
E·XFL

Altera - EP2S180F1508C5N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	8970
Number of Logic Elements/Cells	179400
Total RAM Bits	9383040
Number of I/O	1170
Number of Gates	·
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1508-BBGA, FCBGA
Supplier Device Package	1508-FBGA (40x40)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=ep2s180f1508c5n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Section I. Stratix II Device Family Data Sheet

This section provides the data sheet specifications for Stratix[®] II devices. This section contains feature definitions of the internal architecture, configuration and JTAG boundary-scan testing information, DC operating conditions, AC timing parameters, a reference to power consumption, and ordering information for Stratix II devices.

This section contains the following chapters:

- Chapter 1, Introduction
- Chapter 2, Stratix II Architecture
- Chapter 3, Configuration & Testing
- Chapter 4, Hot Socketing & Power-On Reset
- Chapter 5, DC & Switching Characteristics
- Chapter 6, Reference & Ordering Information

Revision History

Refer to each chapter for its own specific revision history. For information on when each chapter was updated, refer to the Chapter Revision Dates section, which appears in the full handbook.

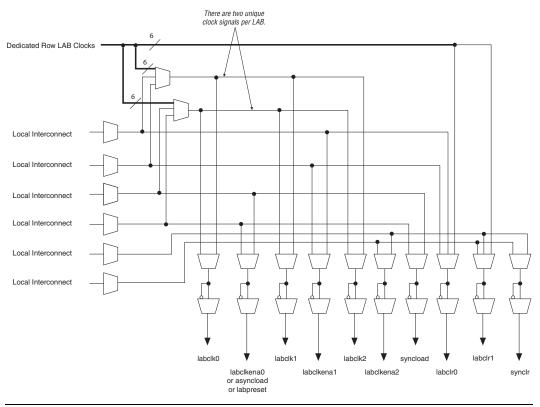
1. Introduction

SII51001-4.2

Introduction

The Stratix[®] II FPGA family is based on a 1.2-V, 90-nm, all-layer copper SRAM process and features a new logic structure that maximizes performance, and enables device densities approaching 180,000 equivalent logic elements (LEs). Stratix II devices offer up to 9 Mbits of on-chip, TriMatrixTM memory for demanding, memory intensive applications and has up to 96 DSP blocks with up to 384 (18-bit × 18-bit) multipliers for efficient implementation of high performance filters and other DSP functions. Various high-speed external memory interfaces are supported, including double data rate (DDR) SDRAM and DDR2 SDRAM, RLDRAM II, quad data rate (QDR) II SRAM, and single data rate (SDR) SDRAM. Stratix II devices support various I/O standards along with support for 1-gigabit per second (Gbps) source synchronous signaling with DPA circuitry. Stratix II devices offer a complete clock management solution with internal clock frequency of up to 550 MHz and up to 12 phase-locked loops (PLLs). Stratix II devices are also the industry's first FPGAs with the ability to decrypt a configuration bitstream using the Advanced Encryption Standard (AES) algorithm to protect designs.

Features


The Stratix II family offers the following features:

- 15,600 to 179,400 equivalent LEs; see Table 1–1
- New and innovative adaptive logic module (ALM), the basic building block of the Stratix II architecture, maximizes performance and resource usage efficiency
- Up to 9,383,040 RAM bits (1,172,880 bytes) available without reducing logic resources
- TriMatrix memory consisting of three RAM block sizes to implement true dual-port memory and first-in first-out (FIFO) buffers
- High-speed DSP blocks provide dedicated implementation of multipliers (at up to 450 MHz), multiply-accumulate functions, and finite impulse response (FIR) filters
- Up to 16 global clocks with 24 clocking resources per device region
- Clock control blocks support dynamic clock network enable/disable, which allows clock networks to power down to reduce power consumption in user mode
- Up to 12 PLLs (four enhanced PLLs and eight fast PLLs) per device provide spread spectrum, programmable bandwidth, clock switchover, real-time PLL reconfiguration, and advanced multiplication and phase shifting

signal with asynchronous load data input tied high. When the asynchronous load/preset signal is used, the labclkena0 signal is no longer available.

The LAB row clocks [5...0] and LAB local interconnect generate the LAB-wide control signals. The MultiTrack[™] interconnect's inherent low skew allows clock and control signal distribution in addition to data. Figure 2–4 shows the LAB control signal generation circuit.

