Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. # **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 1694 | | Number of Logic Elements/Cells | 33880 | | Total RAM Bits | 1369728 | | Number of I/O | 342 | | Number of Gates | - | | Voltage - Supply | 1.15V ~ 1.25V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 484-BBGA | | Supplier Device Package | 484-FBGA (23x23) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep2s30f484c3 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # **About this Handbook** This handbook provides comprehensive information about the Altera® Stratix® II family of devices. # How to Contact Altera For the most up-to-date information about Altera products, refer to the following table. | Contact (1) | Contact
Method | Address | |---------------------------------|-------------------|---------------------------| | Technical support | Website | www.altera.com/support | | Technical training | Website | www.altera.com/training | | | Email | custrain@altera.com | | Product literature | Email | www.altera.com/literature | | Altera literature services | Website | literature@altera.com | | Non-technical support (General) | Email | nacomp@altera.com | | (Software Licensing) | Email | authorization@altera.com | #### Note to table: (1) You can also contact your local Altera sales office or sales representative. # Typographic Conventions This document uses the typographic conventions shown below. | Visual Cue | Meaning | |---|---| | Bold Type with Initial
Capital Letters | Command names, dialog box titles, checkbox options, and dialog box options are shown in bold, initial capital letters. Example: Save As dialog box. | | bold type | External timing parameters, directory names, project names, disk drive names, filenames, filename extensions, and software utility names are shown in bold type. Examples: f _{MAX} , \qdesigns directory, d: drive, chiptrip.gdf file. | | Italic Type with Initial Capital
Letters | Document titles are shown in italic type with initial capital letters. Example: AN 75: High-Speed Board Design. | Altera Corporation i | Visual Cue | Meaning | |-------------------------------------|---| | Italic type | Internal timing parameters and variables are shown in italic type. Examples: t_{PlA} , $n+1$. | | | Variable names are enclosed in angle brackets (< >) and shown in italic type. Example: <file name="">, <project name="">.pof file.</project></file> | | Initial Capital Letters | Keyboard keys and menu names are shown with initial capital letters. Examples: Delete key, the Options menu. | | "Subheading Title" | References to sections within a document and titles of on-line help topics are shown in quotation marks. Example: "Typographic Conventions." | | Courier type | Signal and port names are shown in lowercase Courier type. Examples: \mathtt{datal} , \mathtt{tdi} , \mathtt{input} . Active-low signals are denoted by suffix \mathtt{n} , $\mathtt{e.g.}$, \mathtt{resetn} . | | | Anything that must be typed exactly as it appears is shown in Courier type. For example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an actual file, such as a Report File, references to parts of files (e.g., the AHDL keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in Courier. | | 1., 2., 3., and
a., b., c., etc. | Numbered steps are used in a list of items when the sequence of the items is important, such as the steps listed in a procedure. | | ••• | Bullets are used in a list of items when the sequence of the items is not important. | | ✓ | The checkmark indicates a procedure that consists of one step only. | | | The hand points to information that requires special attention. | | CAUTION | The caution indicates required information that needs special consideration and understanding and should be read prior to starting or continuing with the procedure or process. | | WARNING | The warning indicates information that should be read prior to starting or continuing the procedure or processes | | 4 | The angled arrow indicates you should press the Enter key. | | ••• | The feet direct you to more information on a particular topic. | ii Altera Corporation | Memory Feature | M512 RAM Block
(32 × 18 Bits) | M4K RAM Block
(128 × 36 Bits) | M-RAM Block
