Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. # **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 3022 | | Number of Logic Elements/Cells | 60440 | | Total RAM Bits | 2544192 | | Number of I/O | 718 | | Number of Gates | - | | Voltage - Supply | 1.15V ~ 1.25V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 1020-BBGA | | Supplier Device Package | 1020-FBGA (33x33) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep2s60f1020c4n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Similar to all RAM blocks, M-RAM blocks can have different clocks on their inputs and outputs. Either of the two clocks feeding the block can clock M-RAM block registers (renwe, address, byte enable, datain, and output registers). The output register can be bypassed. The six labclk signals or local interconnect can drive the control signals for the A and B ports of the M-RAM block. ALMs can also control the clock_a, clock_b, renwe_a, renwe_b, clr_a, clr_b, clocken_a, and clocken_b signals as shown in Figure 2–23. Figure 2-23. M-RAM Block Control Signals The R4, R24, C4, and direct link interconnects from adjacent LABs on either the right or left side drive the M-RAM block local interconnect. Up to 16 direct link input connections to the M-RAM block are possible from the left adjacent LABs and another 16 possible from the right adjacent LABs M-RAM block outputs can also connect to left and right LABs through direct link interconnect. Figure 2–24 shows an example floorplan for the EP2S130 device and the location of the M-RAM interfaces. Figures 2–25 and 2–26 show the interface between the M-RAM block and the logic array. When using the global or regional clock control blocks in Stratix II devices to select between multiple clocks or to enable and disable clock networks, be aware of possible narrow pulses or glitches when switching from one clock signal to another. A glitch or runt pulse has a width that is less than the width of the highest frequency input clock signal. To prevent logic errors within the FPGA, Altera recommends that you build circuits that filter out glitches and runt pulses. Figures 2–37 through 2–39 show the clock control block for the global clock, regional clock, and PLL external clock output, respectively. Pins PLL Counter Outputs CLKn Internal Pin Logic Static Clock Select (2) This multiplexer supports User-Controllable Dynamic Switching Enable/ Disable Internal Logic **GCLK** Figure 2-37. Global Clock Control Blocks Notes to Figure 2-37: - These clock select signals can be dynamically controlled through internal logic when the device is operating in user mode. - (2) These clock select signals can only be set through a configuration file (.sof or .pof) and cannot be dynamically controlled during user mode operation. The Quartus II software enables the PLLs and their features without requiring any external devices. Table 2–9 shows the PLLs available for each Stratix II device and their type. | Davisa | Fast PLLs | | | | | | | Fast PLLs Enhanced PLLs | | | | | | |-------------|-----------|----------|----------|----------|----------|----------|----------|-------------------------|----------|----------|----------|----------|--| | Device | 1 | 2 | 3 | 4 | 7 | 8 | 9 | 10 | 5 | 6 | 11 | 12 | | | EP2S15 | ✓ | ✓ | ✓ | ✓ | | | | | ✓ | ✓ | | | | | EP2S30 | ✓ | ✓ | ✓ | ✓ | | | | | ✓ | ✓ | | | | | EP2S60 (1) | ✓ | | EP2S90 (2) | ✓ | | EP2S130 (3) | ✓ | | EP2S180 | / | ✓ / | | #### Notes to Table 2-9: - (1) EP2S60 devices in the 1020-pin package contain 12 PLLs. EP2S60 devices in the 484-pin and 672-pin packages contain fast PLLs 1–4 and enhanced PLLs 5 and 6. - (2) EP2S90 devices in the 1020-pin and 1508-pin packages contain 12 PLLs. EP2S90 devices in the 484-pin and 780-pin packages contain fast PLLS 1–4 and enhanced PLLs 5 and 6. - (3) EP2S130 devices in the 1020-pin and 1508-pin packages contain 12PLLs. The EP2S130 device in the 780-pin package contains fast PLLs 1–4 and enhanced PLLs 5 and 6. FPLL100LK FILISOLK Fast PLL 10 Fast PLL 9 8 2 2 8 8 2 2 8 RCK20 5 2 8 5 8 8 8 Fast PLL 8 Fast PLL 7 FPLLBCLK Figure 2–42. Global & Regional Clock Connections from Corner Clock Pins & Fast PLL Outputs Note (1) # Note to Figure 2-42: (1) The corner fast PLLs can also be driven through the global or regional clock networks. The global or regional clock input can be driven by an output from another PLL, a pin-driven dedicated global or regional clock, or through a clock control block, provided the clock control block is fed by an output from another PLL or a pin-driven dedicated global or regional clock. An internally generated global signal cannot drive the PLL. | Table 2–11. Global & Region
