Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 3022 | | Number of Logic Elements/Cells | 60440 | | Total RAM Bits | 2544192 | | Number of I/O | 334 | | Number of Gates | - | | Voltage - Supply | 1.15V ~ 1.25V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 484-BBGA | | Supplier Device Package | 484-FBGA (23x23) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep2s60f484i4n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # Document Revision History Table 1–6 shows the revision history for this chapter. | Table 1–6. Document Revision History | | | | |--------------------------------------|---|--------------------|--| | Date and
Document
Version | Changes Made | Summary of Changes | | | May 2007, v4.2 | Moved Document Revision History to the end of the chapter. | _ | | | April 2006, v4.1 | Updated "Features" section. Removed Note 4 from Table 1–2. Updated Table 1–4. | _ | | | December 2005,
v4.0 | Updated Tables 1–2, 1–4, and 1–5.Updated Figure 2–43. | _ | | | July 2005, v3.1 | Added vertical migration information, including
Table 1–4. Updated Table 1–5. | _ | | | May 2005, v3.0 | Updated "Features" section.Updated Table 1–2. | _ | | | March 2005,
v2.1 | Updated "Introduction" and "Features" sections. | _ | | | January 2005,
v2.0 | Added note to Table 1–2. | _ | | | October 2004,
v1.2 | Updated Tables 1-2, 1-3, and 1-5. | _ | | | July 2004, v1.1 | Updated Tables 1–1 and 1–2.Updated "Features" section. | | | | February 2004,
v1.0 | Added document to the Stratix II Device Handbook. | _ | | completely backward-compatible with four-input LUT architectures. One ALM can also implement any function of up to six inputs and certain seven-input functions. In addition to the adaptive LUT-based resources, each ALM contains two programmable registers, two dedicated full adders, a carry chain, a shared arithmetic chain, and a register chain. Through these dedicated resources, the ALM can efficiently implement various arithmetic functions and shift registers. Each ALM drives all types of interconnects: local, row, column, carry chain, shared arithmetic chain, register chain, and direct link interconnects. Figure 2–5 shows a high-level block diagram of the Stratix II ALM while Figure 2–6 shows a detailed view of all the connections in the ALM. Figure 2-5. High-Level Block Diagram of the Stratix II ALM Figure 2–7. ALM in Normal Mode Note (1) Note to Figure 2-7: (1) Combinations of functions with fewer inputs than those shown are also supported. For example, combinations of functions with the following number of inputs are supported: 4 and 3, 3 and 3, 3 and 2, 5 and 2, etc. The normal mode provides complete backward compatibility with fourinput LUT architectures. Two independent functions of four inputs or less can be implemented in one Stratix II ALM. In addition, a five-input function and an independent three-input function can be implemented without sharing inputs. Figure 2-14. Example of a 3-bit Add Utilizing Shared Arithmetic Mode #### **Shared Arithmetic Chain** In addition to the dedicated carry chain routing, the shared arithmetic chain available in shared arithmetic mode allows the ALM to implement a three-input add. This significantly reduces the resources necessary to implement large adder trees or correlator functions. The shared arithmetic chains can begin in either the first or fifth ALM in an LAB. The Quartus II Compiler creates shared arithmetic chains longer than 16 (8 ALMs in arithmetic or shared arithmetic mode) by linking LABs together automatically. For enhanced fitting, a long shared Figure 2–27. DSP Blocks Arranged in Columns DSP Block Column Figure 2–27 shows one of the columns with surrounding LAB rows. Figure 2-36. EP2S60, EP2S90, EP2S130 & EP2S180 Device I/O Clock Groups You can use the Quartus II software to control whether a clock input pin drives either a global, regional, or dual-regional clock network. The Quartus II software automatically selects the