(4K × 144 Bits) | | |---|---|--|--|--| | Simple dual-port memory mixed width support | ✓ | ✓ | ✓ | | | True dual-port memory mixed width support | | ~ | ✓ | | | Power-up conditions | Outputs cleared | Outputs cleared | Outputs unknown | | | Register clears Output registers | | Output registers | Output registers | | | Mixed-port read-during-write | Unknown output/old data | Unknown output/old data | Unknown output | | | Configurations | 512 × 1
256 × 2
128 × 4
64 × 8
64 × 9
32 × 16
32 × 18 | 4K × 1
2K × 2
1K × 4
512 × 8
512 × 9
256 × 16
256 × 18
128 × 32
128 × 36 | 64K × 8
64K × 9
32K × 16
32K × 18
16K × 32
16K × 36
8K × 64
8K × 72
4K × 128
4K × 144 | | #### Notes to Table 2-3: # **Memory Block Size** TriMatrix memory provides three different memory sizes for efficient application support. The Quartus II software automatically partitions the user-defined memory into the embedded memory blocks using the most efficient size combinations. You can also manually assign the memory to a specific block size or a mixture of block sizes. When applied to input registers, the asynchronous clear signal for the TriMatrix embedded memory immediately clears the input registers. However, the output of the memory block does not show the effects until the next clock edge. When applied to output registers, the asynchronous clear signal clears the output registers and the effects are seen immediately. ⁽¹⁾ The M-RAM block does not support memory initializations. However, the M-RAM block can emulate a ROM function using a dual-port RAM bock. The Stratix II device must write to the dual-port memory once and then disable the write-enable ports afterwards. | Table 2–4. M-RAM | Row Interface Unit Signals | | |----------------------|---|-----------------| | Unit Interface Block | Input Signals | Output Signals | | LO | datain_a[140]
byteena_a[10] | dataout_a[110] | | L1 | datain_a[2915]
byteena_a[32] | dataout_a[2312] | | L2 | datain_a[3530]
addressa[40]
addr_ena_a
clock_a
clocken_a
renwe_a
aclr_a | dataout_a[3524] | | L3 | addressa[155]
datain_a[4136] | dataout_a[4736] | | L4 | datain_a[5642]
byteena_a[54] | dataout_a[5948] | | L5 | datain_a[7157]
byteena_a[76] | dataout_a[7160] | | R0 | datain_b[140]
byteena_b[10] | dataout_b[110] | | R1 | datain_b[2915]
byteena_b[32] | dataout_b[2312] | | R2 | datain_b[3530] addressb[40] addr_ena_b clock_b clocken_b renwe_b aclr_b | dataout_b[3524] | | R3 | addressb[155]
datain_b[4136] | dataout_b[4736] | | R4 | datain_b[5642]
byteena_b[54] | dataout_b[5948] | | R5 | datain_b[7157]
byteena_b[76] | dataout_b[7160] | See the *TriMatrix Embedded Memory Blocks in Stratix II & Stratix II GX Devices* chapter in volume 2 of the *Stratix II Device Handbook* or the *Stratix II GX Device Handbook* for more information on TriMatrix memory. Figure 2–27. DSP Blocks Arranged in Columns DSP Block Column Figure 2–27 shows one of the columns with surrounding LAB rows. Figure 2-28. DSP Block Diagram for 18 x 18-Bit Configuration The LAB row source for control signals, data inputs, and outputs is shown in Table 2–7. | Table 2-7. I | DSP Block Signal Sources & Desti | nations | | |-------------------------|---|--------------------|--------------------| | LAB Row at
Interface | Control Signals Generated | Data Inputs | Data Outputs | | 0 | clock0 aclr0 ena0 mult01_saturate addnsub1_round/ accum_round addnsub1 signa sourcea sourceb | A1[170]
B1[170] | OA[170]
OB[170] | | 1 | clock1 aclr1 ena1 accum_saturate mult01_round accum_sload sourcea sourceb mode0 | A2[170]
B2[170] | OC[170]
OD[170] | | 2 | clock2 aclr2 ena2 mult23_saturate addnsub3_round/ accum_round addnsub3 sign_b sourcea sourceb | A3[170]
B3[170] | OE[170]
OF[170] | | 3 | clock3 aclr3 ena3 accum_saturate mult23_round accum_sload sourcea sourceb mode1 | A4[170]
B4[170] | OG[170]
OH[170] | See the *DSP Blocks in Stratix II & Stratix II GX Devices* chapter in volume 2 of the *Stratix II Device Handbook* or the *Stratix II GX Device Handbook*, for more information on DSP blocks. The Stratix II clock networks can be disabled (powered down) by both static and dynamic approaches. When a clock net is powered down, all the logic fed by the clock net is in an off-state thereby reducing the overall power consumption of the device. The global and regional clock networks can be powered down statically through a setting in the configuration (.sof or .pof) file. Clock networks that are not used are automatically powered down through configuration bit settings in the configuration file generated by the Quartus II software. The dynamic clock enable/disable feature allows the internal logic to control power up/down synchronously on GCLK and