

Table 5-85. Maximum DCD for DDIO Output on Column I/O Pins Without PLL in the Clock Path for -4 & -5 Devices (Part 1 of 2) Notes (1), (2)

DDIO Column Output 1/0	Maximum DCD Based on I/O Standard of Input Feeding the DDIO Clock Port (No PLL in the Clock Path)							
Standard	TTL/C	MOS	SSTL-2	SSTL/HSTL	Unit			
	3.3/2.5 V	1.8/1.5 V	2.5 V	5 V 1.8/1.5 V				
3.3-V LVTTL	440	495	170	160	ps			
3.3-V LVCMOS	390	450	120	110	ps			
2.5 V	375	430	105	95	ps			
1.8 V	325	385	90	100	ps			
1.5-V LVCMOS	430	490	160	155	ps			
SSTL-2 Class I	355	410	85	75	ps			
SSTL-2 Class II	350	405	80	70	ps			