Adaptive Logic Modules

The basic building block of logic in the Stratix II architecture, the adaptive logic module (ALM), provides advanced features with efficient logic utilization. Each ALM contains a variety of look-up table (LUT)-based resources that can be divided between two adaptive LUTs (ALUTs). With up to eight inputs to the two ALUTs, one ALM can implement various combinations of two functions. This adaptability allows the ALM to be

R24 row interconnects span 24 LABs and provide the fastest resource for long row connections between LABs, TriMatrix memory, DSP blocks, and Row IOEs. The R24 row interconnects can cross M-RAM blocks. R24 row interconnects drive to other row or column interconnects at every fourth LAB and do not drive directly to LAB local interconnects. R24 row interconnects drive LAB local interconnects via R4 and C4 interconnects. R24 interconnects can drive R24, R4, C16, and C4 interconnects.

The column interconnect operates similarly to the row interconnect and vertically routes signals to and from LABs, TriMatrix memory, DSP blocks, and IOEs. Each column of LABs is served by a dedicated column interconnect. These column resources include:

- Shared arithmetic chain interconnects in an LAB
- Carry chain interconnects in an LAB and from LAB to LAB
- Register chain interconnects in an LAB
- C4 interconnects traversing a distance of four blocks in up and down direction
- C16 column interconnects for high-speed vertical routing through the device

Stratix II devices include an enhanced interconnect structure in LABs for routing shared arithmetic chains and carry chains for efficient arithmetic functions. The register chain connection allows the register output of one ALM to connect directly to the register input of the next ALM in the LAB for fast shift registers. These ALM to ALM connections bypass the local interconnect. The Quartus II Compiler automatically takes advantage of these resources to improve utilization and performance. Figure 2–17 shows the shared arithmetic chain, carry chain and register chain interconnects.

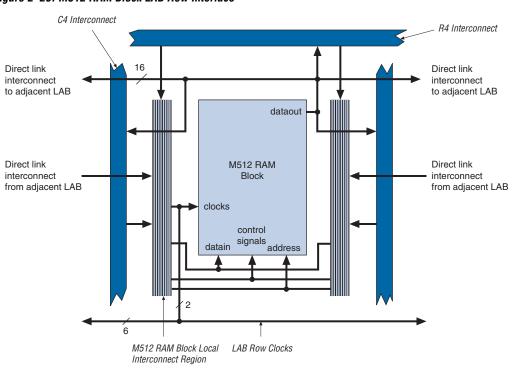


Figure 2–20. M512 RAM Block LAB Row Interface

M4K RAM Blocks

The M4K RAM block includes support for true dual-port RAM. The M4K RAM block is used to implement buffers for a wide variety of applications such as storing processor code, implementing lookup schemes, and implementing larger memory applications. Each block contains 4,608 RAM bits (including parity bits). M4K RAM blocks can be configured in the following modes:

- True dual-port RAM
- Simple dual-port RAM
- Single-port RAM
- FIFO
- ROM
- Shift register

When configured as RAM or ROM, you can use an initialization file to pre-load the memory contents.

The M4K RAM blocks allow for different clocks on their inputs and outputs. Either of the two clocks feeding the block can clock M4K RAM block registers (renwe, address, byte enable, datain, and output registers). Only the output register can be bypassed. The six labclk signals or local interconnects can drive the control signals for the A and B ports of the M4K RAM block. ALMs can also control the clock_a, clock_b, renwe_a, renwe_b, clr_a, clr_b, clocken_a, and clocken_b signals, as shown in Figure 2–21.

The R4, C4, and direct link interconnects from adjacent LABs drive the M4K RAM block local interconnect. The M4K RAM blocks can communicate with LABs on either the left or right side through these row resources or with LAB columns on either the right or left with the column resources. Up to 16 direct link input connections to the M4K RAM Block are possible from the left adjacent LABs and another 16 possible from the right adjacent LAB. M4K RAM block outputs can also connect to left and right LABs through direct link interconnect. Figure 2–22 shows the M4K RAM block to logic array interface.

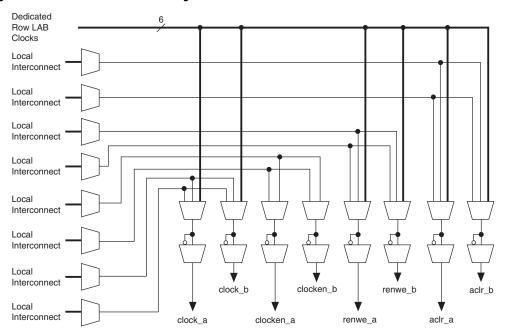



Figure 2–21. M4K RAM Block Control Signals

(1) Only R24 and C16 interconnects cross the M-RAM block boundaries.