RCLK nets and PLL_OUT pins. This function is independent of the PLL and is applied directly on the clock network or PLL_OUT pin, as shown in Figures 2–37 through 2–39. The following restrictions for the input clock pins apply: - CLK0 pin -> inclk[0] of CLKCTRL - CLK1 pin -> inclk[1] of CLKCTRL - CLK2 pin -> inclk[0] of CLKCTRL - CLK3 pin -> inclk[1] of CLKCTRL In general, even CLK numbers connect to the inclk [0] port of CLKCTRL, and odd CLK numbers connect to the inclk [1] port of CLKCTRL. Failure to comply with these restrictions will result in a no-fit error. ## **Enhanced & Fast PLLs** Stratix II devices provide robust clock management and synthesis using up to four enhanced PLLs and eight fast PLLs. These PLLs increase performance and provide advanced clock interfacing and clock-frequency synthesis. With features such as clock switchover, spread-spectrum clocking, reconfigurable bandwidth, phase control, and reconfigurable phase shifting, the Stratix II device's enhanced PLLs provide you with complete control of clocks and system timing. The fast PLLs provide general purpose clocking with multiplication and phase shifting as well as high-speed outputs for high-speed differential I/O support. Enhanced and fast PLLs work together with the Stratix II high-speed I/O and advanced clock architecture to provide significant improvements in system performance and bandwidth. | Table 2–16. Stratix II Supported I/O Standards (Part 2 of 2) | | | | | |--|----------------------------------|--|-----|------| | | | | | | | SSTL-2 Class I and II | lass I and II Voltage-referenced | | 2.5 | 1.25 | #### Notes to Table 2–16: - (1) This I/O standard is only available on input and output column clock pins. - (2) This I/O standard is only available on input clock pins and DQS pins in I/O banks 3, 4, 7, and 8, and output clock pins in I/O banks 9,10, 11, and 12. - (3) V_{CCIO} is 3.3 V when using this I/O standard in input and output column clock pins (in I/O banks 9, 10, 11, and 12). The clock input pins supporting LVDS on banks 3, 4, 7, and 8 use V_{CCINT} for LVDS input operations and have no dependency on the V_{CCIO} level of the bank. - (4) 1.2-V HSTL is only supported in I/O banks 4,7, and 8. For more information on I/O standards supported by Stratix II I/O banks, refer to the *Selectable I/O Standards in Stratix II & Stratix II GX Devices* chapter in volume 2 of the *Stratix II Device Handbook* or the *Stratix II GX Device Handbook*. Stratix II devices contain eight I/O banks and four enhanced PLL external clock output banks, as shown in Figure 2–57. The four I/O banks on the right and left of the device contain circuitry to support high-speed differential I/O for LVDS and HyperTransport inputs and outputs. These banks support all Stratix II I/O standards except PCI or PCI-X I/O pins, and SSTL-18 Class II and HSTL outputs. The top and bottom I/O banks support all single-ended I/O standards. Additionally, enhanced PLL external clock output banks allow clock output capabilities such as differential support for SSTL and HSTL. Table 2–17 shows the Stratix II on-chip termination support per I/O bank. | On-Chip Termination Support | I/O Standard Support | Top & Bottom Banks | Left & Right Banks | |------------------------------------|-----------------------|--------------------|--------------------| | Series termination without | 3.3-V LVTTL | ✓ | ✓ | | calibration | 3.3-V LVCMOS | ✓ | ✓ | | | 2.5-V LVTTL | ✓ | ✓ | | | 2.5-V LVCMOS | ✓ | ✓ | | | 1.8-V LVTTL | ✓ | ✓ | | | 1.8-V LVCMOS | ✓ | ✓ | | | 1.5-V LVTTL | ✓ | ✓ | | | 1.5-V LVCMOS | ✓ | ✓ | | | SSTL-2 Class I and II | ✓ | ✓ | | | SSTL-18 Class I | ✓ | ✓ | | | SSTL-18 Class II | ✓ | | | | 1.8-V HSTL Class I | ✓ | ✓ | | | 1.8-V HSTL Class II | ✓ | | | | 1.5-V HSTL Class I | ✓ | ✓ | | | 1.2-V HSTL | ✓ | | ## Differential On-Chip Termination Stratix II devices support internal differential termination with a nominal resistance value of $100~\Omega$ for LVDS or HyperTransport technology input receiver buffers. LVPECL input signals (supported on clock pins only) require an external termination resistor. Differential on-chip termination is supported across the full range of supported differential data rates as shown in the DC & Switching Characteristics chapter in volume 1 of the Stratix II Device Handbook. For more information on differential on-chip termination, refer to the *High-Speed Differential I/O Interfaces with DPA in Stratix II & Stratix