
E·XFL

Altera - EP2S180F1508C4N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	8970
Number of Logic Elements/Cells	179400
Total RAM Bits	9383040
Number of I/O	1170
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1508-BBGA, FCBGA
Supplier Device Package	1508-FBGA (40x40)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=ep2s180f1508c4n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Open-Drain Output	
Bus Hold	
Programmable Pull-Up Resistor	
Advanced I/O Standard Support	
On-Chip Termination	
MultiVolt I/O Interface	
High-Speed Differential I/O with DPA Support	
Dedicated Circuitry with DPA Support	
Fast PLL & Channel Layout	
Document Revision History	
-	

Chapter 3. Configuration & Testing

IEEE Std. 1149.1 JTAG Boundary-Scan Support	3–1
SignalTap II Embedded Logic Analyzer	
Configuration	
Operating Modes	3–5
Configuration Schemes	
Configuring Stratix II FPGAs with JRunner	3–10
Programming Serial Configuration Devices with SRunner	3–10
Configuring Stratix II FPGAs with the MicroBlaster Driver	3–11
PLL Reconfiguration	3–11
Temperature Sensing Diode (TSD)	3–11
Automated Single Event Upset (SEU) Detection	3–13
Custom-Built Circuitry	3–14
Software Interface	3–14
Document Revision History	3–14

Chapter 4. Hot Socketing & Power-On Reset

Hot-Socketing Specifications 4-1
Devices Can Be Driven Before Power-Up 4-2
I/O Pins Remain Tri-Stated During Power-Up 4-2
Signal Pins Do Not Drive the V _{CCIO} , V _{CCINT} or V _{CCPD} Power Supplies
Hot Socketing Feature Implementation in Stratix II Devices
Power-On Reset Circuitry
Document Revision History 4-6

Chapter 5. DC & Switching Characteristics

Operating Conditions	5–1
Absolute Maximum Ratings	5–1
Recommended Operating Conditions	5–2
DC Electrical Characteristics	
I/O Standard Specifications	5–4
Bus Hold Specifications	
On-Chip Termination Specifications	
Pin Capacitance	
Power Consumption	5–20

Stratix II devices are available in space-saving FineLine BGA[®] packages (see Tables 1–2 and 1–3).

Table 1–2. Stratix II Package Options & I/O Pin Counts Notes (1), (2)							
Device	484-Pin FineLine BGA	484-Pin Hybrid FineLine BGA	672-Pin FineLine BGA	780-Pin FineLine BGA	1,020-Pin FineLine BGA	1,508-Pin FineLine BGA	
EP2S15	342		366				
EP2S30	342		500				
EP2S60 (3)	334		492		718		
EP2S90 (3)		308		534	758	902	
EP2S130 (3)				534	742	1,126	
EP2S180 (3)					742	1,170	

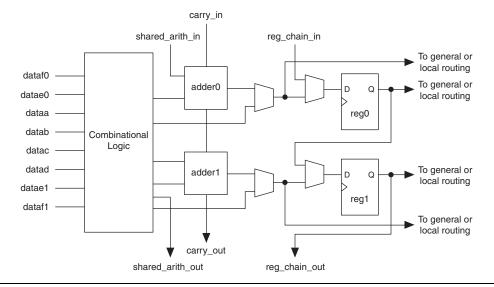
Notes to Table 1–2:

All I/O pin counts include eight dedicated clock input pins (clk1p, clk1n, clk3p, clk3n, clk9p, clk9n, clk1p, and clk11n) that can be used for data inputs.

(2) The Quartus II software I/O pin counts include one additional pin, PLL_ENA, which is not available as generalpurpose I/O pins. The PLL_ENA pin can only be used to enable the PLLs within the device.

(3) The I/O pin counts for the EP2S60, EP2S90, EP2S130, and EP2S180 devices in the 1020-pin and 1508-pin packages include eight dedicated fast PLL clock inputs (FPLL7CLKp/n, FPLL8CLKp/n, FPLL9CLKp/n, and FPLL10CLKp/n) that can be used for data inputs.

Table 1–3. Stratix II FineLine BGA Package Sizes							
Dimension	484 Pin	484-Pin Hybrid	672 Pin	780 Pin	1,020 Pin	1,508 Pin	
Pitch (mm)	1.00	1.00	1.00	1.00	1.00	1.00	
Area (mm2)	529	729	729	841	1,089	1,600	
Length × width (mm × mm)	23 × 23	27 × 27	27 × 27	29 × 29	33 × 33	40 × 40	


All Stratix II devices support vertical migration within the same package (for example, you can migrate between the EP2S15, EP2S30, and EP2S60 devices in the 672-pin FineLine BGA package). Vertical migration means that you can migrate to devices whose dedicated pins, configuration pins, and power pins are the same for a given package across device densities.

