Welcome to **E-XFL.COM** ## Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 3022 | | Number of Logic Elements/Cells | 60440 | | Total RAM Bits | 2544192 | | Number of I/O | 718 | | Number of Gates | - | | Voltage - Supply | 1.15V ~ 1.25V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 1020-BBGA | | Supplier Device Package | 1020-FBGA (33x33) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep2s60f1020c4 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # Document Revision History Table 1–6 shows the revision history for this chapter. | Table 1–6. Document Revision History | | | | | |--------------------------------------|---|--------------------|--|--| | Date and
Document
Version | Changes Made | Summary of Changes | | | | May 2007, v4.2 | Moved Document Revision History to the end of the chapter. | _ | | | | April 2006, v4.1 | Updated "Features" section. Removed Note 4 from Table 1–2. Updated Table 1–4. | _ | | | | December 2005,
v4.0 | Updated Tables 1–2, 1–4, and 1–5.Updated Figure 2–43. | _ | | | | July 2005, v3.1 | Added vertical migration information, including
Table 1–4. Updated Table 1–5. | _ | | | | May 2005, v3.0 | Updated "Features" section.Updated Table 1–2. | _ | | | | March 2005,
v2.1 | Updated "Introduction" and "Features" sections. | _ | | | | January 2005,
v2.0 | Added note to Table 1–2. | _ | | | | October 2004,
v1.2 | Updated Tables 1-2, 1-3, and 1-5. | _ | | | | July 2004, v1.1 | Updated Tables 1–1 and 1–2.Updated "Features" section. | | | | | February 2004,
v1.0 | Added document to the Stratix II Device Handbook. | _ | | | Figure 2–10. Template for Supported Seven-Input Functions in Extended LUT Mode Note to Figure 2-10: If the seven-input function is unregistered, the unused eighth input is available for register packing. The second register, reg1, is not available. #### Arithmetic Mode The arithmetic mode is ideal for implementing adders, counters, accumulators, wide parity functions, and comparators. An ALM in arithmetic mode uses two sets of two four-input LUTs along with two dedicated full adders. The dedicated adders allow the LUTs to be available to perform pre-adder logic; therefore, each adder can add the output of two four-input functions. The four LUTs share the dataa and datab inputs. As shown in Figure 2–11, the carry-in signal feeds to adder0, and the carry-out from adder0 feeds to carry-in of adder1. The carry-out from adder1 drives to adder0 of the next ALM in the LAB. ALMs in arithmetic mode can drive out registered and/or unregistered versions of the adder outputs. Figure 2-12. Conditional Operation Example The arithmetic mode also offers clock enable, counter enable, synchronous up/down control, add/subtract control, synchronous clear, synchronous load. The LAB local interconnect data inputs generate the clock enable, counter enable, synchronous up/down and add/subtract control signals. These control signals are good candidates for the inputs that are shared between the four LUTs in the ALM. The synchronous clear and synchronous load options are LAB-wide signals that affect all registers in the LAB. The Quartus II software automatically places any registers that are not used by the counter into other LABs. #### Carry Chain The carry chain provides a fast carry function between the dedicated adders in arithmetic or shared arithmetic mode. Carry chains can begin in either the first ALM or the fifth ALM in an LAB. The final carry-out signal is routed to an ALM, where it is fed to local, row, or column interconnects. Figure 2-19. M512 RAM Block Control Signals ## PLLs & Clock Networks Stratix II devices provide a hierarchical clock structure and multiple PLLs with advanced features. The large number of clocking resources in