II GX Devices* chapter in volume 2 of the *Stratix II Device Handbook* or the *Stratix II GX Device Handbook*. For more information on tolerance specifications for differential on-chip termination, refer to the *DC & Switching Characteristics* chapter in volume 1 of the *Stratix II Device Handbook*. ## On-Chip Series Termination Without Calibration Stratix II devices support driver impedance matching to provide the I/O driver with controlled output impedance that closely matches the impedance of the transmission line. As a result, reflections can be significantly reduced. Stratix II devices support on-chip series termination for single-ended I/O standards with typical $R_{\rm S}$ values of 25 and 50 Ω Once matching impedance is selected, current drive strength is no longer selectable. Table 2–17 shows the list of output standards that support on-chip series termination without calibration. # On-Chip Series Termination with Calibration Stratix II devices support on-chip series termination with calibration in column I/O pins in top and bottom banks. There is one calibration circuit for the top I/O banks and one circuit for the bottom I/O banks. Each on-chip series termination calibration circuit compares the total impedance of each I/O buffer to the external 25- or $50-\Omega$ resistors connected to the RUP and RDN pins, and dynamically enables or disables the transistors until they match. Calibration occurs at the end of device configuration. Once the calibration circuit finds the correct impedance, it powers down and stops changing the characteristics of the drivers. For more information on series on-chip termination supported by Stratix II devices, refer to the *Selectable I/O Standards in Stratix II & Stratix II GX Devices* chapter in volume 2 of the *Stratix II Device Handbook* or the *Stratix II GX Device Handbook*. Table 2–18 summarizes Stratix II MultiVolt I/O support. | Table 2–18 | Table 2–18. Stratix II MultiVolt I/O Support Note (1) | | | | | | | | | | | |-----------------------|---|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----------|----------| | v (v) | | Ir | nput Signal | (V) | | | 0ι | ıtput Sig | nal (V) | | | | V _{CCIO} (V) | 1.2 | 1.2 1.5 1.8 | | 2.5 | 3.3 | 1.2 | 1.5 | 1.8 | 2.5 | 3.3 | 5.0 | | 1.2 | (4) | √ (2) | √ (2) | √ (2) | √ (2) | √ (4) | | | | | | | 1.5 | (4) | ✓ | ✓ | √ (2) | √ (2) | √ (3) | ✓ | | | | | | 1.8 | (4) | ✓ | ✓ | √ (2) | √ (2) | √ (3) | √ (3) | ✓ | | | | | 2.5 | (4) | | | ✓ | ✓ | √ (3) | √ (3) | √ (3) | ✓ | | | | 3.3 | (4) | | | ✓ | ✓ | √ (3) | √ (3) | √ (3) | √ (3) | ✓ | ✓ | #### Notes to Table 2–18: - To drive inputs higher than V_{CCIO} but less than 4.0 V, disable the PCI clamping diode and select the Allow LVTTL and LVCMOS input levels to overdrive input buffer option in the Quartus II software. - (2) The pin current may be slightly higher than the default value. You must verify that the driving device's V_{OL} maximum and V_{OH} minimum voltages do not violate the applicable Stratix II V_{IL} maximum and V_{IH} minimum voltage specifications. - (3) Although V_{CCIO} specifies the voltage necessary for the Stratix II device to drive out, a receiving device powered at a different level can still interface with the Stratix II device if it has inputs that tolerate the V_{CCIO} value. - (4) Stratix II devices do not support 1.2-V LVTTL and 1.2-V LVCMOS. Stratix II devices support 1.2-V HSTL. The TDO and nCEO pins are powered by V_{CCIO} of the bank that they reside in. TDO is in I/O bank 4 and nCEO is in I/O bank 7. Ideally, the V_{CC} supplies for the I/O buffers of any two connected pins are at the same voltage level. This may not always be possible depending on the V_{CCIO} level of TDO and nCEO pins on master devices and the configuration voltage level chosen by VCCSEL on slave devices. Master and slave devices can be in any position in the chain. Master indicates that it is driving out TDO or nCEO to a slave device. For multi-device passive configuration schemes, the nCEO pin of the master device drives the nCE pin of the slave device. The VCCSEL pin on the slave device selects which input buffer is used for nCE. When VCCSEL is logic high, it selects the 1.8-V/1.5-V buffer powered by $V_{\rm CCIO}$. When VCCSEL is logic low it selects the 3.3-V/2.5-V input buffer powered by $V_{\rm CCPD}$. The ideal case is to have the $V_{\rm CCIO}$ of the nCEO bank in a master device match the VCCSEL settings for the nCE input