clocking resources if not specified. #### Clock Control Block Each global clock, regional clock, and PLL external clock output has its own clock control block. The control block has two functions: - Clock source selection (dynamic selection for global clocks) - Clock power-down (dynamic clock enable/disable) When using the global or regional clock control blocks in Stratix II devices to select between multiple clocks or to enable and disable clock networks, be aware of possible narrow pulses or glitches when switching from one clock signal to another. A glitch or runt pulse has a width that is less than the width of the highest frequency input clock signal. To prevent logic errors within the FPGA, Altera recommends that you build circuits that filter out glitches and runt pulses. Figures 2–37 through 2–39 show the clock control block for the global clock, regional clock, and PLL external clock output, respectively. Pins PLL Counter Outputs CLKn Internal Pin Logic Static Clock Select (2) This multiplexer supports User-Controllable Dynamic Switching Enable/ Disable Internal Logic **GCLK** Figure 2-37. Global Clock Control Blocks Notes to Figure 2-37: - These clock select signals can be dynamically controlled through internal logic when the device is operating in user mode. - (2) These clock select signals can only be set through a configuration file (.sof or .pof) and cannot be dynamically controlled during user mode operation. The Stratix II clock networks can be disabled (powered down) by both static and dynamic approaches. When a clock net is powered down, all the logic fed by the clock net is in an off-state thereby reducing the overall power consumption of the device. The global and regional clock networks can be powered down statically through a setting in the configuration (.sof or .pof) file. Clock networks that are not used are automatically powered down through configuration bit settings in the configuration file generated by the Quartus II software. The dynamic clock enable/disable feature allows the internal logic to control power up/down synchronously on GCLK and RCLK nets and PLL_OUT pins. This function is independent of the PLL and is applied directly on the clock network or PLL_OUT pin, as shown in Figures 2–37 through 2–39. The following restrictions for the input clock pins apply: - CLK0 pin -> inclk[0] of CLKCTRL - CLK1 pin -> inclk[1] of CLKCTRL - CLK2 pin -> inclk[0] of CLKCTRL - CLK3 pin -> inclk[1] of CLKCTRL In general, even CLK numbers connect to the inclk [0] port of CLKCTRL, and odd CLK numbers connect to the inclk [1] port of CLKCTRL. Failure to comply with these restrictions will result in a no-fit error. #### **Enhanced & Fast PLLs** Stratix II devices provide robust clock management and synthesis using up to four enhanced PLLs and eight fast PLLs. These PLLs increase performance and provide advanced clock interfacing and clock-frequency synthesis. With features such as clock switchover, spread-spectrum clocking, reconfigurable bandwidth, phase control, and reconfigurable phase shifting, the Stratix II device's enhanced PLLs provide you with complete control of clocks and system timing. The fast PLLs provide general purpose clocking with multiplication and phase shifting as well as high-speed outputs for high-speed differential I/O support. Enhanced and fast PLLs work together with the Stratix II high-speed I/O and advanced clock architecture to provide significant improvements in system performance and bandwidth. | Table 2–16. Stratix II Supported I/O Standards (Part 2 of 2) | | | | | |--|--------------------|--|---|--| | I/O Standard Type | | Input Reference
Voltage (V _{REF}) (V) | Output Supply