To ensure that a board layout supports migratable densities within one package offering, enable the applicable vertical migration path within the Quartus II software (Assignments menu > Device > Migration Devices).

completely backward-compatible with four-input LUT architectures. One ALM can also implement any function of up to six inputs and certain seven-input functions.

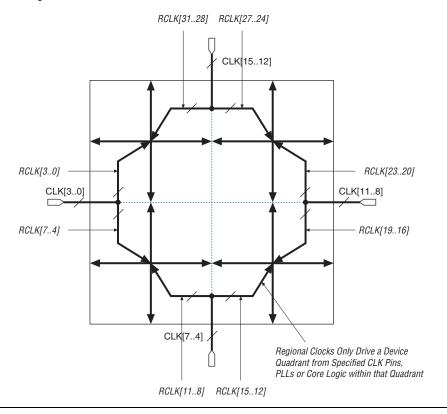
In addition to the adaptive LUT-based resources, each ALM contains two programmable registers, two dedicated full adders, a carry chain, a shared arithmetic chain, and a register chain. Through these dedicated resources, the ALM can efficiently implement various arithmetic functions and shift registers. Each ALM drives all types of interconnects: local, row, column, carry chain, shared arithmetic chain, register chain, and direct link interconnects. Figure 2–5 shows a high-level block diagram of the Stratix II ALM while Figure 2–6 shows a detailed view of all the connections in the ALM.

Clear & Preset Logic Control

LAB-wide signals control the logic for the register's clear and load/preset signals. The ALM directly supports an asynchronous clear and preset function. The register preset is achieved through the asynchronous load of a logic high. The direct asynchronous preset does not require a NOTgate push-back technique. Stratix II devices support simultaneous asynchronous load/preset, and clear signals. An asynchronous clear signal takes precedence if both signals are asserted simultaneously. Each LAB supports up to two clears and one load/preset signal.

In addition to the clear and load/preset ports, Stratix II devices provide a device-wide reset pin (DEV_CLRn) that resets all registers in the device. An option set before compilation in the Quartus II software controls this pin. This device-wide reset overrides all other control signals.

MultiTrack Interconnect

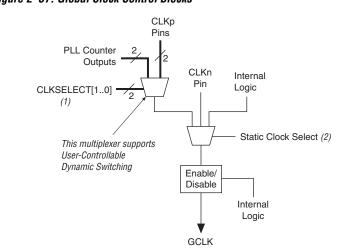

In the Stratix II architecture, connections between ALMs, TriMatrix memory, DSP blocks, and device I/O pins are provided by the MultiTrack interconnect structure with DirectDrive[™] technology. The MultiTrack interconnect consists of continuous, performance-optimized routing lines of different lengths and speeds used for inter- and intra-design block connectivity. The Quartus II Compiler automatically places critical design paths on faster interconnects to improve design performance.

DirectDrive technology is a deterministic routing technology that ensures identical routing resource usage for any function regardless of placement in the device. The MultiTrack interconnect and DirectDrive technology simplify the integration stage of block-based designing by eliminating the re-optimization cycles that typically follow design changes and additions.

The MultiTrack interconnect consists of row and column interconnects that span fixed distances. A routing structure with fixed length resources for all devices allows predictable and repeatable performance when migrating through different device densities. Dedicated row interconnects route signals to and from LABs, DSP blocks, and TriMatrix memory in the same row. These row resources include:

- Direct link interconnects between LABs and adjacent blocks
- R4 interconnects traversing four blocks to the right or left
- R24 row interconnects for high-speed access across the length of the device

Figure 2–32. Regional Clocks

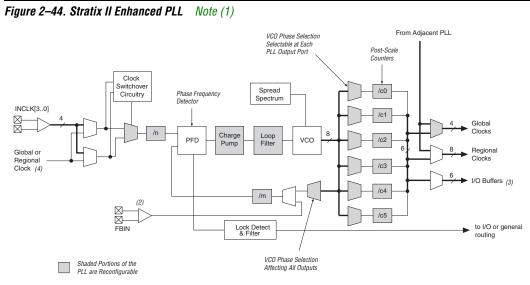


Dual-Regional Clock Network

A single source (CLK pin or PLL output) can generate a dual-regional clock by driving two regional clock network lines in adjacent quadrants (one from each quadrant). This allows logic that spans multiple quadrants to utilize the same low skew clock. The routing of this clock signal on an entire side has approximately the same speed but slightly higher clock skew when compared with a clock signal that drives a single quadrant. Internal logic-array routing can also drive a dual-regional clock. Clock pins and enhanced PLL outputs on the top and bottom can drive horizontal dual-regional clocks. Clock pins and fast PLL outputs on the left and right can drive vertical dual-regional clocks, as shown in Figure 2–33. Corner PLLs cannot drive dual-regional clocks.