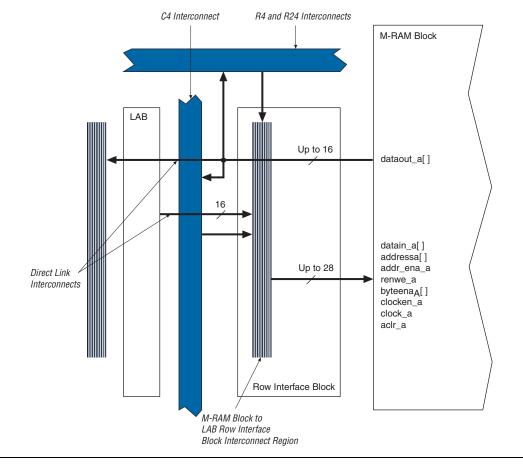


Table 2–4 shows the input and output data signal connections along with the address and control signal input connections to the row unit interfaces (L0 to L5 and R0 to R5).

PLLs & Clock Networks

Stratix II devices provide a hierarchical clock structure and multiple PLLs with advanced features. The large number of clocking resources in combination with the clock synthesis precision provided by enhanced and fast PLLs provides a complete clock management solution.

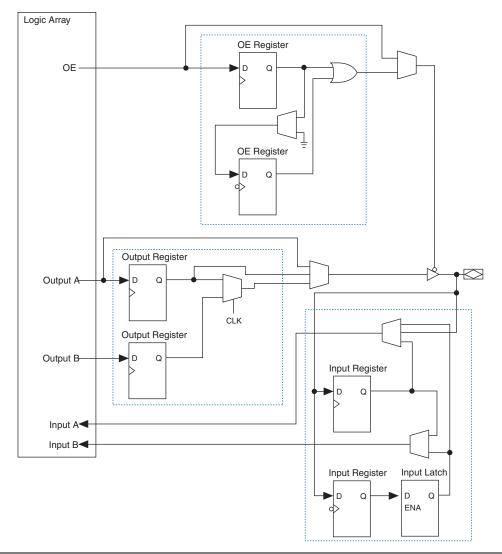
Global & Hierarchical Clocking

Stratix II devices provide 16 dedicated global clock networks and 32 regional clock networks (eight per device quadrant). These clocks are organized into a hierarchical clock structure that allows for up to 24 clocks per device region with low skew and delay. This hierarchical clocking scheme provides up to 48 unique clock domains in Stratix II devices.

There are 16 dedicated clock pins (CLK [15..0]) to drive either the global or regional clock networks. Four clock pins drive each side of the device, as shown in Figures 2–31 and 2–32. Internal logic and enhanced and fast PLL outputs can also drive the global and regional clock networks. Each global and regional clock has a clock control block, which controls the selection of the clock source and dynamically enables/disables the clock to reduce power consumption. Table 2–8 shows global and regional clock features.

Table 2–8. Global & Region	nal Clock Features	
Feature	Global Clocks	Regional Clocks
Number per device	16	32
Number available per quadrant	16	8
Sources	CLK pins, PLL outputs, or internal logic	CLK pins, PLL outputs, or internal logic
Dynamic clock source selection	 ✓ (1) 	
Dynamic enable/disable	\checkmark	\checkmark

Table 2–8. Global & Regional Clock Features


Note to Table 2–8:

 Dynamic source clock selection is supported for selecting between CLKp pins and PLL outputs only.

Global Clock Network

These clocks drive throughout the entire device, feeding all device quadrants. The global clock networks can be used as clock sources for all resources in the device-IOEs, ALMs, DSP blocks, and all memory blocks. These resources can also be used for control signals, such as clock enables and synchronous or asynchronous clears fed from the external pin. The

Figure 2–46. Stratix II IOE Structure

The IOEs are located in I/O blocks around the periphery of the Stratix II device. There are up to four IOEs per row I/O block and four IOEs per column I/O block. The row I/O blocks drive row, column, or direct link interconnects. The column I/O blocks drive column interconnects. Figure 2–47 shows how a row I/O block connects to the logic array. Figure 2–48 shows how a column I/O block connects to the logic array.

Preliminary status means the timing model is subject to change. Initially, timing numbers are created using simulation results, process data, and other known parameters. These tests are used to make the preliminary numbers as close to the actual timing parameters as possible.

Final timing numbers are based on actual device operation and testing. These numbers reflect the actual performance of the device under worst-case voltage and junction temperature conditions.

Table 5–33. Stratix II De	Table 5–33. Stratix II Device Timing Model Status								
Device	Preliminary	Final							
EP2S15		\checkmark							
EP2S30		\checkmark							
EP2S60		\checkmark							
EP2S90		\checkmark							
EP2S130		\checkmark							
EP2S180		\checkmark							

I/O Timing Measurement Methodology

Altera characterizes timing delays at the worst-case process, minimum voltage, and maximum temperature for input register setup time (t_{SU}) and hold time (t_H) . The Quartus II software uses the following equations to calculate t_{SU} and t_H timing for Stratix II devices input signals.

 t_{SU} = + data delay from input pin to input register

- + micro setup time of the input register
- clock delay from input pin to input register
- t_H = data delay from input pin to input register
 - + micro hold time of the input register
 - + clock delay from input pin to input register

Figure 5–3 shows the setup and hold timing diagram for input registers.