of 2) | al Clo | ck Coi | nectio | ons fro | т Тор | Clock | Pins | & Enha | anced . | PLL O | utputs | (Pa | art 2 | |--|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Top Side Global & Regional
Clock Network Connectivity | DLLCLK | CLK12 | CLK13 | CLK14 | CLK15 | RCLK24 | RCLK25 | RCLK26 | RCLK27 | RCLK28 | RCLK29 | RCLK30 | RCLK31 | | c4 | ✓ | | | | | ✓ | | ✓ | | ✓ | | ✓ | | | c5 | ✓ | | | | | | ✓ | | ✓ | | ✓ | | ✓ | | Enhanced PLL 11 outputs | | | | | | | | | | | | | | | c0 | | ~ | / | | | ✓ | | | | ✓ | | | | | c1 | | ✓ | ✓ | | | | ✓ | | | | ✓ | | | | c2 | | | | ✓ | ✓ | | | ✓ | | | | ✓ | | | с3 | | | | ✓ | ✓ | | | | ✓ | | | | ✓ | | c4 | | | | | | ✓ | | ✓ | | ✓ | | ✓ | | | c5 | | | | | | | ✓ | | ✓ | | ✓ | | ✓ | | Table 2–12. Global & Region
Outputs (Part 1 of 2) | nal Clo | ck Co | nnecti | ons fro | om Bo | ttom C | lock F | Pins & | Enhan | iced P | LL | | | |--|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Bottom Side Global &
Regional Clock Network
Connectivity | DLLCLK | CLK4 | CLK5 | CLK6 | CLK7 | RCLK8 | RCLK9 | RCLK10 | RCLK11 | RCLK12 | RCLK13 | RCLK14 | RCLK15 | | Clock pins | | | | | | | | | | | | | | | CLK4p | ✓ | \ | \ | | | ~ | | | | ~ | | | | | CLK5p | ✓ | ✓ | ✓ | | | | ✓ | | | | ✓ | | | | CLK6p | ✓ | | | ✓ | ✓ | | | ✓ | | | | ✓ | | | CLK7p | ✓ | | | ✓ | ✓ | | | | ✓ | | | | \ | | CLK4n | | ✓ | | | | ✓ | | | | ✓ | | | | | CLK5n | | | ✓ | | | | ✓ | | | | ✓ | | | | CLK6n | | | | ✓ | | | | ✓ | | | | ✓ | | | CLK7n | | | | | ✓ | | | | ✓ | | | | ✓ | | Drivers from internal logic | | | • | | • | | | | • | | • | • | | | GCLKDRV0 | | ✓ | | | | | | | | | | | | | GCLKDRV1 | | | ✓ | | | | | | | | | | | | GCLKDRV2 | | | | ✓ | | | | | | | | | | Figure 2-50. Control Signal Selection per IOE #### *Notes to Figure 2–50:* (1) Control signals ce_in, ce_out, aclr/apreset, sclr/spreset, and oe can be global signals even though their control selection multiplexers are not directly fed by the ioe_clk[7..0] signals. The ioe_clk signals can drive the I/O local interconnect, which then drives the control selection multiplexers. In normal bidirectional operation, the input register can be used for input data requiring fast setup times. The input register can have its own clock input and clock enable separate from the OE and output registers. The output register can be used for data requiring fast clock-to-output performance. The OE register can be used for fast clock-to-output enable timing. The OE and output register share the same clock source and the same clock enable source from local interconnect in the associated LAB, dedicated I/O clocks, and the column and row interconnects. | Table 2–17. On-Chip Terminati | · · · · · · · · · · · · · · · · · · · | rt 2 01 2) | | |-------------------------------|---------------------------------------|--------------------|--------------------| | On-Chip Termination Support | I/O Standard Support | Top & Bottom Banks | Left & Right Banks | | Series termination with | 3.3-V LVTTL | ✓ | | | calibration | 3.3-V LVCMOS | ✓ | | | | 2.5-V LVTTL | ✓ | | | | 2.5-V LVCMOS | ✓ | | | | 1.8-V LVTTL | ✓ | | | | 1.8-V LVCMOS | ✓ | | | | 1.5-V LVTTL | ✓ | | | | 1.5-V LVCMOS | ✓ | | | | SSTL-2 Class I and II | ✓ | | | | SSTL-18 Class I and II | ✓ | | | | 1.8-V HSTL Class I | ✓ | | | | 1.8-V HSTL Class II | ✓ | | | | 1.5-V HSTL Class I | ✓ | | | | 1.2-V HSTL | ✓ | | | Parallel termination with | SSTL-2 Class I and II | ✓ | | | calibration | SSTL-18 Class I and II | ✓ | | | | 1.8-V HSTL Class I | ✓ | | | | 1.8-V HSTL Class II | ✓ | | | | 1.5-V HSTL Class I and II | ✓ | | | | 1.2-V HSTL | ✓ | | | Differential termination (1) | LVDS | | ✓ | | | HyperTransport technology | | ✓ | #### *Note to Table 2–17:* ⁽¹⁾ Clock pins CLK1, CLK3, CLK9, CLK11, and pins FPLL[7..10] CLK do not support differential on-chip termination. Clock pins CLK0, CLK2, CLK8, and CLK10 do support differential on-chip termination. Clock pins in the top and bottom banks (CLK[4..7, 12..15]) do not support differential on-chip termination. # **Operating Modes** The Stratix II architecture uses