buffer of the slave device it is connected to, but that may not be possible depending on the application. Table 2–19 contains board design recommendations to ensure that nCEO can successfully drive nCE for all power supply combinations. | Table 5-3. Stratix II Device Recommended Operating Conditions (Part 2 of 2) Note (1) | | | | | | | | | |--|---|----------------------|-------------|-----|----|--|--|--| | Symbol | Parameter Conditions Minimum Maximum Unit | | | | | | | | | T_{J} | Operating junction temperature | For commercial use | 0 | 85 | °C | | | | | | | For industrial use | -40 | 100 | °C | | | | | | | For military use (7) | - 55 | 125 | °C | | | | #### Notes to Table 5-3: - (1) Supply voltage specifications apply to voltage readings taken at the device pins, not at the power supply. - (2) During transitions, the inputs may overshoot to the voltage shown in Table 5–2 based upon the input duty cycle. The DC case is equivalent to 100% duty cycle. During transitions, the inputs may undershoot to –2.0 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically from ground to V_{CC} . - (4) V_{CCPD} must ramp-up from 0 V to 3.3 V within 100 μs to 100 ms. If V_{CCPD} is not ramped up within this specified time, your Stratix II device does not configure successfully. If your system does not allow for a V_{CCPD} ramp-up time of 100 ms or less, you must hold nCONFIG low until all power supplies are reliable. - (5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT}, V_{CCPD}, and V_{CCIO} are powered. - (6) V_{CCIO} maximum and minimum conditions for PCI and PCI-X are shown in parentheses. - (7) For more information, refer to the Stratix II Military Temperature Range Support technical brief. # **DC Electrical Characteristics** Table 5–4 shows the Stratix II device family DC electrical characteristics. | Table 5- | Table 5–4. Stratix II Device DC Operating Conditions (Part 1 of 2) Note (1) | | | | | | | | | |---------------------|---|--|--------------|---------|---------|------|----|--|--| | Symbol | Parameter | Conditio | Minimum | Typical | Maximum | Unit | | | | | I _I | Input pin leakage current | V _I = V _{CCIOmax} to 0 \ | <i>I (2)</i> | -10 | | 10 | μА | | | | I _{OZ} | Tri-stated I/O pin leakage current | $V_O = V_{CCIOmax}$ to 0 | V (2) | -10 | | 10 | μА | | | | I _{CCINTO} | $\begin{array}{c} V_{CCINT} \text{ supply current} \\ \text{(standby)} \end{array} \begin{array}{c} V_I = \text{ground, no} \\ \text{load, no toggling} \\ \text{inputs} \\ T_J = 25^\circ \text{ C} \end{array}$ | | EP2S15 | | 0.25 | (3) | Α | | | | | | inputs | EP2S30 | | 0.30 | (3) | Α | | | | | | | EP2S60 | | 0.50 | (3) | Α | | | | | | | EP2S90 | | 0.62 | (3) | Α | | | | | | EP2S130 | | 0.82 | (3) | Α | | | | | | | | EP2S180 | | 1.12 | (3) | Α | | | | I _{CCPD0} | V _{CCPD} supply current | V _I = ground, no | EP2S15 | | 2.2 | (3) | mA | | | | | (standby) | load, no toggling | EP2S30 | | 2.7 | (3) | mA | | | | | | inputs
T _{.l} = 25° C, | EP2S60 | | 3.6 | (3) | mA | | | | í | | $V_{CCPD} = 3.3V$ | EP2S90 | | 4.3 | (3) | mA | | | | | | | EP2S130 | | 5.4 | (3) | mA | | | | | | | EP2S180 | | 6.8 | (3) | mA | | | | Table 5-1 | Table 5–12. LVPECL Specifications | | | | | | | | | | |-----------------------|---|------------------------|---------|---------|---------|------|--|--|--|--| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | | | | | V _{CCIO} (1) | I/O supply voltage | | 3.135 | 3.300 | 3.465 | V | | | | | | V _{ID} | Input differential voltage swing (single-ended) | | 300 | 600 | 1,000 | mV | | | | | | V _{ICM} | Input common mode voltage | | 1.0 | | 2.5 | ٧ | | | | | | V _{OD} | Output differential voltage (single-ended) | R _L = 100 Ω | 525 | | 970 | mV | | | | | | V _{OCM} | Output common mode voltage | R _L = 100 Ω | 1,650 | | 2,250 | mV | | | | | | R _L | Receiver differential input resistor | | 90 | 100 | 110 | Ω | | | | | #### Note to Table 5-12: (1) The top and bottom clock input differential buffers in I/O banks 3, 4, 7, and 8 are powered by V_{CCINT} , not V_{CCIO} . The PLL clock output/feedback differential buffers are powered by VCC_PLL_OUT. For differential clock output/feedback operation, VCC_PLL_OUT should be connected to 3.3 V. | Table 5–1 | Table 5–13. HyperTransport Technology Specifications | | | | | | | | | | | |--------------------|--|--------------------|---------|---------|---------|------|--|--|--|--|--| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | | | | | | V _{CCIO} | I/O supply voltage for left and right I/O banks (1, 2, 5, and 6) | | 2.375 | 2.500 | 2.625 | V | | | | | | | V _{ID} | Input differential voltage swing (single-ended) | $R_L = 100 \Omega$ | 300 | 600 | 900 | mV | | | | | | | V _{ICM} | Input common mode voltage | $R_L = 100 \Omega$ | 385 | 600 | 845 | mV | | | | | | | V _{OD} | Output differential voltage (single-ended) | $R_L = 100 \Omega$ | 400 | 600 | 820 | mV | | | | | | | ΔV _{OD} | Change in V _{OD} between high and low | $R_L = 100 \Omega$ | | | 75 | mV | | | | | | | V _{OCM} | Output common mode voltage | $R_L = 100 \Omega$ | 440 | 600 | 780 | mV | | | | | | | Δ V _{OCM} | Change in V _{OCM} between high and low | $R_L = 100 \Omega$ | | | 50 | mV | | | | | | | R _L | Receiver differential input resistor | | 90 | 100 | 110 | Ω | | | | | | | Table 5–14. 3.3-V PCI Specifications (Part 1 of 2) | | | | | | | | | | |--|--------------------------|---------|-----------------------|-----|-------------------------|---|--|--|--| | Symbol | Parameter | Maximum | Unit | | | | | | | | V _{CCIO} | Output supply voltage | | 3.0 | 3.3 | 3.6 | V | | | | | V _{IH} | High-level input voltage | | $0.5 \times V_{CCIO}$ | | V _{CCIO} + 0.5 | V | | | | | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | |----------------------|-----------------------------|----------------------------------|--------------------------|-----------|--------------------------|------| | V_{CCIO} | Output supply voltage | | 1.71 | 1.80 | 1.89 | ٧ | | V_{REF} | Reference voltage | | 0.855 | 0.900 | 0.945 | ٧ | | V _{TT} | Termination voltage | | V _{REF} - 0.04 | V_{REF} | V _{REF} + 0.04 | ٧ | | V _{IH} (DC) | High-level DC input voltage | | V _{REF} + 0.125 | | | V | | V _{IL} (DC) | Low-level DC input voltage | | | | V _{REF} - 0.125 | ٧ | | V _{IH} (AC) | High-level AC input voltage | | V _{REF} + 0.25 | | | V | | V _{IL} (AC) | Low-level AC input voltage | | | | V _{REF} - 0.25 | V | | V _{OH} | High-level output voltage | $I_{OH} = -13.4 \text{ mA } (1)$ | V _{CCIO} - 0.28 | | | ٧ | | V _{OL} | Low-level output voltage | I _{OL} = 13.4 mA (1) | | | 0.28 | ٧ | #### Note to Table 5–17: ⁽¹⁾ This specification is supported across all the programmable drive settings available for this I/O standard as shown in the *Stratix II Architecture* chapter in volume 1 of the *Stratix II Device Handbook*. | Table 5 | Table 5–18. SSTL-18 Class I & II Differential Specifications | | | | | | | | | | |-------------------------|--|------------|--------------------------------|-----------------------|--------------------------------|------|--|--|--|--| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | | | | | V_{CCIO} | Output supply voltage | | 1.71 | 1.80 | 1.89 | V | | | | | | V _{SWING} (DC) | DC differential input voltage | | 0.25 | | | ٧ | | | | | | V _X (AC) | AC differential input cross point voltage | | (V _{CCIO} /2) - 0.175 | | (V _{CCIO} /2) + 0.175 | ٧ | | | | | | V _{SWING} (AC) | AC differential input voltage | | 0.5 | | | V | | | | | | V _{ISO} | Input clock signal offset voltage | | | $0.5 \times V_{CCIO}$ | | ٧ | | | | | | ΔV_{ISO} | Input clock signal offset voltage variation | | | ±200 | | mV | | | | | | V _{OX} (AC) | AC differential cross point voltage | | (V _{CCIO} /2) - 0.125 | | (V _{CCIO} /2) + 0.125 | V | | | | | | Table 5 | Table 5–21. SSTL-2 Class I & II Differential Specifications | | | | | | | | | | |-------------------------|---|------------|------------------------------|-------------------------|----------------------|------|--|--|--|--| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | | | | | V_{CCIO} | Output supply voltage | | 2.375 | 2.500 | 2.625 | V | | | | | | V _{SWING} (DC) | DC differential input voltage | | 0.36 | | | V | | | | | | V _X (AC) | AC differential input cross point voltage | | $(V_{CCIO}/2) - 0.2$ | | $(V_{CCIO}/2) + 0.2$ | V | | | | | | V _{SWING} (AC) | AC differential input voltage | | 0.7 | | | V | | | | | | V _{ISO} | Input clock signal offset voltage | | | 0.5 × V _{CCIO} | | V | | | | | | ΔV_{ISO} | Input clock signal offset voltage variation | | | ±200 | | mV | | | | | | V _{OX} (AC) | AC differential output cross point voltage | | (V _{CCIO} /2) - 0.2 | | $(V_{CCIO}/2) + 0.2$ | V | | | | | | Table 5- | Table 5–22. 