Voltage (V _{CCIO}) (V) | Board Termination Voltage (V_{TT}) (V) | | SSTL-2 Class I and II | Voltage-referenced | 1.25 | 2.5 | 1.25 | #### Notes to Table 2–16: - (1) This I/O standard is only available on input and output column clock pins. - (2) This I/O standard is only available on input clock pins and DQS pins in I/O banks 3, 4, 7, and 8, and output clock pins in I/O banks 9,10, 11, and 12. - (3) V_{CCIO} is 3.3 V when using this I/O standard in input and output column clock pins (in I/O banks 9, 10, 11, and 12). The clock input pins supporting LVDS on banks 3, 4, 7, and 8 use V_{CCINT} for LVDS input operations and have no dependency on the V_{CCIO} level of the bank. - (4) 1.2-V HSTL is only supported in I/O banks 4,7, and 8. For more information on I/O standards supported by Stratix II I/O banks, refer to the *Selectable I/O Standards in Stratix II & Stratix II GX Devices* chapter in volume 2 of the *Stratix II Device Handbook* or the *Stratix II GX Device Handbook*. Stratix II devices contain eight I/O banks and four enhanced PLL external clock output banks, as shown in Figure 2–57. The four I/O banks on the right and left of the device contain circuitry to support high-speed differential I/O for LVDS and HyperTransport inputs and outputs. These banks support all Stratix II I/O standards except PCI or PCI-X I/O pins, and SSTL-18 Class II and HSTL outputs. The top and bottom I/O banks support all single-ended I/O standards. Additionally, enhanced PLL external clock output banks allow clock output capabilities such as differential support for SSTL and HSTL. | Table 3–5. Stratix II Configuration Features (Part 2 of 2) | | | | | | |--|--|-----------------|---------------|--------------------------|--| | Configuration
Scheme | Configuration Method | Design Security | Decompression | Remote System
Upgrade | | | PPA | MAX II device or microprocessor and flash device | | | ✓ | | | JTAG | Download cable (4) | | | | | | | MAX II device or microprocessor and flash device | | | | | #### *Notes for Table 3–5:* - (1) In these modes, the host system must send a DCLK that is $4\times$ the data rate. - (2) The enhanced configuration device decompression feature is available, while the Stratix II decompression feature is not available. - (3) Only remote update mode is supported when using the AS configuration scheme. Local update mode is not supported. - (4) The supported download cables include the Altera USB Blaster universal serial bus (USB) port download cable, MasterBlaster serial/USB communications cable, ByteBlaster II parallel port download cable, and the ByteBlasterMV parallel port download cable. See the *Configuring Stratix II & Stratix II GX Devices* chapter in volume 2 of the *Stratix II Device Handbook* or the *Stratix II GX Device Handbook* for more information about configuration schemes in Stratix II and Stratix II GX devices. #### Device Security Using Configuration Bitstream Encryption Stratix II FPGAs are the industry's first FPGAs with the ability to decrypt a configuration bitstream using the Advanced Encryption Standard (AES) algorithm. When using the design security feature, a 128-bit security key is stored in the Stratix II FPGA. To successfully configure a Stratix II FPGA that has the design security feature enabled, it must be configured with a configuration file that was encrypted using the same 128-bit security key. The security key can be stored in non-volatile memory inside the Stratix II device. This non-volatile memory does not require any external devices, such as a battery back-up, for storage. | Table 3–7. Dod | cument Revision History (Part 2 of 2) | <u> </u> | |---------------------------------|---|--------------------| | Date and
Document
Version | Changes Made | Summary of Changes | | April 2006,
v4.1 | Updated "Device Security Using Configuration Bitstream Encryption" section. | _ | | December
2005, v4.0 | Updated "Software Interface" section. | _ | | May 2005, v3.0 | Updated "IEEE Std. 1149.1 JTAG Boundary-Scan
Support" section. Updated "Operating Modes" section. | _ | | January 2005,
v2.1 | Updated JTAG chain device limits. | _ | | January 2005,