SRAM configuration elements that require configuration data to be loaded each time the circuit powers up. The process of physically loading the SRAM data into the device is called configuration. During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. Together, the configuration and initialization processes are called command mode. Normal device operation is called user mode. SRAM configuration elements allow Stratix II devices to be reconfigured in-circuit by loading new configuration data into the device. With real-time reconfiguration, the device is forced into command mode with a device pin. The configuration process loads different configuration data, reinitializes the device, and resumes user-mode operation. You can perform in-field upgrades by distributing new configuration files either within the system or remotely. PORSEL is a dedicated input pin used to select POR delay times of 12 ms or 100 ms during power-up. When the PORSEL pin is connected to ground, the POR time is 100 ms; when the PORSEL pin is connected to $V_{\rm CC}$, the POR time is 12 ms. The nio pullup pin is a dedicated input that chooses whether the internal pull-ups on the user I/O pins and dual-purpose configuration I/O pins (ncso, Asdo, data [7..0], nws, nrs, rdynbsy, ncs, cs, runlu, pgm [2..0], clkusr, init_done, dev_oe, dev_clr) are on or off before and during configuration. A logic high (1.5, 1.8, 2.5, 3.3 V) turns off the weak internal pull-ups, while a logic low turns them on. Stratix II devices also offer a new power supply, V_{CCPD} , which must be connected to 3.3 V in order to power the 3.3-V/2.5-V buffer available on the configuration input pins and JTAG pins. V_{CCPD} applies to all the JTAG input pins (TCK, TMS, TDI, and TRST) and the configuration input pins when VCCSEL is connected to ground. See Table 3–4 for more information on the pins affected by VCCSEL. The VCCSEL pin allows the V_{CCIO} setting (of the banks where the configuration inputs reside) to be independent of the voltage required by the configuration inputs. Therefore, when selecting the V_{CCIO} , the V_{IL} and V_{IH} levels driven to the configuration inputs do not have to be a concern. An encryption configuration file is the same size as a non-encryption configuration file. When using a serial configuration scheme such as passive serial (PS) or active serial (AS), configuration time is the same whether or not the design security feature is enabled. If the fast passive parallel (FPP) scheme us used with the design security or decompression feature, a $4\times$ DCLK is required. This results in a slower configuration time when compared to the configuration time of an FPGA that has neither the design security, nor decompression feature enabled. For more information about this feature, refer to *AN 341: Using the Design Security Feature in Stratix II Devices*. Contact your local Altera sales representative to request this document. ### Device Configuration Data Decompression Stratix II FPGAs support decompression of configuration data, which saves configuration memory space and time. This feature allows you to store compressed configuration data in configuration devices or other memory, and transmit this compressed bit stream to Stratix II FPGAs. During configuration, the Stratix II FPGA decompresses the bit stream in real time and programs its SRAM cells. Stratix II FPGAs support decompression in the FPP (when using a MAX II device/microprocessor and flash memory), AS and PS configuration schemes. Decompression is not supported in the PPA configuration scheme nor in JTAG-based configuration. # Remote System Upgrades Shortened design cycles, evolving standards, and system deployments in remote locations are difficult challenges faced by modern system designers. Stratix II devices can help effectively deal with these challenges with their inherent re-programmability and dedicated circuitry to perform remote system updates. Remote system updates help deliver feature enhancements and bug fixes without costly recalls, reduce time to market, and extend product life. Stratix II FPGAs feature dedicated remote system upgrade circuitry to facilitate remote system updates. Soft logic (Nios® processor or user logic) implemented in the Stratix II device can download a new configuration image from a remote location, store it in configuration