1.2-V HSTL Specifications | | | | | | | | | | |----------------------|---------------------------------------|--------------------------|--------------------------|------------------------|--------------------------|------|--|--|--|--| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | | | | | V _{CCIO} | Output supply voltage | | 1.14 | 1.20 | 1.26 | V | | | | | | V _{REF} | Reference voltage | | 0.48 × V _{CCIO} | $0.50 \times V_{CCIO}$ | 0.52 × V _{CCIO} | ٧ | | | | | | V _{IH} (DC) | High-level DC input voltage | | V _{REF} + 0.08 | | V _{CCIO} + 0.15 | ٧ | | | | | | V _{IL} (DC) | Low-level DC input voltage | | -0.15 | | $V_{REF} - 0.08$ | V | | | | | | V _{IH} (AC) | High-level AC input voltage | | V _{REF} + 0.15 | | V _{CCIO} + 0.24 | ٧ | | | | | | V _{IL} (AC) | Low-level AC input voltage | | -0.24 | | $V_{REF} - 0.15$ | V | | | | | | V _{OH} | High-level output voltage | I _{OH} = 8 mA | V _{REF} + 0.15 | | V _{CCIO} + 0.15 | V | | | | | | V _{OL} | Low-level output voltage | $I_{OH} = -8 \text{ mA}$ | -0.15 | | $V_{REF} - 0.15$ | ٧ | | | | | | Table 5–65. EP2S180 Column Pins Global Clock Timing Parameters | | | | | | | | | | |--|----------------|------------|----------|----------|----------|------|--|--|--| | Parameter | Minimum Timing | | -3 Speed | -4 Speed | -5 Speed | Unit | | | | | | Industrial | Commercial | Grade | Grade | Grade | Unit | | | | | t _{CIN} | 2.003 | 2.100 | 3.652 | 3.993 | 4.648 | ns | | | | | t _{COUT} | 1.846 | 1.935 | 3.398 | 3.715 | 4.324 | ns | | | | | t _{PLLCIN} | -0.3 | -0.29 | 0.053 | 0.054 | 0.058 | ns | | | | | t _{PLLCOUT} | -0.457 | -0.455 | -0.201 | -0.224 | -0.266 | ns | | | | | Table 5–66. EP2S180 Row Pins Regional Clock Timing Parameters | | | | | | | | | | | |---|----------------|------------|----------|----------|----------|-------|--|--|--|--| | Parameter | Minimum Timing | | -3 Speed | -4 Speed | -5 Speed | Unit | | | | | | | Industrial | Commercial | Grade | Grade | Grade | UIIII | | | | | | t _{CIN} | 1.759 | 1.844 | 3.273 | 3.577 | 4.162 | ns | | | | | | t _{COUT} | 1.764 | 1.849 | 3.269 | 3.573 | 4.157 | ns | | | | | | t _{PLLCIN} | -0.542 | -0.541 | -0.317 | -0.353 | -0.414 | ns | | | | | | t _{PLLCOUT} | -0.537 | -0.536 | -0.321 | -0.357 | -0.419 | ns | | | | | | Table 5–67. EP2S180 Row Pins Global Clock Timing Parameters | | | | | | | | | | |---|----------------|------------|----------|----------|----------|-------|--|--|--| | Parameter | Minimum Timing | | -3 Speed | -4 Speed | -5 Speed | Unit | | | | | | Industrial | Commercial | Grade | Grade | Grade | UIIIL | | | | | t _{CIN} | 1.763 | 1.850 | 3.285 | 3.588 | 4.176 | ns | | | | | t _{COUT} | 1.768 | 1.855 | 3.281 | 3.584 | 4.171 | ns | | | | | t _{PLLCIN} | -0.542 | -0.542 | -0.319 | -0.355 | -0.42 | ns | | | | | t _{PLLCOUT} | -0.537 | -0.537 | -0.323 | -0.359 | -0.425 | ns | | | | Table 5–71. Default Loading of Different I/O Standards for Stratix II (Part 2 of 2) | I/O Standard | Capacitive Load | Unit | |----------------------------------|-----------------|------| | SSTL-2 Class II | 0 | pF | | SSTL-18 Class I | 0 | pF | | SSTL-18 Class II | 0 | pF | | 1.5-V HSTL Class I | 0 | pF | | 1.5-V HSTL Class II | 0 | pF | | 1.8-V HSTL Class I | 0 | pF | | 1.8-V HSTL Class II | 0 | pF | | 1.2-V HSTL with OCT | 0 | pF | | Differential SSTL-2 Class I | 0 | pF | | Differential SSTL-2 Class II | 0 | pF | | Differential SSTL-18 Class I | 0 | pF | | Differential SSTL-18 Class II | 0 | pF | | 1.5-V Differential HSTL Class I | 0 | pF | | 1.5-V Differential HSTL Class II | 0 | pF | | 1.8-V Differential HSTL Class I | 0 | pF | | 1.8-V Differential HSTL Class II | 0 | pF | | LVDS | 0 | pF | | HyperTransport | 0 | pF | | LVPECL | 0 | pF | | Table 5–78. Maxi | mum Output | t Toggle R | ate on St | ratix II De | evices (Pa | art 3 of 5) |) No | ote (1) | | | |--|-----------------|------------|------------|-------------|------------|-------------|------|---------|---------|-------| | I/O Otomdond | Drive | Colum | n I/O Pins | (MHz) | Row I | /O Pins (I | MHz) | Clock | Outputs | (MHz) | | I/O Standard | Strength | -3 | -4 | -5 | -3 | -4 | -5 | -3 | -4 | -5 | | Differential | 4 mA | 200 | 150 | 150 | 200 | 150 | 150 | 200 | 150 | 150 | | SSTL-18 Class I | 6 mA | 350 | 250 | 200 | 350 | 250 | 200 | 350 | 250 | 200 | | (0) | 8 mA | 450 | 300 | 300 | 450 | 300 | 300 | 450 | 300 | 300 | | | 10 mA | 500 | 400 | 400 | 500 | 400 | 400 | 500 | 400 | 400 | | | 12 mA | 700 | 550 | 400 | 350 | 350 | 297 | 650 | 550 | 400 | | Differential | 8 mA | 200 | 200 | 150 | - | - | - | 200 | 200 | 150 | | SSTL-18 Class II | 16 mA | 400 | 350 | 350 | - | - | - | 400 | 350 | 350 | | (3) | 18 mA | 450 | 400 | 400 | - | - | - | 450 | 400 | 400 | | | 20 mA | 550 | 500 | 450 | - | - | - | 550 | 500 | 450 | | 1.8-V Differential