When using the global or regional clock control blocks in Stratix II devices to select between multiple clocks or to enable and disable clock networks, be aware of possible narrow pulses or glitches when switching from one clock signal to another. A glitch or runt pulse has a width that is less than the width of the highest frequency input clock signal. To prevent logic errors within the FPGA, Altera recommends that you build circuits that filter out glitches and runt pulses.

Figures 2–37 through 2–39 show the clock control block for the global clock, regional clock, and PLL external clock output, respectively.


Figure 2–37. Global Clock Control Blocks

Notes to Figure 2–37:

- (1) These clock select signals can be dynamically controlled through internal logic when the device is operating in user mode.
- (2) These clock select signals can only be set through a configuration file (.sof or .pof) and cannot be dynamically controlled during user mode operation.

Enhanced PLLs

Stratix II devices contain up to four enhanced PLLs with advanced clock management features. Figure 2–44 shows a diagram of the enhanced PLL.

Notes to Figure 2–44:

- (1) Each clock source can come from any of the four clock pins that are physically located on the same side of the device as the PLL.
- (2) If the feedback input is used, you lose one (or two, if FBIN is differential) external clock output pin.
- (3) Each enhanced PLL has three differential external clock outputs or six single-ended external clock outputs.
- (4) The global or regional clock input can be driven by an output from another PLL, a pin-driven dedicated global or regional clock, or through a clock control block, provided the clock control block is fed by an output from another PLL or a pin-driven dedicated global or regional clock. An internally generated global signal cannot drive the PLL.

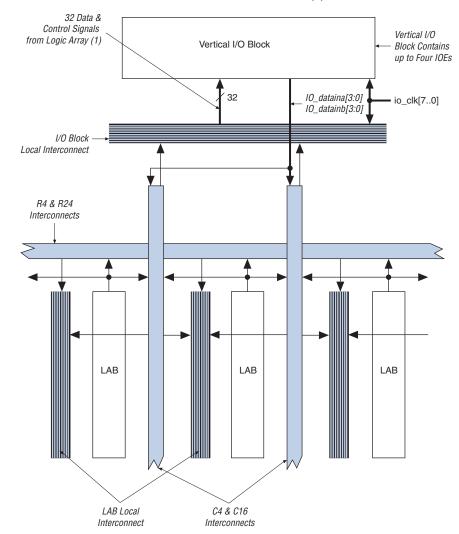


Figure 2–48. Column I/O Block Connection to the Interconnect Note (1)

Note to Figure 2–48:

(1) The 32 data and control signals consist of eight data out lines: four lines each for DDR applications io_dataouta[3..0] and io_dataoutb[3..0], four output enables io_oe[3..0], four input clock enables io_ce_in[3..0], four output clock enables io_ce_out[3..0], four clocks io_clk[3..0], four asynchronous clear and preset signals io_aclr/apreset[3..0], and four synchronous clear and preset signals io_sclr/spreset[3..0].

Table 2-1	Table 2–14. DQS & DQ Bus Mode Support (Part 2 of 2) Note (1)						
Device	Package	Number of ×4 Groups	Number of ×8/×9 Groups	Number of ×16/×18 Groups	Number of ×32/×36 Groups		
EP2S90	484-pin Hybrid FineLine BGA	8	4	0	0		
	780-pin FineLine BGA	18	8	4	0		
	1,020-pin FineLine BGA	36	18	8	4		
	1,508-pin FineLine BGA	36	18	8	4		
EP2S130	780-pin FineLine BGA	18	8	4	0		
	1,020-pin FineLine BGA	36	18	8	4		
	1,508-pin FineLine BGA	36	18	8	4		
EP2S180	1,020-pin FineLine BGA	36	18	8	4		
	1,508-pin FineLine BGA	36	18	8	4		

Notes to Table 2–14:

(1) Check the pin table for each DQS/DQ group in the different modes.

A compensated delay element on each DQS pin automatically aligns input DQS synchronization signals with the data window of their corresponding DQ data signals. The DQS signals drive a local DQS bus in the top and bottom I/O banks. This DQS bus is an additional resource to the I/O clocks and is used to clock DQ input registers with the DQS signal.

The Stratix II device has two phase-shifting reference circuits, one on the top and one on the bottom of the device. The circuit on the top controls the compensated delay elements for all DQS pins on the top. The circuit on the bottom controls the compensated delay elements for all DQS pins on the bottom.