memory, and direct the dedicated remote system upgrade circuitry to initiate a reconfiguration cycle. The dedicated circuitry performs error detection during and after the configuration process, recovers from any error condition by reverting back to a safe configuration image, and provides error status information. This dedicated remote system upgrade circuitry avoids system downtime and is the critical component for successful remote system upgrades. RSC is supported in the following Stratix II configuration schemes: FPP, AS, PS, and PPA. RSC can also be implemented in conjunction with advanced Stratix II features such as real-time decompression of configuration data and design security using AES for secure and efficient field upgrades. See the *Remote System Upgrades With Stratix II & Stratix II GX Devices* chapter in volume 2 of the *Stratix II Device Handbook* or the *Stratix II GX Device Handbook* for more information about remote configuration in Stratix II devices. # **Configuring Stratix II FPGAs with JRunner** JRunner is a software driver that configures Altera FPGAs, including Stratix II FPGAs, through the ByteBlaster II or ByteBlasterMV cables in JTAG mode. The programming input file supported is in Raw Binary File (.rbf) format. JRunner also requires a Chain Description File (.cdf) generated by the Quartus II software. JRunner is targeted for embedded JTAG configuration. The source code is developed for the Windows NT operating system (OS), but can be customized to run on other platforms. For more information on the JRunner software driver, see the *JRunner Software Driver: An Embedded Solution to the JTAG Configuration White Paper* and the source files on the Altera web site **(www.altera.com)**. # **Programming Serial Configuration Devices with SRunner** A serial configuration device can be programmed in-system by an external microprocessor using SRunner. SRunner is a software driver developed for embedded serial configuration device programming that can be easily customized to fit in different embedded systems. SRunner is able to read a .rpd file (Raw Programming Data) and write to the serial configuration devices. The serial configuration device programming time using SRunner is comparable to the programming time when using the Quartus II software. For more information about SRunner, see the *SRunner: An Embedded Solution for EPCS Programming* White Paper and the source code on the Altera web site at **www.altera.com**. For more information on programming serial configuration devices, see the Serial Configuration Devices (EPCS1 & EPCS4) Data Sheet in the *Configuration Handbook*. | Table 5-1 | 2. LVPECL Specifications | | | | | | |-----------------------|---|------------------------|---------|---------|---------|------| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | V _{CCIO} (1) | I/O supply voltage | | 3.135 | 3.300 | 3.465 | V | | V _{ID} | Input differential voltage swing (single-ended) | | 300 | 600 | 1,000 | mV | | V _{ICM} | Input common mode voltage | | 1.0 | | 2.5 | ٧ | | V _{OD} | Output differential voltage (single-ended) | R _L = 100 Ω | 525 | | 970 | mV | | V _{OCM} | Output common mode voltage | R _L = 100 Ω | 1,650 | | 2,250 | mV | | R _L | Receiver differential input resistor | | 90 | 100 | 110 | Ω | # Note to Table 5-12: (1) The top and bottom clock input differential buffers in I/O banks 3, 4, 7, and 8 are powered by V_{CCINT} , not V_{CCIO} . The PLL clock output/feedback differential buffers are powered by VCC_PLL_OUT. For differential clock output/feedback operation, VCC_PLL_OUT should be connected to 3.3 V. | Table 5–1 | 3. HyperTransport Technology S | Specifications | | | | | |--------------------|--|------------------------|---------|---------|---------|------| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | V _{CCIO} | I/O supply voltage for left and right I/O banks (1, 2, 5, and 6) | | 2.375 | 2.500 | 2.625 | V | | V _{ID} | Input differential voltage swing (single-ended) | $R_L = 100 \Omega$ | 300 | 600 | 900 | mV | | V _{ICM} | Input common mode voltage | R _L = 100 Ω | 385 | 600 | 845 | mV | | V _{OD} | Output differential voltage (single-ended) | R _L = 100 Ω | 400 | 600 | 820 | mV | | ΔV _{OD} | Change in V _{OD} between high and low | R _L = 100 Ω | | | 75 | mV | | V _{OCM} | Output common mode voltage | $R_L = 100 \Omega$ | 440 | 600 | 780 | mV | | Δ V _{OCM} | Change in V _{OCM} between high and low | R _L = 100 Ω | | | 50 | mV | | R _L | Receiver differential input resistor | | 90 | 100 | 110 | Ω | | Table 5–1 | Table 5–14. 