combination with the clock synthesis precision provided by enhanced and fast PLLs provides a complete clock management solution. ## **Global & Hierarchical Clocking** Stratix II devices provide 16 dedicated global clock networks and 32 regional clock networks (eight per device quadrant). These clocks are organized into a hierarchical clock structure that allows for up to 24 clocks per device region with low skew and delay. This hierarchical clocking scheme provides up to 48 unique clock domains in Stratix II devices. There are 16 dedicated clock pins (CLK [15..0]) to drive either the global or regional clock networks. Four clock pins drive each side of the device, as shown in Figures 2–31 and 2–32. Internal logic and enhanced and fast PLL outputs can also drive the global and regional clock networks. Each global and regional clock has a clock control block, which controls the selection of the clock source and dynamically enables/disables the clock to reduce power consumption. Table 2–8 shows global and regional clock features. | Table 2–8. Global & Regional Clock Features | | | | | | | | | |---|--|--|--|--|--|--|--|--| | Feature | Global Clocks | Regional Clocks | | | | | | | | Number per device | 16 | 32 | | | | | | | | Number available per quadrant | 16 | 8 | | | | | | | | Sources | CLK pins, PLL outputs, or internal logic | CLK pins, PLL outputs, or internal logic | | | | | | | | Dynamic clock source selection | √ (1) | | | | | | | | | Dynamic enable/disable | ✓ | ✓ | | | | | | | Note to Table 2–8: Dynamic source clock selection is supported for selecting between CLKp pins and PLL outputs only. #### Global Clock Network These clocks drive throughout the entire device, feeding all device quadrants. The global clock networks can be used as clock sources for all resources in the device-IOEs, ALMs, DSP blocks, and all memory blocks. These resources can also be used for control signals, such as clock enables and synchronous or asynchronous clears fed from the external pin. The The Stratix II clock networks can be disabled (powered down) by both static and dynamic approaches. When a clock net is powered down, all the logic fed by the clock net is in an off-state thereby reducing the overall power consumption of the device. The global and regional clock networks can be powered down statically through a setting in the configuration (.sof or .pof) file. Clock networks that are not used are automatically powered down through configuration bit settings in the configuration file generated by the Quartus II software. The dynamic clock enable/disable feature allows the internal logic to control power up/down synchronously on GCLK and RCLK nets and PLL_OUT pins. This function is independent of the PLL and is applied directly on the clock network or PLL_OUT pin, as shown in Figures 2–37 through 2–39. The following restrictions for the input clock pins apply: - CLK0 pin -> inclk[0] of CLKCTRL - CLK1 pin -> inclk[1] of CLKCTRL - CLK2 pin -> inclk[0] of CLKCTRL - CLK3 pin -> inclk[1] of CLKCTRL In general, even CLK numbers connect to the inclk [0] port of CLKCTRL, and odd CLK numbers connect to the inclk [1] port of CLKCTRL. Failure to comply with these restrictions will result in a no-fit error. #### **Enhanced & Fast PLLs** Stratix II devices provide robust clock management and synthesis using up to four enhanced PLLs and eight fast PLLs. These PLLs increase performance and provide advanced clock interfacing and clock-frequency synthesis. With features such as clock switchover, spread-spectrum clocking, reconfigurable bandwidth, phase control, and reconfigurable phase shifting, the Stratix II device's enhanced PLLs provide you with complete control of clocks and system timing. The fast PLLs