Each phase-shifting reference circuit is driven by a system reference clock, which must have the same frequency as the DQS signal. Clock pins CLK [15..12] p feed the phase circuitry on the top of the device and clock pins CLK [7..4] p feed the phase circuitry on the bottom of the device. In addition, PLL clock outputs can also feed the phase-shifting reference circuits.

Figure 2–56 illustrates the phase-shift reference circuit control of each DQS delay shift on the top of the device. This same circuit is duplicated on the bottom of the device.

Table 3–7. Dod	Table 3–7. Document Revision History (Part 2 of 2)				
Date and Document Version	Changes Made	Summary of Changes			
April 2006, v4.1	Updated "Device Security Using Configuration Bitstream Encryption" section.	_			
December 2005, v4.0	Updated "Software Interface" section.	_			
May 2005, v3.0	 Updated "IEEE Std. 1149.1 JTAG Boundary-Scan Support" section. Updated "Operating Modes" section. 	_			
January 2005, v2.1	Updated JTAG chain device limits.	_			
January 2005, v2.0	Updated Table 3–3.	_			
July 2004, v1.1	 Added "Automated Single Event Upset (SEU) Detection" section. Updated "Device Security Using Configuration Bitstream Encryption" section. Updated Figure 3–2. 	_			
February 2004, v1.0	Added document to the Stratix II Device Handbook.	_			

5. DC & Switching Characteristics

SII51005-4.5

Operating Conditions

Stratix[®] II devices are offered in both commercial and industrial grades. Industrial devices are offered in -4 speed grades and commercial devices are offered in -3 (fastest), -4, -5 speed grades.

Tables 5–1 through 5–32 provide information about absolute maximum ratings, recommended operating conditions, DC electrical characteristics, and other specifications for Stratix II devices.

Absolute Maximum Ratings

Table 5–1 contains the absolute maximum ratings for the Stratix II device family.

Table 5–1. Stratix II Device Absolute Maximum Ratings Notes (1), (2), (3)						
Symbol	Parameter	Conditions	Minimum	Maximum	Unit	
V _{CCINT}	Supply voltage	With respect to ground	-0.5	1.8	V	
V _{CCIO}	Supply voltage	With respect to ground	-0.5	4.6	V	
V _{CCPD}	Supply voltage	With respect to ground	-0.5	4.6	V	
V _{CCA}	Analog power supply for PLLs	With respect to ground	-0.5	1.8	V	
V _{CCD}	Digital power supply for PLLs	With respect to ground	-0.5	1.8	V	
VI	DC input voltage (4)		-0.5	4.6	V	
I _{OUT}	DC output current, per pin		-25	40	mA	
T _{STG}	Storage temperature	No bias	-65	150	°C	
TJ	Junction temperature	BGA packages under bias	-55	125	°C	

Notes to Tables 5–1

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Conditions beyond those listed in Table 5–1 may cause permanent damage to a device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse affects on the device.
- (3) Supply voltage specifications apply to voltage readings taken at the device pins, not at the power supply.
- (4) During transitions, the inputs may overshoot to the voltage shown in Table 5–2 based upon the input duty cycle. The DC case is equivalent to 100% duty cycle. During transitions, the inputs may undershoot to –2.0 V for input currents less than 100 mA and periods shorter than 20 ns.

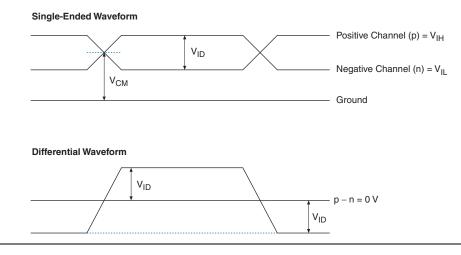
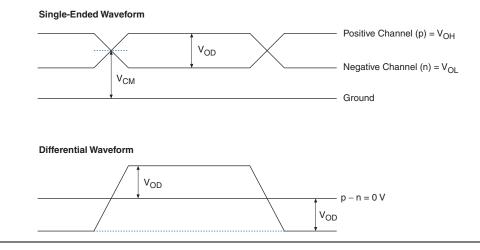
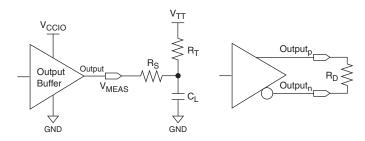



Figure 5–2. Transmitter Output Waveforms for Differential I/O Standards

Table 5–2	Table 5–25. 1.5-V HSTL Class I & II Differential Specifications						
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit	
V _{CCIO}	I/O supply voltage		1.425	1.500	1.575	V	
V _{DIF} (DC)	DC input differential voltage		0.2			V	
V _{CM} (DC)	DC common mode input voltage		0.68		0.90	V	
$V_{\text{DIF}}\left(\text{AC}\right)$	AC differential input voltage		0.4			V	
V _{OX} (AC)	AC differential cross point voltage		0.68		0.90	V	