		R	esources Us	ed		Pei	formance		
	Applications	ALUTs	TriMatrix Memory Blocks	DSP Blocks	-3 Speed Grade (2)	-3 Speed Grade (3)	-4 Speed Grade	-5 Speed Grade	Unit
DSP	9×9 -bit multiplier (5)	0	0	1	430.29	409.16	373.13	320.10	MHz
block	18 × 18-bit multiplier (5)	0	0	1	410.17	390.01	356.12	305.06	MHz
	18 × 18-bit multiplier (7)	0	0	1	450.04	428.08	391.23	335.12	MHz
	36 × 36-bit multiplier (5)	0	0	1	250.00	238.15	217.48	186.60	MHz
	36×36 -bit multiplier (6)	0	0	1	410.17	390.01	356.12	305.06	MHz
	18-bit, four-tap FIR filter	0	0	1	410.17	390.01	356.12	305.06	MHz
Larger designs	8-bit,16-tap parallel FIR filter	58	0	4	259.06	240.61	217.15	185.01	MHz
	8-bit, 1024-point, streaming, three multipliers and five adders FFT function	2976	22	9	398.72	364.03	355.23	306.37	MHz
	8-bit, 1024-point, streaming, four multipliers and two adders FFT function	2781	22	12	398.56	409.16	347.22	311.13	MHz
	8-bit, 1024-point, single output, one parallel FFT engine, burst, three multipliers and five adders FFT function	984	5	3	425.17	365.76	346.98	292.39	MHz
	8-bit, 1024-point, single output, one parallel FFT engine, burst, four multipliers and two adders FFT function	919	5	4	427.53	378.78	357.14	307.59	MHz

Symbol	Poromotor		peed e (1)		peed e <i>(2)</i>	-4 Sj Gra	peed Ide		peed ade	Unit
Symbol	Parameter	Min <i>(3)</i>	Max	Min <i>(3)</i>	Max	Min (4)	Max	Min <i>(3)</i>	Max	Unit
t _{SU}	Input, pipeline, and output register setup time before clock	50		52		57 57		67		ps
t _H	Input, pipeline, and output register hold time after clock	180		189		206 206		241		ps
t _{co}	Input, pipeline, and output register clock- to-output delay	0	0	0	0	0 0	0	0	0	ps
t _{inreg2pipe9}	Input register to DSP block pipeline register in 9×9 -bit mode	1,312	2,030	1,312	2,030	1,250 1,312	2,334	1,312	2,720	ps
t _{INREG2PIPE18}	Input register to DSP block pipeline register in 18 × 18-bit mode	1,302	2,010	1,302	2,110	1,240 1,302	2,311	1,302	2,693	ps
t _{INREG2PIPE36}	Input register to DSP block pipeline register in 36×36 -bit mode	1,302	2,010	1,302	2,110	1,240 1,302	2,311	1,302	2,693	ps
t _{PIPE2OUTREG2ADD}	DSP block pipeline register to output register delay in two- multipliers adder mode	924	1,450	924	1,522	880 924	1,667	924	1,943	ps
tpipe2outreg4add	DSP block pipeline register to output register delay in four- multipliers adder mode	1,134	1,850	1,134	1,942	1,080 1,134	2,127	1,134	2,479	ps
t _{PD9}	Combinational input to output delay for 9 × 9	2,100	2,880	2,100	3,024	2,000 2,100	3,312	2,100	3,859	ps
t _{PD18}	Combinational input to output delay for 18 × 18	2,110	2,990	2,110	3,139	2,010 2,110	3,438	2,110	4,006	ps
t _{PD36}	Combinational input to output delay for 36 × 36	2,939	4,450	2,939	4,672	2,800 2,939	5,117	2,939	5,962	ps
t _{CLR}	Minimum clear pulse width	2,212		2,322		2,543 2,543		2,964		ps

Sumbol	Devemeter	-3 Speed Grade (2)		-3 Speed Grade <i>(3)</i>		-4 Speed Grade		-5 Speed Grade		- Unit
Symbol	Parameter	Min (4)	Max	Min (4)	Max	Min (5)	Max	Min (4)	Max	Unit
t _{M512DATACO1}	Clock-to-output delay when using output registers	298	478	298	501	284 298	548	298	640	ps
t _{m512Dataco2}	Clock-to-output delay without output registers	2,102	2,345	2,102	2,461	2,003 2,102	2,695	2,102	3,141	ps
t _{M512CLKL}	Minimum clock low time	1,315		1,380		1,512 1,512		1,762		ps
t _{M512CLKH}	Minimum clock high time	1,315		1,380		1,512 1,512		1,762		ps
t _{M512CLR}	Minimum clear pulse width	144		151		165 165		192		ps

Notes to Table 5-40:

Г

(1) F_{MAX} of M512 block obtained using the Quartus II software does not necessarily equal to 1/TM512RC.