provide general purpose clocking with multiplication and phase shifting as well as high-speed outputs for high-speed differential I/O support. Enhanced and fast PLLs work together with the Stratix II high-speed I/O and advanced clock architecture to provide significant improvements in system performance and bandwidth. Figure 2–48. Column I/O Block Connection to the Interconnect Note (1) #### Note to Figure 2-48: (1) The 32 data and control signals consist of eight data out lines: four lines each for DDR applications io_dataouta[3..0] and io_dataoutb[3..0], four output enables io_oe[3..0], four input clock enables io_ce_in[3..0], four output clock enables io_ce_out[3..0], four clocks io_clk[3..0], four asynchronous clear and preset signals io_aclr/apreset[3..0], and four synchronous clear and preset signals io sclr/spreset[3..0]. Figure 2-57. Stratix II I/O Banks Notes (1), (2), (3), (4) #### *Notes to Figure 2–57:* - (1) Figure 2–57 is a top view of the silicon die that corresponds to a reverse view for flip-chip packages. It is a graphical representation only. - (2) Depending on the size of the device, different device members have different numbers of V_{REF} groups. Refer to the pin list and the Quartus II software for exact locations. - (3) Banks 9 through 12 are enhanced PLL external clock output banks. These PLL banks utilize the adjacent V_{REF} group when voltage-referenced standards are implemented. For example, if an SSTL input is implemented in PLL bank 10, the voltage level at VREFB7 is the reference voltage level for the SSTL input. - (4) Horizontal I/O banks feature SERDES and DPA circuitry for high speed differential I/O standards. See the *High Speed Differential I/O Interfaces in Stratix II & Stratix II GX Devices* chapter of the *Stratix II Device Handbook, Volume 2* or the *Stratix II GX Device Handbook, Volume 2* for more information on differential I/O standards. | Table 2–23. E | Table 2–23. EP2S60 Differential Channels Note (1) | | | | | | | | | | | |---------------|---|----------|-------|----------|----------|-------|-------|-----------|-----------|--------|--| | Dankago | Transmitter/ | Total | | Center F | ast PLLs | 1 | C | orner Fas | st PLLs (| (4) | | | Package | Receiver | Channels | PLL 1 | PLL 2 | PLL 3 | PLL 4 | PLL 7 | PLL 8 | PLL 9 | PLL 10 | | | 484-pin | Transmitter | 38 (2) | 10 | 9 | 9 | 10 | 10 | 9 | 9 | 10 | | | FineLine BGA | | (3) | 19 | 19 | 19 | 19 | - | - | - | - | | | | Receiver | 42 (2) | 11 | 10 | 10 | 11 | 11 | 10 | 10 | 11 | | | | | (3) | 21 | 21 | 21 | 21 | - | - | - | - | | | 672-pin | Transmitter | 58 (2) | 16 | 13 | 13 | 16 | 16 | 13 | 13 | 16 | | | FineLine BGA | | (3) | 29 | 29 | 29 | 29 | - | - | - | - | | | | Receiver | 62 (2) | 17 | 14 | 14 | 17 | 17 | 14 | 14 | 17 | | | | | (3) | 31 | 31 | 31 | 31 | - | - | - | - | | | 1,020-pin | Transmitter | 84 (2) | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | | | FineLine BGA | | (3) | 42 | 42 | 42 | 42 | - | - | - | - | | | | Receiver | 84 (2) | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | | | | | (3) | 42 | 42 | 42 | 42 | - | - | - | - | | | Table 2–24. EP2S90 Differential ChannelsNote (1) | | | | | | | | | | | |--|--------------|---------------|-------|----------|----------|-------|-------|----------------------|-------|--------| | Dookogo | Transmitter/ | Total | | Center F | ast PLLs | | C | Corner Fast PLLs (4) | | | | Package | Receiver | Channels | PLL 1 | PLL 2 | PLL 3 | PLL 4 | PLL 7 | PLL 8 | PLL 9 | PLL 10 | | 484-pin Hybrid | Transmitter | 38 (2) | 10 | 9 | 9 | 10 | - | - | - | - | | FineLine BGA | | (3) | 19 | 19 | 19 | 19 | - | - | - | - | | | Receiver | 42 (2) | 11 | 10 | 10 | 11 | - | - | - | - | | | | (3) | 21 | 21 | 21 | 21 | - | - | - | - | | 