v2.0 | Updated Table 3–3. | _ | | July 2004, v1.1 | Added "Automated Single Event Upset (SEU) Detection" section. Updated "Device Security Using Configuration Bitstream Encryption" section. Updated Figure 3–2. | _ | | February 2004,
v1.0 | Added document to the Stratix II Device Handbook. | _ | | Table 5-1 | Table 5–19. SSTL-2 Class I Specifications | | | | | | | |----------------------|---|---------------------------------|-------------------------|-----------|-------------------------|------|--| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | | V _{CCIO} | Output supply voltage | | 2.375 | 2.500 | 2.625 | ٧ | | | V_{TT} | Termination voltage | | V _{REF} - 0.04 | V_{REF} | V _{REF} + 0.04 | ٧ | | | V _{REF} | Reference voltage | | 1.188 | 1.250 | 1.313 | V | | | V _{IH} (DC) | High-level DC input voltage | | V _{REF} + 0.18 | | 3.00 | V | | | V _{IL} (DC) | Low-level DC input voltage | | -0.30 | | V _{REF} - 0.18 | ٧ | | | V _{IH} (AC) | High-level AC input voltage | | V _{REF} + 0.35 | | | V | | | V _{IL} (AC) | Low-level AC input voltage | | | | V _{REF} - 0.35 | ٧ | | | V _{OH} | High-level output voltage | $I_{OH} = -8.1 \text{ mA } (1)$ | V _{TT} + 0.57 | | | V | | | V _{OL} | Low-level output voltage | I _{OL} = 8.1 mA (1) | | | V _{TT} – 0.57 | ٧ | | #### Note to Table 5-19: (1) This specification is supported across all the programmable drive settings available for this I/O standard as shown in the *Stratix II Architecture* chapter in volume 1 of the *Stratix II Device Handbook*. | Table 5–20. SSTL-2 Class II Specifications | | | | | | | |--|-----------------------------|----------------------------------|-------------------------|-----------|--------------------------|------| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | V _{CCIO} | Output supply voltage | | 2.375 | 2.500 | 2.625 | V | | V _{TT} | Termination voltage | | V _{REF} - 0.04 | V_{REF} | V _{REF} + 0.04 | ٧ | | V _{REF} | Reference voltage | | 1.188 | 1.250 | 1.313 | ٧ | | V _{IH} (DC) | High-level DC input voltage | | V _{REF} + 0.18 | | V _{CCIO} + 0.30 | ٧ | | V _{IL} (DC) | Low-level DC input voltage | | -0.30 | | V _{REF} – 0.18 | ٧ | | V _{IH} (AC) | High-level AC input voltage | | V _{REF} + 0.35 | | | ٧ | | V _{IL} (AC) | Low-level AC input voltage | | | | V _{REF} - 0.35 | ٧ | | V _{OH} | High-level output voltage | $I_{OH} = -16.4 \text{ mA } (1)$ | V _{TT} + 0.76 | | | ٧ | | V _{OL} | Low-level output voltage | I _{OL} = 16.4 mA (1) | | | V _{TT} – 0.76 | V | #### Note to Table 5-20: (1) This specification is supported across all the programmable drive settings available for this I/O standard as shown in the *Stratix II Architecture* chapter in volume 1 of the *Stratix II Device Handbook*. **Table 5–30. Series On-Chip Termination Specification for Top & Bottom I/O Banks (Part 2 of 2)**Notes (1), 2 | | | | Resist | ance Toleranc | ince Tolerance | | |--------------------------------|--|--------------------------------|-------------------|-------------------|----------------|--| | Symbol | Description | Conditions | Commercial
Max | Industrial
Max | Unit | | | 50-Ω R _S
3.3/2.5 | Internal series termination with calibration (50- Ω setting) | $V_{CCIO} = 3.3/2.5 \text{ V}$ | ±5 | ±10 | % | | | | Internal series termination without calibration (50-Ω setting) | $V_{CCIO} = 3.3/2.5 \text{ V}$ | ±30 | ±30 | % | | | 50-Ω R _T
2.5 | Internal parallel termination with calibration (50-Ω setting) | V _{CCIO} = 1.8 V | ±30 | ±30 | % | | | 25-Ω R _S
1.8 | Internal series termination with calibration (25-Ω setting) | V _{CCIO} = 1.8 V | ±5 | ±10 | % | | | | Internal series termination without calibration (25- Ω setting) | V _{CCIO} = 1.8 V | ±30 | ±30 | % | | | 50-Ω R _S
1.8 | Internal series termination with calibration (50-Ω setting) | V _{CCIO} = 1.8 V | ±5 | ±10 | % | | | | Internal series termination without calibration (50- Ω setting) | V _{CCIO} = 1.8 V | ±30 | ±30 | % | | | 50-Ω R _T
1.8 | Internal parallel termination with calibration (50-Ω setting) | V _{CCIO} = 1.8 V | ±10 | ±15 | % | | | 50–Ω R _S