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
V _{CCIO}	Output supply voltage		1.71	1.80	1.89	V
V_{REF}	Input reference voltage		0.85	0.90	0.95	V
V _{TT}	Termination voltage		0.85	0.90	0.95	V
V _{IH} (DC)	DC high-level input voltage		V _{REF} + 0.1			V
V _{IL} (DC)	DC low-level input voltage		-0.3		V _{REF} – 0.1	V
V _{IH} (AC)	AC high-level input voltage		V _{REF} + 0.2			V
V _{IL} (AC)	AC low-level input voltage				V _{REF} - 0.2	V
V _{OH}	High-level output voltage	I _{OH} = 8 mA (1)	$V_{CCIO} - 0.4$			V
V _{OL}	Low-level output voltage	I _{OH} = -8 mA (1)			0.4	V


Note to Table 5–26:

(1) This specification is supported across all the programmable drive settings available for this I/O standard as shown in the *Stratix II Architecture* chapter in volume 1 of the *Stratix II Device Handbook*.

- 4. Record the time to V_{MEAS}.
- 5. Compare the results of steps 2 and 4. The increase or decrease in delay should be added to or subtracted from the I/O Standard Output Adder delays to yield the actual worst-case propagation delay (clock-to-output) of the PCB trace.

The Quartus II software reports the timing with the conditions shown in Table 5–34 using the above equation. Figure 5–4 shows the model of the circuit that is represented by the output timing of the Quartus II software.

Figure 5–4. Output Delay Timing Reporting Setup Modeled by Quartus II

Notes to Figure 5-4:

- (1) Output pin timing is reported at the output pin of the FPGA device. Additional delays for loading and board trace delay need to be accounted for with IBIS model simulations.
- (2) V_{CCPD} is 3.085 V unless otherwise specified.
- (3) V_{CCINT} is 1.12 V unless otherwise specified.

Figures 5–5 and 5–6 show the measurement setup for output disable and output enable timing.

Table 5–79. Maximum Output Clock Toggle Rate Derating Factors (Part 2 of 5)											
		Maximum Output Clock Toggle Rate Derating Factors (ps/pF)									
I/O Standard	Drive Strength	Column I/O Pins			Ro	w I/O Pi	ns	Dedica	ted Clo	ck Outputs	
	g	-3	-4	-5	-3	-4	-5	-3	-4	-5	
1.8-V	2 mA	951	1421	1421	951	1421	1421	904	1421	1421	
LVTTL/LVCMOS	4 mA	405	516	516	405	516	516	393	516	516	
	6 mA	261	325	325	261	325	325	253	325	325	
	8 mA	223	274	274	223	274	274	224	274	274	
	10 mA	194	236	236	-	-	-	199	236	236	
	12 mA	174	209	209	-	-	-	180	209	209	
1.5-V	2 mA	652	963	963	652	963	963	618	963	963	
LVTTL/LVCMOS	4 mA	333	347	347	333	347	347	270	347	347	
	6 mA	182	247	247	-	-	-	198	247	247	
	8 mA	135	194	194	-	-	-	155	194	194	
SSTL-2 Class I	8 mA	364	680	680	364	680	680	350	680	680	
	12 mA	163	207	207	163	207	207	188	207	207	
SSTL-2 Class II	16 mA	118	147	147	118	147	147	94	147	147	
	20 mA	99	122	122	-	-	-	87	122	122	
	24 mA	91	116	116	-	-	-	85	116	116	
SSTL-18 Class I	4 mA	458	570	570	458	570	570	505	570	570	
	6 mA	305	380	380	305	380	380	336	380	380	
	8 mA	225	282	282	225	282	282	248	282	282	
	10 mA	167	220	220	167	220	220	190	220	220	
	12 mA	129	175	175	-	-	-	148	175	175	
SSTL-18 Class II	8 mA	173	206	206	-	-	-	155	206	206	
	16 mA	150	160	160	-	-	-	140	160	160	
	18 mA	120	130	130	-	-	-	110	130	130	
	20 mA	109	127	127	-	-	-	94	127	127	
SSTL-2 Class I	8 mA	364	680	680	364	680	680	350	680	680	
	12 mA	163	207	207	163	207	207	188	207	207	
SSTL-2 Class II	16 mA	118	147	147	118	147	147	94	147	147	
	20 mA	99	122	122	-	-	-	87	122	122	
	24 mA	91	116	116	-	-	-	85	116	116	