780-pin | Transmitter | 64 (2) | 16 | 16 | 16 | 16 | - | - | - | | | FineLine BGA | | (3) | 32 | 32 | 32 | 32 | - | - | - | - | | | Receiver | 68 <i>(2)</i> | 17 | 17 | 17 | 17 | - | - | - | - | | | | (3) | 34 | 34 | 34 | 34 | - | - | - | | | 1,020-pin | Transmitter | 90 (2) | 23 | 22 | 22 | 23 | 23 | 22 | 22 | 23 | | FineLine BGA | | (3) | 45 | 45 | 45 | 45 | - | - | - | - | | | Receiver | 94 (2) | 23 | 24 | 24 | 23 | 23 | 24 | 24 | 23 | | | | (3) | 46 | 46 | 46 | 46 | - | - | - | - | | 1,508-pin | Transmitter | 118 (2) | 30 | 29 | 29 | 30 | 30 | 29 | 29 | 30 | | FineLine BGA | | (3) | 59 | 59 | 59 | 59 | - | - | - | - | | | Receiver | 118 (2) | 30 | 29 | 29 | 30 | 30 | 29 | 29 | 30 | | | | (3) | 59 | 59 | 59 | 59 | - | - | - | - | Figure 2-59. Stratix II Receiver Channel An external pin or global or regional clock can drive the fast PLLs, which can output up to three clocks: two multiplied high-speed clocks to drive the SERDES block and/or external pin, and a low-speed clock to drive the logic array. In addition, eight phase-shifted clocks from the VCO can feed to the DPA circuitry. For more information on the fast PLL, see the *PLLs in Stratix II & Stratix II GX Devices* chapter in volume 2 of the *Stratix II Device Handbook* or the *Stratix II GX Device Handbook*. The eight phase-shifted clocks from the fast PLL feed to the DPA block. The DPA block selects the closest phase to the center of the serial data eye to sample the incoming data. This allows the source-synchronous circuitry to capture incoming data correctly regardless of the channel-to-channel or clock-to-channel skew. The DPA block locks to a phase closest to the serial data phase. The phase-aligned DPA clock is used to write the data into the synchronizer. The synchronizer sits between the DPA block and the data realignment and SERDES circuitry. Since every channel utilizing the DPA block can have a different phase selected to sample the data, the synchronizer is needed to synchronize the data to the high-speed clock domain of the data realignment and the SERDES circuitry. you need to support configuration input voltages of 1.8 V/1.5 V, you should set the VCCSEL to a logic high and the V_{CCIO} of the bank that contains the configuration inputs to 1.8 V/1.5 V. For more information on multi-volt support, including information on using TDO and nCEO in multi-volt systems, refer to the *Stratix II Architecture* chapter in volume 1 of the *Stratix II Device Handbook*. ### **Configuration Schemes** You can load the configuration data for a Stratix II device with one of five configuration schemes (see Table 3–5), chosen on the basis of the target application. You can use a configuration device, intelligent controller, or the JTAG port to configure a Stratix II device. A configuration device can automatically configure a Stratix II device at system power-up. You can configure multiple Stratix II devices in any of the five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device. Stratix II FPGAs offer the following: - Configuration data decompression to reduce configuration file storage - Design security using configuration data encryption to protect your designs - Remote system upgrades for remotely updating your Stratix II designs Table 3–5 summarizes which configuration features can be used in each configuration scheme. | Configuration Scheme | Configuration Method | Design Security | Decompression | Remote System