HSTL Class I (3) | 4 mA | 300 | 300 | 300 | - | - | - | 300 | 300 | 300 | | | 6 mA | 500 | 450 | 450 | - | - | - | 500 | 450 | 450 | | | 8 mA | 650 | 600 | 600 | - | - | - | 650 | 600 | 600 | | | 10 mA | 700 | 650 | 600 | - | - | - | 700 | 650 | 600 | | | 12 mA | 700 | 700 | 650 | - | - | - | 700 | 700 | 650 | | 1.8-V Differential | 16 mA | 500 | 500 | 450 | - | - | - | 500 | 500 | 450 | | HSTL Class II (3) | 18 mA | 550 | 500 | 500 | - | - | - | 550 | 500 | 500 | | | 20 mA | 650 | 550 | 550 | - | - | - | 550 | 550 | 550 | | 1.5-V Differential | 4 mA | 350 | 300 | 300 | - | - | - | 350 | 300 | 300 | | HSTL Class I (3) | 6 mA | 500 | 500 | 450 | - | - | - | 500 | 500 | 450 | | | 8 mA | 700 | 650 | 600 | - | - | - | 700 | 650 | 600 | | | 10 mA | 700 | 700 | 650 | - | - | - | 700 | 700 | 650 | | | 12 mA | 700 | 700 | 700 | - | - | - | 700 | 700 | 700 | | 1.5-V Differential | 16 mA | 600 | 600 | 550 | - | - | - | 600 | 600 | 550 | | HSTL Class II (3) | 18 mA | 650 | 600 | 600 | - | - | - | 650 | 600 | 600 | | | 20 mA | 700 | 650 | 600 | - | - | - | 700 | 650 | 600 | | 3.3-V PCI | | 1,000 | 790 | 670 | - | - | - | 1,000 | 790 | 670 | | 3.3-V PCI-X | | 1,000 | 790 | 670 | - | - | - | 1,000 | 790 | 670 | | LVDS (6) | | - | - | - | 500 | 500 | 500 | 450 | 400 | 300 | | HyperTransport technology (4), (6) | | | | | 500 | 500 | 500 | - | - | - | | LVPECL (5) | | - | - | - | - | - | - | 450 | 400 | 300 | | 3.3-V LVTTL | OCT 50 Ω | 400 | 400 | 350 | 400 | 400 | 350 | 400 | 400 | 350 | | 2.5-V LVTTL | OCT 50 Ω | 350 | 350 | 300 | 350 | 350 | 300 | 350 | 350 | 300 | | Table 5–78. Maximum Output Toggle Rate on Stratix II Devices (Part 5 of 5) Note (1) | | | | | | | | | | | | |---|-------------------|-----------------------|----|----|--------------------|----|----|---------------------|----|----|--| | I/O Standard | Drive
Strength | Column I/O Pins (MHz) | | | Row I/O Pins (MHz) | | | Clock Outputs (MHz) | | | | | | | -3 | -4 | -5 | -3 | -4 | -5 | -3 | -4 | -5 | | | 1.2-V Differential
HSTL | OCT 50 Ω | 280 | - | - | - | - | - | 280 | - | - | | #### Notes to Table 5-78: - (1) The toggle rate applies to 0-pF output load for all I/O standards except for LVDS and HyperTransport technology on row I/O pins. For LVDS and HyperTransport technology on row I/O pins, the toggle rates apply to load from 0 to 5pF. - (2) 1.2-V HSTL is only supported on column I/O pins in I/O banks 4, 7, and 8. - (3) Differential HSTL and SSTL is only supported on column clock and DQS outputs. - (4) HyperTransport technology is only supported on row I/O and row dedicated clock input pins. - (5) LVPECL is only supported on column clock pins. - (6) Refer to Tables 5–81 through 5–91 if using SERDES block. Use the toggle rate values from the clock output column for PLL output. | Table 5–79. Maximum Output Clock Toggle Rate Derating Factors (Part 1 of 5) | | | | | | | | | | | | |---|-------------------|---|-----|-----|--------------|-----|-----|-------------------------|-----|-----|--| | | Drive
Strength | Maximum Output Clock Toggle Rate Derating Factors (ps/pF) | | | | | | | | | | | I/O Standard | | Column I/O Pins | | | Row I/O Pins | | | Dedicated Clock Outputs | | | | | | | -3 | -4 | -5 | -3 | -4 | -5 | -3 | -4 | -5 | | | 3.3-V LVTTL | 4 mA | 478 | 510 | 510 | 478 | 510 | 510 | 466 | 510 | 510 | | | | 8 mA | 260 | 333 | 333 | 260 | 333 | 333 | 291 | 333 | 333 | | | | 12 mA | 213 | 247 | 247 | 213 | 247 | 247 | 211 | 247 | 247 | | | | 16 mA | 136 | 197 | 197 | - | - | - | 166 | 197 | 197 | | | | 20 mA | 138 | 187 | 187 | - | - | - | 154 | 187 | 187 | | | | 24 mA | 134 | 177 | 177 | - | - | - | 143 | 177 | 177 | | | 3.3-V LVCMOS | 4 mA | 377 | 391 | 391 | 377 | 391 | 391 | 377 | 391 | 391 | | | | 8 mA | 206 | 212 | 212 | 206 | 212 | 212 | 178 | 212 | 212 | | | | 12 mA | 141 | 145 | 145 | - | - | - | 115 | 145 | 145 | | | | 16 mA | 108 | 111 | 111 | - | - | - | 86 | 111 | 111 | | | | 20 mA | 83 | 88 | 88 | - | - | - | 79 | 88 | 88 | | | | 24 mA | 65 | 72 | 72 | - | - | - | 74 | 72 | 72 | | | 2.5-V
LVTTL/LVCMOS | 4 mA | 387 | 427 | 427 | 387 | 427 | 427 | 391 | 427 | 427 | | | | 8 mA | 163 | 224 | 224 | 163 | 224 | 224 | 170 | 224 | 224 | | | | 12 mA | 142 | 203 | 203 | 142 | 203 | 203 | 152 | 203 | 203 | | | | 16 mA | 120 | 182 | 182 | - | - | - | 134 | 182 | 182 | |