		Maximum Output Clock Toggle Rate Derating Factors (ps/pF)									
I/O Standard	Drive Strength	Column I/O Pins		Ro	w I/O Pi	ns	Dedica	ted Clo	ck Outputs		
	g	-3	-4	-5	-3	-4	-5	-3	-4	-5	
Differential	4 mA	458	570	570	-	-	-	505	570	570	
SSTL-18 Class I (3)	6 mA	305	380	380	-	-	-	336	380	380	
(0)	8 mA	225	282	282	-	-	-	248	282	282	
	10 mA	167	220	220	-	-	-	190	220	220	
	12 mA	129	175	175	-	-	-	148	175	175	
Differential	8 mA	173	206	206	-	-	-	155	206	206	
SSTL-18 Class II	16 mA	150	160	160	-	-	-	140	160	160	
(3)	18 mA	120	130	130	-	-	-	110	130	130	
	20 mA	109	127	127	-	-	-	94	127	127	
1.8-V Differential	4 mA	245	282	282	-	-	-	229	282	282	
HSTL Class I (3)	6 mA	164	188	188	-	-	-	153	188	188	
	8 mA	123	140	140	-	-	-	114	140	140	
	10 mA	110	124	124	-	-	-	108	124	124	
	12 mA	97	110	110	-	-	-	104	110	110	
1.8-V Differential	16 mA	101	104	104	-	-	-	99	104	104	
HSTL Class II (3)	18 mA	98	102	102	-	-	-	93	102	102	
	20 mA	93	99	99	-	-	-	88	99	99	
1.5-V Differential	4 mA	168	196	196	-	-	-	188	196	196	
HSTL Class I (3)	6 mA	112	131	131	-	-	-	125	131	131	
	8 mA	84	99	99	-	-	-	95	99	99	
	10 mA	87	98	98	-	-	-	90	98	98	
	12 mA	86	98	98	-	-	-	87	98	98	
1.5-V Differential	16 mA	95	101	101	-	-	-	96	101	101	
HSTL Class II (3)	18 mA	95	100	100	-	-	-	101	100	100	
	20 mA	94	101	101	-	-	-	104	101	101	
3.3-V PCI		134	177	177	-	-	-	143	177	177	
3.3-V PCI-X		134	177	177	-	-	-	143	177	177	
LVDS		-	-	-	155 (1)	155 <i>(1)</i>	155 <i>(1)</i>	134	134	134	
HyperTransport technology		-	-	-	155 <i>(1)</i>	155 <i>(1)</i>	155 (1)	-	-	-	
LVPECL (4)		-	-	-	-	-	-	134	134	134	

Table 5–79. Max	Table 5–79. Maximum Output Clock Toggle Rate Derating Factors (Part 5 of 5)										
		Maximum Output Clock Toggle Rate Derating Factors (ps/pF)									
I/O Standard	Drive Strength	Column I/O Pins			Ro	Row I/O Pins			ted Clo	ck Outputs	
	g	-3	-4	-5	-3	-4	-5	-3	-4	-5	
3.3-V LVTTL	ΟCT 50 Ω	133	152	152	133	152	152	147	152	152	
2.5-V LVTTL	ΟCT 50 Ω	207	274	274	207	274	274	235	274	274	
1.8-V LVTTL	ΟCT 50 Ω	151	165	165	151	165	165	153	165	165	
3.3-V LVCMOS	ΟCT 50 Ω	300	316	316	300	316	316	263	316	316	
1.5-V LVCMOS	ΟCT 50 Ω	157	171	171	157	171	171	174	171	171	
SSTL-2 Class I	ΟCT 50 Ω	121	134	134	121	134	134	77	134	134	
SSTL-2 Class II	ΟCT 25 Ω	56	101	101	56	101	101	58	101	101	
SSTL-18 Class I	ΟCT 50 Ω	100	123	123	100	123	123	106	123	123	
SSTL-18 Class II	ΟCT 25 Ω	61	110	110	-	-	-	59	110	110	
1.2-V HSTL (2)	ΟCT 50 Ω	95	-	-	-	-	-	-	-	95	

Notes to Table 5–79:

(1) For LVDS and HyperTransport technology output on row I/O pins, the toggle rate derating factors apply to loads larger than 5 pF. In the derating calculation, subtract 5 pF from the intended load value in pF for the correct result. For a load less than or equal to 5 pF, refer to Table 5-78 for output toggle rates.

(2) 1.2-V HSTL is only supported on column I/O pins in I/O banks 4,7, and 8.

(3) Differential HSTL and SSTL is only supported on column clock and DQS outputs.

(4) LVPECL is only supported on column clock outputs.