Upgrade | |----------------------|--|-----------------|---------------|--------------------------| | FPP | MAX II device or microprocessor and flash device | √ (1) | √ (1) | ✓ | | | Enhanced configuration device | | √ (2) | ~ | | AS | Serial configuration device | ✓ | ✓ | √ (3) | | PS | MAX II device or microprocessor and flash device | ✓ | ~ | ✓ | | | Enhanced configuration device | ✓ | ✓ | ✓ | | | Download cable (4) | ✓ | ✓ | | The temperature-sensing diode works for the entire operating range, as shown in Figure 3–2. Figure 3–2. Temperature vs. Temperature-Sensing Diode Voltage The temperature sensing diode is a very sensitive circuit which can be influenced by noise coupled from other traces on the board, and possibly within the device package itself, depending on device usage. The interfacing device registers temperature based on milivolts of difference as seen at the TSD. Switching I/O near the TSD pins can affect the temperature reading. Altera recommends you take temperature readings during periods of no activity in the device (for example, standby mode where no clocks are toggling in the device), such as when the nearby I/Os are at a DC state, and disable clock networks in the device. Automated Single Event Upset (SEU) Detection Stratix II devices offer on-chip circuitry for automated checking of single event upset (SEU) detection. Some applications that require the device to operate error free at high elevations or in close proximity to Earth's North or South Pole require periodic checks to ensure continued data integrity. The error detection cyclic redundancy check (CRC) feature controlled by | Table 5–2. | Table 5–2. Maximum Duty Cycles in Voltage Transitions | | | | | | | | | | |----------------|---|------------------------|------------------------|------|--|--|--|--|--|--| | Symbol | Parameter | Condition | Maximum
Duty Cycles | Unit | | | | | | | | V _I | Maximum duty cycles | V _I = 4.0 V | 100 | % | | | | | | | | | in voltage transitions | V _I = 4.1 V | 90 | % | | | | | | | | | | V _I = 4.2 V | 50 | % | | | | | | | | | | V _I = 4.3 V | 30 | % | | | | | | | | | | V _I = 4.4 V | 17 | % | | | | | | | | | | V _I = 4.5 V | 10 | % | | | | | | | ## **Recommended Operating Conditions** Table 5–3 contains the Stratix II device family recommended operating conditions. | Table 5- | Table 5–3. Stratix II Device Recommended Operating Conditions (Part 1 of 2) Note (1) | | | | | | | | |--------------------|--|---|-----------------|-------------------|------|--|--|--| | Symbol | Parameter | Conditions | Minimum | Maximum | Unit | | | | | V_{CCINT} | Supply voltage for internal logic | 100 μ s \leq risetime \leq 100 ms (3) | 1.15 | 1.25 | V | | | | | V _{CCIO} | Supply voltage for input and output buffers, 3.3-V operation | 100 μs \leq risetime \leq 100 ms (3), (6) | 3.135
(3.00) | 3.465
(3.60) | V | | | | | | Supply voltage for input and output buffers, 2.5-V operation | 100 μs ≤ risetime ≤ 100 ms (3) | 2.375 | 2.625 | ٧ | | | | | | Supply voltage for input and output buffers, 1.8-V operation | 100 μs ≤ risetime ≤ 100 ms <i>(3)</i> | 1.71 | 1.89 | ٧ | | | | | | Supply voltage for output buffers, 1.5-V operation | 100 μs ≤ risetime ≤ 100 ms <i>(3)</i> | 1.425 | 1.575 | V | | | | | | Supply voltage for input and output buffers, 1.2-V operation | 100 μs ≤ risetime ≤ 100 ms <i>(3)</i> | 1.14 | 1.26 | ٧ | | | | | V _{CCPD} | Supply voltage for pre-drivers as well as configuration and JTAG I/O buffers. | 100 μs ≤ risetime ≤ 100 ms (4) | 3.135 | 3.465 | V | | | | | V_{CCA} | Analog power supply for PLLs | 100 μs ≤ risetime ≤ 100 ms (3) | 1.15 | 1.25 | V | | | | | V _{CCD} | Digital power supply for PLLs | 100 μs ≤ risetime ≤ 100 ms (3) | 1.15 | 1.25 | ٧ | | | | | Vı | Input voltage (see Table 5-2) | (2), (5) | -0.5 | 4.0 | ٧ | | | | | Vo | Output voltage | | 0 | V _{CCIO} | V | | | | | Table 5–14. 