(2) These numbers apply to -3 speed grade EP2S15, EP2S30, EP2S60, and EP2S90 devices.

(3) These numbers apply to -3 speed grade EP2S130 and EP2S180 devices.

(4) For the -3 and -5 speed grades, the minimum timing is for the commercial temperature grade. Only -4 speed grade devices offer the industrial temperature grade.

(5) For the -4 speed grade, the first number is the minimum timing parameter for industrial devices. The second number is the minimum timing parameter for commercial devices.

Table 5–41. l	M4K Block Internal Timing	Micropa	aramete	rs (Pari	t 1 of 2)	Note	(1)			
Symbol	Dovomotov	-3 Speed Grade (2)		-3 Speed Grade (3)		-4 Speed Grade		-5 Speed Grade		- Unit
Symbol	Parameter	Min (4)	Max	Min (4)	Max	Min (5)	Max	Min (4)	Max	Unit
t _{M4KRC}	Synchronous read cycle time	1,462	2,240	1,462	2,351	1,393 1,462	2,575	1,462	3,000	ps
t _{M4KWERESU}	Write or read enable setup time before clock	22		23		25 25		29		ps
t _{M4KWEREH}	Write or read enable hold time after clock	203		213		233 233		272		ps
t _{M4KBESU}	Byte enable setup time before clock	22		23		25 25		29		ps
t _{M4KBEH}	Byte enable hold time after clock	203		213		233 233		272		ps

Question	Devenuetev		peed Ie <i>(2)</i>		peed e <i>(3)</i>	-4 S Gra	peed ade		peed ade	11
Symbol	Parameter	Min (4)	Max	Min (4)	Max	Min (5)	Max	Min (4)	Max	Unit
t _{MEGARC}	Synchronous read cycle time	1,866	2,774	1,866	2,911	1,777 1,866	3,189	1,777 1,866	3,716	ps
t _{megaweresu}	Write or read enable setup time before clock	144		151		165 165		192		ps
t _{megawereh}	Write or read enable hold time after clock	39		40		44 44		52		ps
t _{megabesu}	Byte enable setup time before clock	50		52		57 57		67		ps
t _{MEGABEH}	Byte enable hold time after clock	39		40		44 44		52		ps
t _{megadataasu}	A port data setup time before clock	50		52		57 57		67		ps
t _{megadataah}	A port data hold time after clock	243		255		279 279		325		ps
t _{megaaddrasu}	A port address setup time before clock	589		618		677 677		789		ps
t _{megaaddrah}	A port address hold time after clock	241		253		277 277		322		ps
t _{megadatabsu}	B port setup time before clock	50		52		57 57		67		ps
t _{megadatabh}	B port hold time after clock	243		255		279 279		325		ps
t _{megaaddrbsu}	B port address setup time before clock	589		618		677 677		789		ps
t _{megaaddrbh}	B port address hold time after clock	241		253		277 277		322		ps
t _{megadataco1}	Clock-to-output delay when using output registers	480	715	480	749	457 480	821	480	957	ps
t _{megadataco2}	Clock-to-output delay without output registers	1,950	2,899	1,950	3,042	1,857 1,950	3,332	1,950	3,884	ps
t _{megaclkl}	Minimum clock low time	1,250		1,312		1,437 1,437		1,675		ps