Duty Cycle Distortion

Duty cycle distortion (DCD) describes how much the falling edge of a clock is off from its ideal position. The ideal position is when both the clock high time (CLKH) and the clock low time (CLKL) equal half of the clock period (T), as shown in Figure 5–7. DCD is the deviation of the non-ideal falling edge from the ideal falling edge, such as D1 for the falling edge A and D2 for the falling edge B (Figure 5–7). The maximum DCD for a clock is the larger value of D1 and D2.

Table 5–91 shows the high-speed I/O timing specifications for -5 speed grade Stratix II devices.

Table 5–91. High-Speed	I/O Specifications fo	r -5 Speed Gra	de Notes	: (1), (2)		
2			-5 Speed Grade			Unit	
Symbol	Conditions				Тур		Max
f_{HSCLK} (clock frequency) $f_{HSCLK} = f_{HSDR} / W$	W = 2 to 32 (LVDS, (3)	HyperTransport	16		420	MHz	
	W = 1 (SERDES by	pass, LVDS only	y)	16		500	MHz
	W = 1 (SERDES us	ed, LVDS only)		150		640	MHz
f _{HSDR} (data rate)	J = 4 to 10 (LVDS, H	lyperTransport	technology)	150		840	Mbps
	J = 2 (LVDS, Hyper	Transport techno	ology)	(4)		700	Mbps
	J = 1 (LVDS only)	(4)		500	Mbps		
f _{HSDRDPA} (DPA data rate)	J = 4 to 10 (LVDS, H	lyperTransport	150		840	Mbps	
TCCS	All differential I/O sta	andards	-		200	ps	
SW	All differential I/O sta	andards	440		-	ps	
Output jitter						190	ps
Output t _{RISE}	All differential I/O sta	andards				290	ps
Output t _{FALL}	All differential I/O sta	andards				290	ps
t _{DUTY}				45	50	55	%
DPA run length						6,400	UI
DPA jitter tolerance	Data channel peak-	to-peak jitter		0.44			UI
DPA lock time	Standard	Training Pattern	Transition Density				Number of repetitions
	SPI-4	0000000000 1111111111	10%	256			
	Parallel Rapid I/O	00001111	25%	256			
		10010000	50%	256			
	Miscellaneous	10101010	100%	256			
		01010101		256			

Notes to Table 5–91:

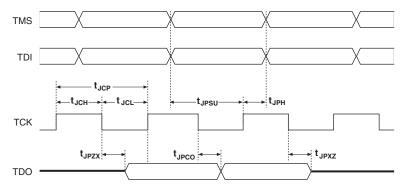
- (1) When J = 4 to 10, the SERDES block is used.
- (2) When J = 1 or 2, the SERDES block is bypassed.
- (3) The input clock frequency and the W factor must satisfy the following fast PLL VCO specification: $150 \le$ input clock frequency × W \le 1,040.
- (4) The minimum specification is dependent on the clock source (fast PLL, enhanced PLL, clock pin, and so on) and the clock routing resource (global, regional, or local) utilized. The I/O differential buffer and input register do not have a minimum toggle rate.

Table 5–100. DQS Phase Offset Delay Per Stage Notes (1), (2), (3)							
Speed Grade	Min	Max	Unit				
-3	9	14	ps				
-4	9	14	ps				
-5	9	15	ps				

Notes to Table 5–100:

- (1) The delay settings are linear.
- (2) The valid settings for phase offset are -64 to +63 for frequency mode 0 and -32 to +31 for frequency modes 1, 2, and 3.
- (3) The typical value equals the average of the minimum and maximum values.

Table 5–101. DDIO Outputs Half-Period Jitter Notes (1), (2)							
Name	Description	Max	Unit				
t _{outhalfjitter}	HALFJITTER Half-period jitter (PLL driving DDIO outputs)						


Notes to Table 5–101:

- (1) The worst-case half period is equal to the ideal half period subtracted by the DCD and half-period jitter values.
- (2) The half-period jitter was characterized using a PLL driving DDIO outputs.

JTAG Timing Specifications

Figure 5–10 shows the timing requirements for the JTAG signals.