3.3-V PCI Specifications (Part 2 of 2) | | | | | | | | | |--|---------------------------|-------------------------|-----------------------|---------|-------------------------|------|--|--| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | | | V_{IL} | Low-level input voltage | | -0.3 | | $0.3 \times V_{CCIO}$ | V | | | | V _{OH} | High-level output voltage | $I_{OUT} = -500 \mu A$ | $0.9 \times V_{CCIO}$ | | | ٧ | | | | V _{OL} | Low-level output voltage | $I_{OUT} = 1,500 \mu A$ | | | 0.1 × V _{CCIO} | V | | | | Table 5–1 | Table 5–15. PCI-X Mode 1 Specifications | | | | | | | | | |-------------------|---|-------------------------|-----------------------|---------|-------------------------------|------|--|--|--| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | | | | V _{CCIO} | Output supply voltage | | 3.0 | | 3.6 | ٧ | | | | | V _{IH} | High-level input voltage | | $0.5 \times V_{CCIO}$ | | V _{CCIO} + 0.5 | V | | | | | V_{IL} | Low-level input voltage | | -0.30 | | $0.35 \times V_{\text{CCIO}}$ | V | | | | | V_{IPU} | Input pull-up voltage | | $0.7 \times V_{CCIO}$ | | | V | | | | | V _{OH} | High-level output voltage | $I_{OUT} = -500 \mu A$ | $0.9 \times V_{CCIO}$ | | | ٧ | | | | | V _{OL} | Low-level output voltage | $I_{OUT} = 1,500 \mu A$ | | | $0.1 \times V_{CCIO}$ | ٧ | | | | | Table 5-1 | 6. SSTL-18 Class I Specificat | ions | | | | | |----------------------|-------------------------------|---------------------------------|--------------------------|-----------|--------------------------|------| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | V _{CCIO} | Output supply voltage | | 1.71 | 1.80 | 1.89 | ٧ | | V_{REF} | Reference voltage | | 0.855 | 0.900 | 0.945 | V | | V _{TT} | Termination voltage | | V _{REF} - 0.04 | V_{REF} | V _{REF} + 0.04 | ٧ | | V _{IH} (DC) | High-level DC input voltage | | V _{REF} + 0.125 | | | V | | V _{IL} (DC) | Low-level DC input voltage | | | | V _{REF} - 0.125 | V | | V _{IH} (AC) | High-level AC input voltage | | V _{REF} + 0.25 | | | ٧ | | V _{IL} (AC) | Low-level AC input voltage | | | | V _{REF} - 0.25 | V | | V _{OH} | High-level output voltage | $I_{OH} = -6.7 \text{ mA } (1)$ | V _{TT} + 0.475 | | | ٧ | | V _{OL} | Low-level output voltage | I _{OL} = 6.7 mA (1) | | | V _{TT} – 0.475 | V | #### Note to Table 5–16: (1) This specification is supported across all the programmable drive settings available for this I/O standard as shown in the *Stratix II Architecture* chapter in volume 1 of the *Stratix II Device Handbook*. **Table 5–30. Series On-Chip Termination Specification for Top & Bottom I/O Banks (Part 2 of 2)**Notes (1), 2 | | | | Resist | ance Toleranc | e | |--------------------------------|--|--------------------------------|-------------------|-------------------|------| | Symbol | Description | Conditions | Commercial
Max | Industrial
Max | Unit | | 50-Ω R _S
3.3/2.5 | Internal series termination with calibration (50- Ω setting) | $V_{CCIO} = 3.3/2.5 \text{ V}$ | ±5 | ±10 | % | | | Internal series termination without calibration (50-Ω setting) | $V_{CCIO} = 3.3/2.5 \text{ V}$ | ±30 | ±30 | % | | 50-Ω R _T
2.5 | Internal parallel termination with calibration (50-Ω setting) | V _{CCIO} = 1.8 V | ±30 | ±30 | % | | 25-Ω R _S
1.8 | Internal series termination with calibration (25-Ω setting) | V _{CCIO} = 1.8 V | ±5 | ±10 | % | | | Internal series termination without calibration (25- Ω setting) | V _{CCIO} = 1.8 V | ±30 | ±30 | % | | 50-Ω R _S
1.8 | Internal series termination with calibration (50-Ω setting) | V _{CCIO} = 1.8 V | ±5 | ±10 | % | | | Internal series termination without calibration (50- Ω setting) | V _{CCIO} = 1.8 V | ±30 | ±30 | % | | 50-Ω R _T
1.8 | Internal parallel termination with calibration (50-Ω setting) | V _{CCIO} = 1.8 V | ±10 | ±15 | % | | 50–Ω R _S
1.5 | Internal series termination with calibration (50-Ω setting) | V _{CCIO} = 1.5 V | ±8 | ±10 | % | | | Internal series termination without calibration (50-Ω setting) | V _{CCIO} = 1.5 V | ±36 | ±36 | % | | 50-Ω R _T