		Minimu	m Timing	-3 Speed	-3 Speed	4 One of	E Oneard	
I/O Standard	Parameter	Industrial	Commercial	Grade (2)	Grade (3)	-4 Speed Grade	-5 Speed Grade	Unit
1.5-V HSTL	t _{PI}	560	587	993	1041	1141	1329	ps
Class II	t _{PCOUT}	294	308	557	584	640	746	ps
1.8-V HSTL	t _{PI}	543	569	898	941	1031	1201	ps
Class I	t _{PCOUT}	277	290	462	484	530	618	ps
1.8-V HSTL	t _{PI}	543	569	898	941	1031	1201	ps
Class II	t _{PCOUT}	277	290	462	484	530	618	ps
PCI	t _{PI}	679	712	1214	1273	1395	1625	ps
	t _{PCOUT}	413	433	778	816	894	1042	ps
PCI-X	t _{PI}	679	712	1214	1273	1395	1625	ps
	t _{PCOUT}	413	433	778	816	894	1042	ps
Differential	t _{PI}	507	530	818	857	939	1094	ps
SSTL-2 Class I (1)	t _{PCOUT}	241	251	382	400	438	511	ps
Differential	t _{PI}	507	530	818	857	939	1094	ps
SSTL-2 Class II (1)	t _{PCOUT}	241	251	382	400	438	511	ps
Differential	t _{PI}	543	569	898	941	1031	1201	ps
SSTL-18 Class I (1)	t _{PCOUT}	277	290	462	484	530	618	ps
Differential	t _{PI}	543	569	898	941	1031	1201	ps
SSTL-18 Class II (1)	t _{PCOUT}	277	290	462	484	530	618	ps
1.8-V Differential	t _{P1}	543	569	898	941	1031	1201	ps
HSTL Class I (1)	t _{PCOUT}	277	290	462	484	530	618	ps
1.8-V Differential	t _{PI}	543	569	898	941	1031	1201	ps
HSTL Class II (1)	t _{PCOUT}	277	290	462	484	530	618	ps
1.5-V Differential	t _{PI}	560	587	993	1041	1141	1329	ps
HSTL Class I (1)	t _{PCOUT}	294	308	557	584	640	746	ps
1.5-V Differential	t _{PI}	560	587	993	1041	1141	1329	ps
HSTL Class II (1)	t _{PCOUT}	294	308	557	584	640	746	ps

1/0 Otenderd	Drive	Colum	n I/O Pins	(MHz)	Row I	/O Pins (I	MHz)	Clock	Outputs	: (MHz)
I/O Standard	Strength	-3	-4	-5	-3	-4	-5	-3	-4	-5
SSTL-18 Class I	4 mA	200	150	150	200	150	150	200	150	150
	6 mA	350	250	200	350	250	200	350	250	200
	8 mA	450	300	300	450	300	300	450	300	300
	10 mA	500	400	400	500	400	400	500	400	400
	12 mA	700	550	400	-	-	-	650	550	400
SSTL-18 Class II	8 mA	200	200	150	-	-	-	200	200	150
	16 mA	400	350	350	-	-	-	400	350	350
	18 mA	450	400	400	-	-	-	450	400	400
	20 mA	550	500	450	-	-	-	550	500	450
1.8-V HSTL	4 mA	300	300	300	300	300	300	300	300	300
Class I	6 mA	500	450	450	500	450	450	500	450	450
	8 mA	650	600	600	650	600	600	650	600	600
	10 mA	700	650	600	700	650	600	700	650	600
	12 mA	700	700	650	700	700	650	700	700	650
1.8-V HSTL	16 mA	500	500	450	-	-	-	500	500	450
Class II	18 mA	550	500	500	-	-	-	550	500	500
	20 mA	650	550	550	-	-	-	550	550	550
1.5-V HSTL	4 mA	350	300	300	350	300	300	350	300	300
Class I	6 mA	500	500	450	500	500	450	500	500	450
	8 mA	700	650	600	700	650	600	700	650	600
	10 mA	700	700	650	-	-	-	700	700	650
	12 mA	700	700	700	-	-	-	700	700	700
1.5-V HSTL	16 mA	600	600	550	-	-	-	600	600	550
Class II	18 mA	650	600	600	-	-	-	650	600	600
	20 mA	700	650	600	-	-	-	700	650	600
Differential	8 mA	400	300	300	400	300	300	400	300	300
SSTL-2 Class I (3)	12 mA	400	400	350	400	400	350	400	400	350
Differential	16 mA	350	350	300	350	350	300	350	350	300
SSTL-2 Class II	20 mA	400	350	350	350	350	297	400	350	350
(3)	24 mA	400	400	350	_	-	-	400	400	350