3.3-V PCI Specifications (Part 1 of 2) | | | | | | | | | | | |-------------------|--|------------|-----------------------|---------|-------------------------|------|--|--|--|--|--| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | | | | | | V _{CCIO} | Output supply voltage | | 3.0 | 3.3 | 3.6 | V | | | | | | | V _{IH} | High-level input voltage | | $0.5 \times V_{CCIO}$ | | V _{CCIO} + 0.5 | V | | | | | | | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | |----------------------|-----------------------------|--------------------------------|-------------------------|---------|------------------------|------| | V _{CCIO} | Output supply voltage | | 1.71 | 1.80 | 1.89 | V | | V_{REF} | Input reference voltage | | 0.85 | 0.90 | 0.95 | ٧ | | V_{TT} | Termination voltage | | 0.85 | 0.90 | 0.95 | V | | V _{IH} (DC) | DC high-level input voltage | | V _{REF} + 0.1 | | | V | | V _{IL} (DC) | DC low-level input voltage | | -0.3 | | V _{REF} - 0.1 | V | | V _{IH} (AC) | AC high-level input voltage | | V _{REF} + 0.2 | | | V | | V _{IL} (AC) | AC low-level input voltage | | | | V _{REF} - 0.2 | V | | V _{OH} | High-level output voltage | I _{OH} = 16 mA (1) | V _{CCIO} - 0.4 | | | V | | V _{OL} | Low-level output voltage | $I_{OH} = -16 \text{ mA } (1)$ | | | 0.4 | ٧ | #### Note to Table 5-27: ⁽¹⁾ This specification is supported across all the programmable drive settings available for this I/O standard as shown in the *Stratix II Architecture* chapter in volume 1 of the *Stratix II Device Handbook*. | Table 5–2 | Table 5–28. 1.8-V HSTL Class I & II Differential Specifications | | | | | | | | | | | | |-----------------------|---|------------|---------|---------|---------------------------|------|--|--|--|--|--|--| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | | | | | | | V _{CCIO} | I/O supply voltage | | 1.71 | 1.80 | 1.89 | V | | | | | | | | V _{DIF} (DC) | DC input differential voltage | | 0.2 | | V _{CCIO} + 0.6 V | V | | | | | | | | V _{CM} (DC) | DC common mode input voltage | | 0.78 | | 1.12 | V | | | | | | | | V _{DIF} (AC) | AC differential input voltage | | 0.4 | | V _{CCIO} + 0.6 V | V | | | | | | | | V _{OX} (AC) | AC differential cross point voltage | | 0.68 | | 0.90 | V | | | | | | | - 4. Record the time to V_{MEAS} . - Compare the results of steps 2 and 4. The increase or decrease in delay should be added to or subtracted from the I/O Standard Output Adder delays to yield the actual worst-case propagation delay (clock-to-output) of the PCB trace. The Quartus II software reports the timing with the conditions shown in Table 5–34 using the above equation. Figure 5–4 shows the model of the circuit that is represented by the output timing of the Quartus II software. Figure 5–4. Output Delay Timing Reporting Setup Modeled by Quartus II Notes to Figure 5-4: - (1) Output pin timing is reported at the output pin of the FPGA device. Additional delays for loading and board trace delay need to be accounted for with IBIS model simulations. - (2) V_{CCPD} is 3.085 V unless otherwise specified. - (3) V_{CCINT} is 1.12 V unless otherwise specified. Figures 5–5 and 5–6 show the measurement setup for output disable and output enable timing. | Table 5- | 36. Stratix II Performa | nce Notes | (Part 2 of 6) |) Note | 9 (1) | | | | | |---------------------|--------------------------------------|-----------|-------------------------------|---------------|-----------------------------|----------------------|----------------------|----------------------|------| | | | Re | esources Us | ed | | Pei | formance | } | | | | Applications | ALUTs | TriMatrix
Memory
Blocks | DSP
Blocks | -3
Speed
Grade
(2) | -3
Speed
Grade | -4
Speed
Grade | -5
Speed
Grade | Unit | | TriMatrix
Memory | Single port
RAM 4K × 144 bit | 0 | 1 | 0 | 349.65 | 333.33 | 303.95 | 261.09 | MHz | | M-RAM
block | Simple dual-port
RAM 4K × 144 bit | 0 | 1 | 0 | 420.16 | 400.00 | 364.96 | 313.47 | MHz | | | True dual-port
RAM 4K × 144 bit | 0 | 1 | 0 | 349.65 | 333.33 | 303.95 | 261.09 | MHz | | | Single port
RAM 8K × 72 bit | 0 | 1 | 0 | 354.60 | 337.83 | 307.69 | 263.85 | MHz | | | Simple dual-port