1.5 | Internal parallel termination with calibration (50-Ω setting) | V _{CCIO} = 1.5 V | ±10 | ±15 | % | | 50–Ω R _S
1.2 | Internal series termination with calibration (50-Ω setting) | V _{CCIO} = 1.2 V | ±8 | ±10 | % | | | Internal series termination without calibration (50-Ω setting) | V _{CCIO} = 1.2 V | ±50 | ±50 | % | | 50-Ω R _T
1.2 | Internal parallel termination with calibration (50- Ω setting) | V _{CCIO} = 1.2 V | ±10 | ±15 | % | #### Notes for Table 5-30: ⁽¹⁾ The resistance tolerances for calibrated SOCT and POCT are for the moment of calibration. If the temperature or voltage changes over time, the tolerance may also change. ⁽²⁾ On-chip parallel termination with calibration is only supported for input pins. | | | | Resistance Tolerance | | | | |------------------------------------|---|------------------------------------|----------------------|-------------------|------|--| | Symbol | Description | Conditions | Commercial
Max | Industrial
Max | Unit | | | 25-Ω R _S
3.3/2.5 | Internal series termination without calibration (25- Ω setting) | V _{CCIO} = 3.3/2.5 V | ±30 | ±30 | % | | | 50-Ω R _S
3.3/2.5/1.8 | Internal series termination without calibration (50- Ω setting) | $V_{CCIO} = 3.3/2.5/1.8 \text{ V}$ | ±30 | ±30 | % | | | 50-Ω R _S 1.5 | Internal series termination without calibration (50- Ω setting) | V _{CCIO} = 1.5 V | ±36 | ±36 | % | | | R _D | Internal differential termination for LVDS or HyperTransport technology (100-Ω setting) | V _{CCIO} = 2.5 V | ±20 | ±25 | % | | ## **Pin Capacitance** Table 5–32 shows the Stratix II device family pin capacitance. | Table 5–32. Stratix II Device Capacitance Note (1) | | | | | | | | |--|---|---------|------|--|--|--|--| | Symbol | Parameter | Typical | Unit | | | | | | C_{IOTB} | Input capacitance on I/O pins in I/O banks 3, 4, 7, and 8. | 5.0 | pF | | | | | | C _{IOLR} | Input capacitance on I/O pins in I/O banks 1, 2, 5, and 6, including high-speed differential receiver and transmitter pins. | 6.1 | pF | | | | | | C _{CLKTB} | Input capacitance on top/bottom clock input pins: CLK [47] and CLK [1215]. | 6.0 | pF | | | | | | C _{CLKLR} | Input capacitance on left/right clock inputs: CLK0, CLK2, CLK8, CLK10. | 6.1 | pF | | | | | | C _{CLKLR+} | Input capacitance on left/right clock inputs: CLK1, CLK3, CLK9, and CLK11. | 3.3 | pF | | | | | | C _{OUTFB} | Input capacitance on dual-purpose clock output/feedback pins in PLL banks 9, 10, 11, and 12. | 6.7 | pF | | | | | #### Note to Table 5–32: (1) Capacitance is sample-tested only. Capacitance is measured using time-domain reflections (TDR). Measurement accuracy is within $\pm 0.5 pF$ The performance numbers in Table 5–36 are extracted from the Quartus II software version 5.1 SP1. | Table 5–36. Stratix II Performance Notes (Part 1 of 6) Note (1) | | | | | | | | | | |---|--|----------------|-------------------------------|---------------|-----------------------------|----------------------|----------------------|----------------------|------| | Applications | | Resources Used | | | Performance | | | | | | | | ALUTs | TriMatrix
Memory
Blocks | DSP
Blocks | -3
Speed
Grade
(2) | -3
Speed
Grade | -4
Speed
Grade | -5
Speed
Grade | Unit | | LE | 16-to-1 multiplexer (4) | 21 | 0 | 0 | 654.87 | 625.0 | 523.83 | 460.4 | MHz | | | 32-to-1 multiplexer (4) | 38 | 0 | 0 | 519.21 | 473.26 | 464.25 | 384.17 | MHz | | | 16-bit counter | 16 | 0 | 0 | 566.57 | 538.79 | 489.23 | 421.05 | MHz | | | 64-bit counter | 64 | 0 | 0 | 244.31 | 232.07 | 209.11 | 181.38 | MHz | | TriMatrix
Memory | Simple dual-port RAM
32 × 18 bit | 0 | 1 | 0 | 500.00 | 476.19 | 434.02 | 373.13 | MHz | | M512