	Drive	Colum	n I/O Pins	: (MHz)	Row I	/O Pins (I	MHz)	Clock	Outputs	s (MHz)
I/O Standard	Strength	-3	-4	-5	-3	-4	-5	-3	-4	-5
Differential	4 mA	200	150	150	200	150	150	200	150	150
SSTL-18 Class I	6 mA	350	250	200	350	250	200	350	250	200
(3)	8 mA	450	300	300	450	300	300	450	300	300
	10 mA	500	400	400	500	400	400	500	400	400
	12 mA	700	550	400	350	350	297	650	550	400
Differential	8 mA	200	200	150	-	-	-	200	200	150
SSTL-18 Class II (3)	16 mA	400	350	350	-	-	-	400	350	350
(3)	18 mA	450	400	400	-	-	-	450	400	400
	20 mA	550	500	450	-	-	-	550	500	450
1.8-V Differential	4 mA	300	300	300	-	-	-	300	300	300
HSTL Class I (3)	6 mA	500	450	450	-	-	-	500	450	450
	8 mA	650	600	600	-	-	-	650	600	600
	10 mA	700	650	600	-	-	-	700	650	600
	12 mA	700	700	650	-	-	-	700	700	650
1.8-V Differential	16 mA	500	500	450	-	-	-	500	500	450
HSTL Class II (3)	18 mA	550	500	500	-	-	-	550	500	500
	20 mA	650	550	550	-	-	-	550	550	550
1.5-V Differential	4 mA	350	300	300	-	-	-	350	300	300
HSTL Class I (3)	6 mA	500	500	450	-	-	-	500	500	450
	8 mA	700	650	600	-	-	-	700	650	600
	10 mA	700	700	650	-	-	-	700	700	650
	12 mA	700	700	700	-	-	-	700	700	700
1.5-V Differential	16 mA	600	600	550	-	-	-	600	600	550
HSTL Class II (3)	18 mA	650	600	600	-	-	-	650	600	600
	20 mA	700	650	600	-	-	-	700	650	600
3.3-V PCI		1,000	790	670	-	-	-	1,000	790	670
3.3-V PCI-X		1,000	790	670	-	-	-	1,000	790	670
LVDS (6)		-	-	-	500	500	500	450	400	300
HyperTransport technology (4), (6)					500	500	500	-	-	-
LVPECL (5)		-	-	-	-	-	-	450	400	300
3.3-V LVTTL	OCT 50 Ω	400	400	350	400	400	350	400	400	350
2.5-V LVTTL	OCT 50 Ω	350	350	300	350	350	300	350	350	300

Table 5-88 provides high-speed timing specifications definitions.

High-Speed I/O Specifications

Table 5–88. High-Speed Timing Sp	ecifications & Definitions
High-Speed Timing Specifications	Definitions
t _C	High-speed receiver/transmitter input and output clock period.
fhsclk	High-speed receiver/transmitter input and output clock frequency.
J	Deserialization factor (width of parallel data bus).
W	PLL multiplication factor.
t _{RISE}	Low-to-high transmission time.
t _{FALL}	High-to-low transmission time.
Timing unit interval (TUI)	The timing budget allowed for skew, propagation delays, and data sampling window. (TUI = 1/(Receiver Input Clock Frequency × Multiplication Factor) = t_c/w).
f _{HSDR}	Maximum/minimum LVDS data transfer rate (f _{HSDR} = 1/TUI), non-DPA.
f _{hsdrdpa}	Maximum/minimum LVDS data transfer rate ($f_{HSDRDPA} = 1/TUI$), DPA.
Channel-to-channel skew (TCCS)	The timing difference between the fastest and slowest output edges, including t_{CO} variation and clock skew. The clock is included in the TCCS measurement.
Sampling window (SW)	The period of time during which the data must be valid in order to capture it correctly. The setup and hold times determine the ideal strobe position within the sampling window.
Input jitter	Peak-to-peak input jitter on high-speed PLLs.
Output jitter	Peak-to-peak output jitter on high-speed PLLs.
t _{DUTY}	Duty cycle on high-speed transmitter output clock.
t _{lock}	Lock time for high-speed transmitter and receiver PLLs.

Table 5–89 shows the high-speed I/O timing specifications for -3 speed grade Stratix II devices.

Table 5–89. High-Speed I/O Specifications for -3 Speed Grade (Part 1 of 2) Notes (1), (2)							
Symbol	Conditions	-3 Speed Grade			Unit		
		Min	Тур	Max	UIII		
f_{HSCLK} (clock frequency) $f_{HSCLK} = f_{HSDR} / W$	W = 2 to 32 (LVDS, HyperTransport technology) (3)	16		520	MHz		
	W = 1 (SERDES bypass, LVDS only)	16		500	MHz		
	W = 1 (SERDES used, LVDS only)	150		717	MHz		