RAM 8K × 72 bit | 0 | 1 | 0 | 420.16 | 400.00 | 364.96 | 313.47 | MHz | | | True dual-port
RAM 8K × 72 bit | 0 | 1 | 0 | 349.65 | 333.33 | 303.95 | 261.09 | MHz | | | Single port
RAM 16K × 36 bit | 0 | 1 | 0 | 364.96 | 347.22 | 317.46 | 271.73 | MHz | | | Simple dual-port
RAM 16K × 36 bit | 0 | 1 | 0 | 420.16 | 400.00 | 364.96 | 313.47 | MHz | | | True dual-port
RAM 16K × 36 bit | 0 | 1 | 0 | 359.71 | 342.46 | 313.47 | 268.09 | MHz | | | Single port
RAM 32K × 18 bit | 0 | 1 | 0 | 364.96 | 347.22 | 317.46 | 271.73 | MHz | | | Simple dual-port
RAM 32K × 18 bit | 0 | 1 | 0 | 420.16 | 400.0 | 364.96 | 313.47 | MHz | | | True dual-port
RAM 32K × 18 bit | 0 | 1 | 0 | 359.71 | 342.46 | 313.47 | 268.09 | MHz | | | Single port
RAM 64K × 9 bit | 0 | 1 | 0 | 364.96 | 347.22 | 317.46 | 271.73 | MHz | | | Simple dual-port
RAM 64K × 9 bit | 0 | 1 | 0 | 420.16 | 400.0 | 364.96 | 313.47 | MHz | | | True dual-port
RAM 64K × 9 bit | 0 | 1 | 0 | 359.71 | 342.46 | 313.47 | 268.09 | MHz | | Table 5-73. Stra | tix II I/O Inpu | t Delay for Co | lumn Pins (Pa | art 2 of 3) | | | | | |--------------------|--------------------|----------------|---------------|-------------------|-------------------|----------|----------|-------| | I/O Standard | Parameter | Minimu | m Timing | -3 Speed
Grade | -3 Speed
Grade | -4 Speed | -5 Speed | Unit | | i/O Stailualu | raiailietei | Industrial | Commercial | (2) | (3) | Grade | Grade | Oiiit | | 1.5-V HSTL | t _{P1} | 560 | 587 | 993 | 1041 | 1141 | 1329 | ps | | Class II | t _{PCOUT} | 294 | 308 | 557 | 584 | 640 | 746 | ps | | 1.8-V HSTL | t _{Pl} | 543 | 569 | 898 | 941 | 1031 | 1201 | ps | | Class I | t _{PCOUT} | 277 | 290 | 462 | 484 | 530 | 618 | ps | | 1.8-V HSTL | t _{Pl} | 543 | 569 | 898 | 941 | 1031 | 1201 | ps | | Class II | t _{PCOUT} | 277 | 290 | 462 | 484 | 530 | 618 | ps | | PCI | t _{Pl} | 679 | 712 | 1214 | 1273 | 1395 | 1625 | ps | | | t _{PCOUT} | 413 | 433 | 778 | 816 | 894 | 1042 | ps | | PCI-X | t _{Pl} | 679 | 712 | 1214 | 1273 | 1395 | 1625 | ps | | | t _{PCOUT} | 413 | 433 | 778 | 816 | 894 | 1042 | ps | | Differential | t _{Pl} | 507 | 530 | 818 | 857 | 939 | 1094 | ps | | SSTL-2 Class I | t _{PCOUT} | 241 | 251 | 382 | 400 | 438 | 511 | ps | | Differential | t _{Pl} | 507 | 530 | 818 | 857 | 939 | 1094 | ps | | SSTL-2 Class II | t _{PCOUT} | 241 | 251 | 382 | 400 | 438 | 511 | ps | | Differential | t _{Pl} | 543 | 569 | 898 | 941 | 1031 | 1201 | ps | | SSTL-18 Class I | t _{PCOUT} | 277 | 290 | 462 | 484 | 530 | 618 | ps | | Differential | t _{Pl} | 543 | 569 | 898 | 941 | 1031 | 1201 | ps | | SSTL-18 Class II | t _{PCOUT} | 277 | 290 | 462 | 484 | 530 | 618 | ps | | 1.8-V Differential | t _{Pl} | 543 | 569 | 898 | 941 | 1031 | 1201 | ps | | HSTL Class I (1) | t _{PCOUT} | 277 | 290 | 462 | 484 | 530 | 618 | ps | | 1.8-V Differential | t _{Pl} | 543 | 569 | 898 | 941 | 1031 | 1201 | ps | | HSTL Class II (1) | t _{PCOUT} | 277 | 290 | 462 | 484 | 530 | 618 | ps | | 1.5-V Differential | t _{P1} | 560 | 587 | 993 | 1041 | 1141 | 1329 | ps | | HSTL Class I (1) | t _{PCOUT} | 294 | 308 | 557 | 584 | 640 | 746 | ps | | 1.5-V Differential | t _{P1} | 560 | 587 | 993 | 1041 | 1141 | 1329 | ps | | HSTL Class II (1) | t _{PCOUT} | 294 | 308 | 557 | 584 | 640 | 746 | ps | | | Drive
Strength | Parameter | Minimu | m Timing | -3 | -3 | -4 | -5 | | |---------------------|-------------------|------------------|------------|------------|-----------------------|-----------------------|----------------|----------------|------| | I/O Standard | | | Industrial | Commercial | Speed
Grade
(3) | Speed
Grade
(4) | Speed
Grade | Speed
Grade | Unit | | Differential | 8 mA | t _{OP} | 913 | 957 | 1715 | 1799 | 1971 | 2041 | ps | | SSTL-2 Class I | | t _{DIP} | 933 | 979 | 1781 | 1869 | 2047 | 2131 | ps | | | 12 mA | t _{OP} | 896 | 940 | 1672 | 1754 | 1921 | 1991 | ps | | | | t _{DIP} | 916 | 962 | 1738 | 1824 | 1997 | 2081 | ps | | Differential | 16 mA | t _{OP} | 876 | 918 | 1609 | 1688 | 1849 | 1918 | ps | | SSTL-2 Class II | | t _{DIP} | 896 | 940 | 1675 | 1758 | 1925 | 2008 | ps | | | 20 mA | t _{OP} | 877 | 919 | 1598 | 1676 | 1836 | 1905 | ps | | | | t _{DIP} | 897 | 941 | 1664 | 1746 | 1912 | 1995 | ps | | | 24 mA | t _{OP} | 872 | 915 | 1596 | 1674 | 1834 | 1903 | ps | | | | t _{DIP} | 892 | 937 | 1662 | 1744 | 1910 | 1993 | ps | | Differential | 4 mA | t _{OP} | 909 | 953 | 1690 | 1773 | 1942 | 2012 | ps | | SSTL-18