block | FIFO 32 x 18 bit | 22 | 1 | 0 | 500.00 | 476.19 | 434.78 | 373.13 | MHz | | TriMatrix
Memory | Simple dual-port RAM
128 x 36 bit (8) | 0 | 1 | 0 | 540.54 | 515.46 | 469.48 | 401.60 | MHz | | M4K
block | True dual-port RAM 128 × 18 bit (8) | 0 | 1 | 0 | 540.54 | 515.46 | 469.48 | 401.60 | MHz | | | FIFO
128 × 36 bit | 22 | 1 | 0 | 530.22 | 499.00 | 469.48 | 401.60 | MHz | | | Simple dual-port RAM
128 × 36 bit (9) | 0 | 1 | 0 | 475.28 | 453.30 | 413.22 | 354.10 | MHz | | | True dual-port RAM
128 × 18 bit (9) | 0 | 1 | 0 | 475.28 | 453.30 | 413.22 | 354.10 | MHz | | Table 5–50. EP2S30 Row Pins Regional Clock Timing Parameters | | | | | | | | | |--|------------|------------|----------|-------------------|-------------------|------|--|--| | Davamatav | Minimu | m Timing | -3 Speed | -4 Speed
Grade | -5 Speed
Grade | Unit | | | | Parameter | Industrial | Commercial | Grade | | | UIII | | | | t _{CIN} | 1.304 | 1.184 | 1.966 | 2.251 | 2.616 | ns | | | | t _{COUT} | 1.309 | 1.189 | 1.962 | 2.247 | 2.611 | ns | | | | t _{PLLCIN} | -0.135 | -0.158 | -0.208 | -0.254 | -0.302 | ns | | | | t _{PLLCOUT} | -0.13 | -0.153 | -0.212 | -0.258 | -0.307 | ns | | | | Table 5–51. EP2S30 Row Pins Global Clock Timing Parameters | | | | | | | | | |--|------------|------------|------------|----------|----------|------|--|--| | Parameter | Minimu | m Timing | -3 Speed - | -4 Speed | -5 Speed | Unit | | | | rataillelet | Industrial | Commercial | Grade | Grade | Grade | UIII | | | | t _{CIN} | 1.289 | 1.352 | 2.238 | 2.567 | 2.990 | ns | | | | t _{COUT} | 1.294 | 1.357 | 2.234 | 2.563 | 2.985 | ns | | | | t _{PLLCIN} | -0.14 | -0.154 | -0.169 | -0.205 | -0.254 | ns | | | | t _{PLLCOUT} | -0.135 | -0.149 | -0.173 | -0.209 | -0.259 | ns | | | ## EP2S60 Clock Timing Parameters Tables 5–52 through 5–55 show the maximum clock timing parameters for EP2S60 devices. | Table 5–52. EP2S60 Column Pins Regional Clock Timing Parameters | | | | | | | | | |---|------------|------------|-------------------|----------|----------|-------|--|--| | Parameter | Minimu | m Timing | -3 Speed -4 Speed | -4 Speed | -5 Speed | Unit | | | | rataillelet | Industrial | Commercial | Grade | Grade (| Grade | Ullit | | | | t _{CIN} | 1.681 | 1.762 | 2.945 | 3.381 | 3.931 | ns | | | | t _{COUT} | 1.524 | 1.597 | 2.703 | 3.103 | 3.607 | ns | | | | t _{PLLCIN} | 0.066 | 0.064 | 0.279 | 0.311 | 0.348 | ns | | | | t _{PLLCOUT} | -0.091 | -0.101 | 0.037 | 0.033 | 0.024 | ns | | | | Table 5–80. Maximum DCD for Non-DDIO Output on Row I/O Pins (Part 2 of 2) Note (1) | | | | | | | | |---|---------------------------------|-----------------|------|--|--|--|--| | Row I/O Output | Maximum DCD for Non-DDIO Output | | | | | | | | Standard | -3 Devices | -4 & -5 Devices | Unit | | | | | | 1.8 V | 180 | 180 | ps | | | | | | 1.5-V LVCMOS | 165 | 195 | ps | | | | | | SSTL-2 Class I | 115 | 145 | ps | | | | | | SSTL-2 Class II | 95 | 125 | ps | | | | | | SSTL-18 Class I | 55 | 85 | ps | | | | | | 1.8-V HSTL Class I | 80 | 100 | ps | | | | | | 1.5-V HSTL Class I | 85 | 115 | ps | | | | | | LVDS/
HyperTransport
technology | 55 | 80 | ps | | | | | Note to Table 5-80: (1) The DCD specification is based on a no logic array noise condition. Here is an example for calculating the DCD as a percentage for a non-DDIO output on a row I/O on a -3 device: If the non-DDIO output I/O standard is SSTL-2 Class II, the maximum DCD is 95 ps (see Table 5–80). If the clock frequency is 267 MHz, the clock period T is: $$T = 1/f = 1/267 \text{ MHz} = 3.745 \text{ ns} = 3745 \text{ ps}$$ To calculate the DCD as a percentage: $$(T/2 - DCD) / T = (3745ps/2 - 95ps) / 3745ps = 47.5\%$$ (for low boundary) $$(T/2 + DCD) / T = (3745ps/2 + 95ps) / 3745ps = 52.5\%$$ (for high boundary)