 Updated Table 5–11. Updated Figures 5–8 and 5–9. Added parallel on-chip termination information to "On-Chip Termination Specifications" section. Updated Tables 5–28, 5–30,5–31, and 5–34. Updated Tables 5–28, 5–30,5–31, and 5–90, and Tables 5–92, 5–93, and 5–98. Updated "PLL Timing Specifications" section. Updated "External Memory Interface Specifications" section. Updated "Table 5–10 and Table 5–102. Fixed typo in f₀U_JTITER specifications" section. Updated "External Memory Interface Specifications" section. Updated "External Memory Interface Specifications" section. Updated "External Memory Interface Specifications" section. Updated Table 5–13. Updated Timing Model" section. Updated The Specifications" section. Updated Timing Model" section. Updated "PLL Timing Specifications" section. Updated Timing Model" section. Updated "PLL Timing Specifications" section. Updated tables throughout chapter. Updated "PLL Timing Specifications" section. Updated "PLL Timing Specifications" section. Updated tables throughout chapter. Updated "Power Consumption" section. Added Toble Section. Updated "Power Consumption" section. Added "Duty Cycle Distortion" section. Added "Duty Cycle Distort	Date and Document Version	Changes Made	Summary of Changes
 Updated Table 5–11. Updated Figures 5–8 and 5–9. Added parallel on-chip termination information to "On-Chip Termination Specifications" section. Updated Tables 5–28, 5–30,5–31, and 5–34. Updated Tables 5–28, 5–30,5–31, and 5–90, and Tables 5–29,2, 5–93, and 5–98. Updated "PLL Timing Specifications" section. Updated "External Memory Interface Specifications" section. Updated "JTAG Timing Specifications" section, including Figure 5–10 and Table 5–102. Updated "External Memory Interface Specifications" section. Updated Table 5–13. Updated Timing Model" section. Updated Therming Model" section. Updated "PLL Timing Specifications" section. Updated tables throughout chapter. Updated "PLU Timing Specifications" section. Added "Power Consumption" section. Added "Power Consumption" section. Added "Puty Cycle Distortion" section. Added "Duty Cycle Distortion" section. Added "Duty Cycle Distortion" section. Added "Duty Cycle Distortion" section. Added "External Memory Interface Specifications" section. Added "Duty Cycle Distortion" section. Added	-	Table 5–78, Table 5–79, Table 5–81, Table 5–85, and	_
v4.0 Specifications" section. July 2005, v3.1 Updated timing numbers throughout chapter. July 2005, v3.1 Updated HyperTransport technology information in Table 5–13. Updated "Timing Model" section. Updated "PLL Timing Specifications" section. Updated "PLL Timing Specifications" section. Updated "External Memory Interface Specifications" section. May 2005, v3.0 Updated tables throughout chapter. — Updated "Power Consumption" section. Added various tables. Replaced "Maximum Input & Output Clock Rate" section with "Maximum Input & Output Clock Toggle Rate" section. Added "External Memory Interface Specifications" section. Added "External Memory Interface Specifications" section. Added "Duty Cycle Distortion" section.	April 2006, v4.1	 Updated Table 5–11. Updated Figures 5–8 and 5–9. Added parallel on-chip termination information to "On-Chip Termination Specifications" section. Updated Tables 5–28, 5–30,5–31, and 5–34. Updated Tables 5–78, Tables 5–81 through 5–90, and Tables 5–92, 5–93, and 5–98. Updated "PLL Timing Specifications" section. Updated "External Memory Interface Specifications" section. Added Tables 5–95 and 5–101. Updated "JTAG Timing Specifications" section, 	 Added new spec for half period jitter (Table 5–101). Added support for PLL clock switchover for industrial temperature range. Changed f_{INPFD} (min) spec from 4 MHz to 2 MHz in Table 5–92. Fixed typo in t_{OUTJITTER} specification in Table 5–92. Updated V_{DIF} AC & DC max
Table 5–13. Updated "Timing Model" section. Updated "PLL Timing Specifications" section. Updated "External Memory Interface Specifications" section. May 2005, v3.0 Updated tables throughout chapter. Updated "Power Consumption" section. Added various tables. Replaced "Maximum Input & Output Clock Rate" section with "Maximum Input & Output Clock Toggle Rate" section. Added "Duty Cycle Distortion" section. Added "External Memory Interface Specifications" section.	,	Specifications" section.	_
 Updated "Power Consumption" section. Added various tables. Replaced "Maximum Input & Output Clock Rate" section with "Maximum Input & Output Clock Toggle Rate" section. Added "Duty Cycle Distortion" section. Added "External Memory Interface Specifications" section. 	July 2005, v3.1	 Table 5–13. Updated "Timing Model" section. Updated "PLL Timing Specifications" section. Updated "External Memory Interface 	_
	May 2005, v3.0	 Updated "Power Consumption" section. Added various tables. Replaced "Maximum Input & Output Clock Rate" section with "Maximum Input & Output Clock Toggle Rate" section. Added "Duty Cycle Distortion" section. Added "External Memory Interface Specifications" 	_
March 2005, Updated tables in "Internal Timing Parameters" — v2.2 section. —	March 2005, v2.2	Updated tables in "Internal Timing Parameters" section.	_