Class I | | t _{DIP} | 929 | 975 | 1756 | 1843 | 2018 | 2102 | ps | | 010001 | 6 mA | t _{OP} | 914 | 958 | 1656 | 1737 | 1903 | 1973 | ps | | | | t _{DIP} | 934 | 980 | 1722 | 1807 | 1979 | 2063 | ps | | | 8 mA | t _{OP} | 894 | 937 | 1640 | 1721 | 1885 | 1954 | ps | | | | t _{DIP} | 914 | 959 | 1706 | 1791 | 1961 | 2044 | ps | | | 10 mA | t _{OP} | 898 | 942 | 1638 | 1718 | 1882 | 1952 | ps | | | | t _{DIP} | 918 | 964 | 1704 | 1788 | 1958 | 2042 | ps | | | 12 mA | t _{OP} | 891 | 936 | 1626 | 1706 | 1869 | 1938 | ps | | | | t _{DIP} | 911 | 958 | 1692 | 1776 | 1945 | 2028 | ps | | Differential | 8 mA | t _{OP} | 883 | 925 | 1597 | 1675 | 1835 | 1904 | ps | | SSTL-18
Class II | | t _{DIP} | 903 | 947 | 1663 | 1745 | 1911 | 1994 | ps | | | 16 mA | t _{OP} | 894 | 937 | 1578 | 1655 | 1813 | 1882 | ps | | | | t _{DIP} | 914 | 959 | 1644 | 1725 | 1889 | 1972 | ps | | | 18 mA | t _{OP} | 890 | 933 | 1585 | 1663 | 1821 | 1890 | ps | | | | t _{DIP} | 910 | 955 | 1651 | 1733 | 1897 | 1980 | ps | | | 20 mA | t _{OP} | 890 | 933 | 1583 | 1661 | 1819 | 1888 | ps | | | | t _{DIP} | 910 | 955 | 1649 | 1731 | 1895 | 1978 | ps | | Table 5–77. Maximum Input Toggle Rate on Stratix II Devices (Part 2 of 2) | | | | | | | | | | | |---|-----------------------|-----|-----|-----|----------|-------|---------------------------------|-----|-----|--| | Input I/O Standard | Column I/O Pins (MHz) | | | Row | I/O Pins | (MHz) | Dedicated Clock Inputs
(MHz) | | | | | • | -3 | -4 | -5 | -3 | -4 | -5 | -3 | -4 | -5 | | | 1.8-V HSTL Class II | 500 | 500 | 500 | 500 | 500 | 500 | 500 | 500 | 500 | | | PCI (1) | 500 | 500 | 450 | - | - | - | 500 | 500 | 400 | | | PCI-X (1) | 500 | 500 | 450 | - | - | - | 500 | 500 | 400 | | | 1.2-V HSTL (2) | 280 | - | - | - | - | - | 280 | - | - | | | Differential SSTL-2 Class I (1), (3) | 500 | 500 | 500 | - | - | - | 500 | 500 | 500 | | | Differential SSTL-2 Class II (1), (3) | 500 | 500 | 500 | - | - | - | 500 | 500 | 500 | | | Differential SSTL-18 Class I (1), (3) | 500 | 500 | 500 | - | - | - | 500 | 500 | 500 | | | Differential SSTL-18 Class II (1), (3) | 500 | 500 | 500 | - | - | - | 500 | 500 | 500 | | | 1.8-V Differential HSTL
Class I (1), (3) | 500 | 500 | 500 | - | - | - | 500 | 500 | 500 | | | 1.8-V Differential HSTL
Class II (1), (3) | 500 | 500 | 500 | - | - | - | 500 | 500 | 500 | | | 1.5-V Differential HSTL
Class I (1), (3) | 500 | 500 | 500 | - | - | - | 500 | 500 | 500 | | | 1.5-V Differential HSTL
Class II (1), (3) | 500 | 500 | 500 | - | - | - | 500 | 500 | 500 | | | HyperTransport technology (4) | - | - | - | 520 | 520 | 420 | 717 | 717 | 640 | | | LVPECL (1) | - | - | - | - | - | - | 450 | 450 | 400 | | | LVDS (5) | - | - | - | 520 | 520 | 420 | 717 | 717 | 640 | | | LVDS (6) | - | - | - | - | - | - | 450 | 450 | 400 | | #### Notes to Table 5-77: - (1) Row clock inputs don't support PCI, PCI-X, LVPECL, and differential HSTL and SSTL standards. - (2) 1.2-V HSTL is only supported on column I/O pins. - (3) Differential HSTL and SSTL standards are only supported on column clock and DQS inputs. - (4) HyperTransport technology is only supported on row I/O and row dedicated clock input pins. - (5) These numbers apply to I/O pins and dedicated clock pins in the left and right I/O banks. - (6) These numbers apply to dedicated clock pins in the top and bottom I/O banks. | Table 5–78. Maximum Output Toggle Rate on Stratix II Devices (Part 1 of 5) Note (1) | | | | | | | | | | | | |---|-------------------|-------|------------|-------|-------|------------|-------|---------------------|-------|-------|--| | I/O Standard | Drive
Strength | Colum | n I/O Pins | (MHz) | Row I | /0 Pins (I | VIHz) | Clock Outputs (MHz) | | | | | | | -3 | -4 | -5 | -3 | -4 | -5 | -3 | -4 | -5 | | | 3.3-V LVTTL | 4 mA | 270 | 225 | 210 | 270 | 225 | 210 | 270 | 225 | 210 | | | | 8 mA | 435 | 355 | 325 | 435 | 355 | 325 | 435 | 355 | 325 | | | | 12 mA | 580 | 475 | 420 | 580 | 475 | 420 | 580 | 475 | 420 | | | | 16 mA | 720 | 594 | 520 | - | - | - | 720 | 594 | 520 | | | | 20 mA | 875 | 700 | 610 | - | - | - | 875 | 700 | 610 | | | | 24 mA | 1,030 | 794 | 670 | - | - | - | 1,030 | 794 | 670 | | | 3.3-V LVCMOS | 4 mA | 290 | 250 | 230 | 290 | 250 | 230 | 290 | 250 | 230 | | | | 8 mA | 565 | 480 | 440 | 565 | 480 | 440 | 565 | 480 | 440 | | | | 12 mA | 790 | 710 | 670 | - | - | - | 790 | 710 | 670 | | | | 16 mA | 1,020 | 925 | 875 | - | - | - | 1,020 | 925 | 875 | | | | 20 mA | 1,066 | 985 | 935 | - | - | - | 1,066 | 985 | 935 | | | | 24 mA | 1,100 | 1,040 | 1,000 | - | - | - | 1,100 | 1,040 | 1,000 | | | 2.5-V | 4 mA | 230 | 194 | 180 | 230 | 194 | 180 | 230 | 194 | 180 | | | LVTTL/LVCMOS | 8 mA | 430 | 380 | 380 | 430 | 380 | 380 | 430 | 380 | 380 | | | | 12 mA | 630 | 575 | 550 | 630 | 575 | 550 | 630 | 575 | 550 | | | | 16 mA | 930 | 845 | 820 | - | - | - | 930 | 845 | 820 | | | 1.8-V | 2 mA | 120 | 109 | 104 | 120 | 109 | 104 | 120 | 109 | 104 | | | LVTTL/LVCMOS | 4 mA | 285 | 250 | 230 | 285 | 250 | 230 | 285 | 250 | 230 | | | | 6 mA | 450 | 390 | 360 | 450 | 390 | 360 | 450 | 390 | 360 | | | | 8 mA | 660 | 570 | 520 | 660 | 570 | 520 | 660 | 570 | 520 | | | | 10 mA | 905 | 805 | 755 | - | - | - | 905 | 805 | 755 | | | | 12 mA | 1,131 | 1,040 | 990 | - | - | - | 1,131 | 1,040 | 990 | | | 1.5-V | 2 mA | 244 | 200 | 180 | 244 | 200 | 180 | 244 | 200 | 180 | | | LVTTL/LVCMOS | 4 mA | 470 | 370 | 325 | 470 | 370 | 325 | 470 | 370 | 325 | | | | 6 mA | 550 | 430 | 375 | - | - | - | 550 | 430 | 375 | | | | 8 mA | 625 | 495 | 420 | - | - | - | 625 | 495 | 420 | | | SSTL-2 Class I | 8 mA | 400 | 300 | 300 | - | - | - | 400 | 300 | 300 | | | | 12 mA | 400 | 400 | 350 | 400 | 350 | 350 | 400 | 400 | 350 | | | SSTL-2 Class II | 16 mA | 350 | 350 | 300 | 350 | 350 | 300 | 350 | 350 | 300 | | | | 20 mA | 400 | 350 | 350 | - | - | - | 400 | 350 | 350 | | | | 24 mA | 400 | 400 | 350 | - | - | - | 400 | 400 | 350 | | | Table 5–78. Maximum Output Toggle Rate on Stratix II Devices (Part 5 of 5) Note (1) | | | | | | | | | | | | |---|----------|-----------------------|----|----|-------|------------|---------------------|-----|----|----|--| | I/O Standard | Drive | Column I/O Pins (MHz) | | | Row I | /0 Pins (N | Clock Outputs (MHz) | | | | | | | Strength | -3 | -4 | -5 | -3 | -4 | -5 | -3 | -4 | -5 | | | 1.2-V Differential
HSTL | OCT 50 Ω | 280 | - | - | - | - | - | 280 | - | - | | #### Notes to Table 5-78: - (1) The toggle rate applies to 0-pF output load for all I/O standards except for LVDS and HyperTransport technology on row I/O pins. For LVDS and HyperTransport technology on row I/O pins, the toggle rates apply to load from 0 to 5pF. - (2) 1.2-V HSTL is only supported on column I/O pins in I/O banks 4, 7, and 8. - (3) Differential HSTL and SSTL is only supported on column clock and DQS outputs. - (4) HyperTransport technology is only supported on row I/O and row dedicated clock input pins. - (5) LVPECL is only supported on column clock pins. - (6) Refer to Tables 5–81 through 5–91 if using SERDES block. Use the toggle rate values from the clock output column for PLL output. | Table 5–79. Maximum Output Clock Toggle Rate Derating Factors (Part 1 of 5) | | | | | | | | | | | | | | |---|-------------------|---|-----|-----|--------------|-----|-----|-------------------------|-----|-----|--|--|--| | | | Maximum Output Clock Toggle Rate Derating Factors (ps/pF) | | | | | | | | | | | | | I/O Standard | Drive
Strength | Column I/O Pins | | | Row I/O Pins | | | Dedicated Clock Outputs | | | | | | | | J | -3 | -4 | -5 | -3 | -4 | -5 | -3 | -4 | -5 | | | | | 3.3-V LVTTL | 4 mA | 478 | 510 | 510 | 478 | 510 | 510 | 466 | 510 | 510 | | | | | | 8 mA | 260 | 333 | 333 | 260 | 333 | 333 | 291 | 333 | 333 | | | | | | 12 mA | 213 | 247 | 247 | 213 | 247 | 247 | 211 | 247 | 247 | | | | | | 16 mA | 136 | 197 | 197 | - | - | - | 166 | 197 | 197 | | | | | | 20 mA | 138 | 187 | 187 | - | - | - | 154 | 187 | 187 | | | | | | 24 mA | 134 | 177 | 177 | - | - | - | 143 | 177 | 177 | | | | | 3.3-V LVCMOS | 4 mA | 377 | 391 | 391 | 377 | 391 | 391 | 377 | 391 | 391 | | | | | | 8 mA | 206 | 212 | 212 | 206 | 212 | 212 | 178 | 212 | 212 | | | | | | 12 mA | 141 | 145 | 145 | - | - | - | 115 | 145 | 145 | | | | | | 16 mA | 108 | 111 | 111 | - | - | - | 86 | 111 | 111 | | | | | | 20 mA | 83 | 88 | 88 | - | - | - | 79 | 88 | 88 | | | | | | 24 mA | 65 | 72 | 72 | - | - | - | 74 | 72 | 72 | | | | | 2.5-V
LVTTL/LVCMOS | 4 mA | 387 | 427 | 427 | 387 | 427 | 427 | 391 | 427 | 427 | | | | | | 8 mA | 163 | 224 | 224 | 163 | 224 | 224 | 170 | 224 | 224 | | | | | | 12 mA | 142 | 203 | 203 | 142 | 203 | 203 | 152 | 203 | 203 | | | | | | 16 mA | 120 | 182 | 182 | - | - | - | 134 | 182 | 182 | | | |