Figure 5–10. Stratix II JTAG Waveforms

 Updated Table 5–11. Updated Figures 5–8 and 5–9. Added parallel on-chip termination information to "On-Chip Termination Specifications" section. Updated Tables 5–28, 5–30,5–31, and 5–34. Updated Tables 5–28, 5–30,5–31, and 5–90, and Tables 5–92, 5–93, and 5–98. Updated "PLL Timing Specifications" section. Updated "External Memory Interface Specifications" section. Updated "Table 5–10 and Table 5–102. Fixed typo in f₀U_JTITER specifications" section. Updated "External Memory Interface Specifications" section. Updated "External Memory Interface Specifications" section. Updated "External Memory Interface Specifications" section. Updated Table 5–13. Updated Timing Model" section. Updated The Specifications" section. Updated Timing Model" section. Updated "PLL Timing Specifications" section. Updated Timing Model" section. Updated "PLL Timing Specifications" section. Updated tables throughout chapter. Updated "PLL Timing Specifications" section. Updated "PLL Timing Specifications" section. Updated tables throughout chapter. Updated "Power Consumption" section. Added Toble Section. Updated "Power Consumption" section. Added "Duty Cycle Distortion" section. Added "Duty Cycle Distort	Date and Document Version	Changes Made	Summary of Changes
 Updated Table 5–11. Updated Figures 5–8 and 5–9. Added parallel on-chip termination information to "On-Chip Termination Specifications" section. Updated Tables 5–28, 5–30,5–31, and 5–34. Updated Tables 5–28, 5–30,5–31, and 5–90, and Tables 5–29,2, 5–93, and 5–98. Updated "PLL Timing Specifications" section. Updated "External Memory Interface Specifications" section. Updated "JTAG Timing Specifications" section, including Figure 5–10 and Table 5–102. Updated "External Memory Interface Specifications" section. Updated Table 5–13. Updated Timing Model" section. Updated Therming Model" section. Updated "PLL Timing Specifications" section. Updated tables throughout chapter. Updated "PLU Timing Specifications" section. Added "Power Consumption" section. Added "Power Consumption" section. Added "Puty Cycle Distortion" section. Added "Duty Cycle Distortion" section. Added "Duty Cycle Distortion" section. Added "Duty Cycle Distortion" section. Added "External Memory Interface Specifications" section. Added "Duty Cycle Distortion" section. Added	-	Table 5–78, Table 5–79, Table 5–81, Table 5–85, and	_
v4.0 Specifications" section. July 2005, v3.1 Updated timing numbers throughout chapter. July 2005, v3.1 Updated HyperTransport technology information in Table 5–13. Updated "Timing Model" section. Updated "PLL Timing Specifications" section. Updated "PLL Timing Specifications" section. Updated "External Memory Interface Specifications" section. May 2005, v3.0 Updated tables throughout chapter. — Updated "Power Consumption" section. Added various tables. Replaced "Maximum Input & Output Clock Rate" section with "Maximum Input & Output Clock Toggle Rate" section. Added "External Memory Interface Specifications" section. Added "External Memory Interface Specifications" section. Added "Duty Cycle Distortion" section.	April 2006, v4.1	 Updated Table 5–11. Updated Figures 5–8 and 5–9. Added parallel on-chip termination information to "On-Chip Termination Specifications" section. Updated Tables 5–28, 5–30,5–31, and 5–34. Updated Tables 5–78, Tables 5–81 through 5–90, and Tables 5–92, 5–93, and 5–98. Updated "PLL Timing Specifications" section. Updated "External Memory Interface Specifications" section. Added Tables 5–95 and 5–101. Updated "JTAG Timing Specifications" section, 	 Added new spec for half period jitter (Table 5–101). Added support for PLL clock switchover for industrial temperature range. Changed f_{INPFD} (min) spec from 4 MHz to 2 MHz in Table 5–92. Fixed typo in t_{OUTJITTER} specification in Table 5–92. Updated V_{DIF} AC & DC max
Table 5–13. Updated "Timing Model" section. Updated "PLL Timing Specifications" section. Updated "External Memory Interface Specifications" section. May 2005, v3.0 Updated tables throughout chapter. Updated "Power Consumption" section. Added various tables. Replaced "Maximum Input & Output Clock Rate" section with "Maximum Input & Output Clock Toggle Rate" section. Added "Duty Cycle Distortion" section. Added "External Memory Interface Specifications" section.	,	Specifications" section.	_
 Updated "Power Consumption" section. Added various tables. Replaced "Maximum Input & Output Clock Rate" section with "Maximum Input & Output Clock Toggle Rate" section. Added "Duty Cycle Distortion" section. Added "External Memory Interface Specifications" section. 	July 2005, v3.1	 Table 5–13. Updated "Timing Model" section. Updated "PLL Timing Specifications" section. Updated "External Memory Interface 	_
	May 2005, v3.0	 Updated "Power Consumption" section. Added various tables. Replaced "Maximum Input & Output Clock Rate" section with "Maximum Input & Output Clock Toggle Rate" section. Added "Duty Cycle Distortion" section. Added "External Memory Interface Specifications" 	_
March 2005, Updated tables in "Internal Timing Parameters" — v2.2 section. —	March 2005, v2.2	Updated tables in "Internal Timing Parameters" section.	_