1.5 | Internal series termination with calibration (50-Ω setting) | V _{CCIO} = 1.5 V | ±8 | ±10 | % | | | | Internal series termination without calibration (50-Ω setting) | V _{CCIO} = 1.5 V | ±36 | ±36 | % | | | 50-Ω R _T
1.5 | Internal parallel termination with calibration (50-Ω setting) | V _{CCIO} = 1.5 V | ±10 | ±15 | % | | | 50–Ω R _S
1.2 | Internal series termination with calibration (50-Ω setting) | V _{CCIO} = 1.2 V | ±8 | ±10 | % | | | | Internal series termination without calibration (50-Ω setting) | V _{CCIO} = 1.2 V | ±50 | ±50 | % | | | 50-Ω R _T
1.2 | Internal parallel termination with calibration (50- Ω setting) | V _{CCIO} = 1.2 V | ±10 | ±15 | % | | #### Notes for Table 5-30: ⁽¹⁾ The resistance tolerances for calibrated SOCT and POCT are for the moment of calibration. If the temperature or voltage changes over time, the tolerance may also change. ⁽²⁾ On-chip parallel termination with calibration is only supported for input pins. Figure 5–3. Input Register Setup & Hold Timing Diagram For output timing, different I/O standards require different baseline loading techniques for reporting timing delays. Altera characterizes timing delays with the required termination for each I/O standard and with 0 pF (except for PCI and PCI-X which use 10 pF) loading and the timing is specified up to the output pin of the FPGA device. The Quartus II software calculates the I/O timing for each I/O standard with a default baseline loading as specified by the I/O standards. The following measurements are made during device characterization. Altera measures clock-to-output delays (t_{CO}) at worst-case process, minimum voltage, and maximum temperature (PVT) for default loading conditions shown in Table 5–34. Use the following equations to calculate clock pin to output pin timing for Stratix II devices. t_{CO} from clock pin to I/O pin = delay from clock pad to I/O output register + IOE output register clock-to-output delay + delay from output register to output pin + I/O output delay t_{xz}/t_{zx} from clock pin to I/O pin = delay from clock pad to I/O output register + IOE output register clock-to-output delay + delay from output register to output pin + I/O output delay + output enable pin delay Simulation using IBIS models is required to determine the delays on the PCB traces in addition to the output pin delay timing reported by the Quartus II software and the timing model in the device handbook. - 1. Simulate the output driver of choice into the generalized test setup, using values from Table 5–34. - 2. Record the time to V_{MEAS} . - 3. Simulate the output driver of choice into the actual PCB trace and load, using the appropriate IBIS model or capacitance value to represent the load. # EP2S15 Clock Timing Parameters Tables 5–44 though 5–47 show the maximum clock timing parameters for EP2S15 devices. | Table 5–44. EP2S15 Column Pins Regional Clock Timing Parameters | | | | | | | | |---|----------------|------------|----------|----------|----------|-------|--| | Devemates | Minimum Timing | | -3 Speed | -4 Speed | -5 Speed | Unit | | | Parameter | Industrial | Commercial | Grade | Grade | Grade | UIIII | | | t _{CIN} | 1.445 | 1.512 | 2.487 | 2.848 | 3.309 | ns | | | t _{COUT} | 1.288 | 1.347 | 2.245 | 2.570 | 2.985 | ns | | | t _{PLLCIN} | 0.104 | 0.102 | 0.336 | 0.373 | 0.424 | ns | | | t _{PLLCOUT} | -0.053 | -0.063 | 0.094 | 0.095 | 0.1 | ns | | | Table 5–45. EP2S15 Column Pins Global Clock Timing Parameters | | | | | | | |---|------------|------------|----------|----------|----------|-------| | Parameter | Minimu | m Timing | -3 Speed | -4 Speed | -5 Speed | Unit | | Parameter | Industrial | Commercial | Grade | Grade | Grade | UIIII | | t _{CIN} | 1.419 | 1.487 | 2.456 | 2.813 | 3.273 | ns | | t _{cout} | 1.262 | 1.322 | 2.214 | 2.535 | 2.949 | ns | | t _{PLLCIN} | 0.094 | 0.092 | 0.326 | 0.363 | 0.414 | ns | | t _{PLLCOUT} | -0.063 | -0.073 | 0.084 | 0.085 | 0.09 | ns | | Table 5–46. EP2S15 Row Pins Regional Clock Timing Parameters | | | | | | | | |--|----------------|------------|----------|----------|----------|-------|--| | Danie marten | Minimum Timing | | -3 Speed | -4 Speed | -5 Speed | Unit | | | Parameter | Industrial | Commercial | Grade | Grade | Grade | UIIIL | | | t _{CIN} | 1.232 | 1.288 | 2.144 | 2.454 | 2.848 | ns | | | t _{COUT} | 1.237 | 1.293 | 2.140 | 2.450 | 2.843 | ns | | | t _{PLLCIN} | -0.109 | -0.122 | -0.007 | -0.021 | -0.037 | ns | | | t _{PLLCOUT} | -0.104 | -0.117 | -0.011 | -0.025 | -0.042 | ns | | # I/O Delays See Tables 5–72 through 5–76 for I/O delays. | Table 5–72. I/O Delay Parameters | | | | |----------------------------------|--|--|--| | Symbol | Parameter | | | | t _{DIP} | Delay from I/O datain to output pad | | | | t _{OP} | Delay from I/O output register to output pad | | | | t _{PCOUT} | Delay from input pad to I/O dataout to core | | | | t _{P1} | Delay from input pad to I/O input register | | | | | Parameter | Minimum Timing | | -3 Speed | -3 Speed | -4 Speed | -5 Speed | | |------------------|--------------------|----------------|------------|------------------|------------------|----------|----------|------| | I/O Standard | | Industrial | Commercial | Grade (2) | Grade (3) | Grade | Grade | Unit | | LVTTL | t _{PI} | 674 | 707 | 1223 | 1282 | 1405 | 1637 | ps | | | t _{PCOUT} | 408 | 428 | 787 | 825 | 904 | 1054 | ps | | 2.5 V | t _{PI} | 684 | 717 | 1210 | 1269 | 1390 | 1619 | ps | | | t _{PCOUT} | 418 | 438 | 774 | 812 | 889 | 1036 | ps | | 1.8 V | t _{PI} | 747 | 783 | 1366 | 1433 | 1570 | 1829 | ps | | | t _{PCOUT} | 481 | 504 | 930 | 976 | 1069 | 1246 | ps | | 1.5 V | t _{PI} | 749 | 786 | 1436 | 1506 | 1650 | 1922 | ps | | | t _{PCOUT} | 483 | 507 | 1000 | 1049 | 1149 | 1339 | ps | | LVCMOS | t _{PI} | 674 | 707 | 1223 | 1282 | 1405 | 1637 | ps | | | t _{PCOUT} | 408 | 428 | 787 | 825 | 904 | 1054 | ps | | SSTL-2 Class I | t _{PI} | 507 | 530 | 818 | 857 | 939 | 1094 | ps | | | t _{PCOUT} | 241 | 251 | 382 | 400 | 438 | 511 | ps | | SSTL-2 Class II | t _{PI} | 507 | 530 | 818 | 857 | 939 | 1094 | ps | | | t _{PCOUT} | 241 | 251 | 382 | 400 | 438 | 511 | ps | | SSTL-18 Class I | t _{PI} | 543 | 569 | 898 | 941 | 1031 | 1201 | ps | | | t _{PCOUT} | 277 | 290 | 462 | 484 | 530 | 618 | ps | | SSTL-18 Class II | t _{P1} | 543 | 569 | 898 | 941 | 1031 | 1201 | ps | | | t _{PCOUT} | 277 | 290 | 462 | 484 | 530 | 618 | ps | | 1.5-V HSTL | t _{PI} | 560 | 587 | 993 | 1041 | 1141 | 1329 | ps | | Class I | t _{PCOUT} | 294 | 308 | 557 | 584 | 640 | 746 | ps | | | | ,, | for Column Pins (Part 3 of 8
Minimum Timing | | ,
 | _ | | | | |-----------------|-------------------|------------------|--|------------------------|----------------------|-----------------------------|----------------------|----------------------|------| | I/O Standard | Drive
Strength | Parameter | Industrial | m Timing
Commercial | -3
Speed
Grade | -3
Speed
Grade
(4) | -4
Speed
Grade | -5
Speed
Grade | Unit | | 1.8 V | 2 mA | t _{OP} | 1042 | 1093 | 2904 | 3048 | 3338 | 3472 | ps | | | | t _{DIP} | 1062 | 1115 | 2970 | 3118 | 3414 | 3562 | ps | | | 4 mA | t _{OP} | 1047 | 1098 | 2248 | 2359 | 2584 | 2698 | ps | | | | t _{DIP} | 1067 | 1120 | 2314 | 2429 | 2660 | 2788 | ps | | | 6 mA | t _{OP} | 974 | 1022 | 2024 | 2124 | 2326 | 2434 | ps | | | | t _{DIP} | 994 | 1044 | 2090 | 2194 | 2402 | 2524 | ps | | | 8 mA | t _{OP} | 976 | 1024 | 1947 | 2043 | 2238 | 2343 | ps | | | | t _{DIP} | 996 | 1046 | 2013 | 2113 | 2314 | 2433 | ps | | | 10 mA | t _{OP} | 933 | 978 | 1882 | 1975 | 2163 | 2266 | ps | | | | t _{DIP} | 953 | 1000 | 1948 | 2045 | 2239 | 2356 | ps | | | 12 mA | t _{OP} | 934 | 979 | 1833 | 1923 | 2107 | 2209 | ps | | | (1) | t _{DIP} | 954 | 1001 | 1899 | 1993 | 2183 | 2299 | ps | | 1.5 V | 2 mA | t _{OP} | 1023 | 1073 | 2505 | 2629 | 2879 | 3002 | ps | | | | t _{DIP} | 1043 | 1095 | 2571 | 2699 | 2955 | 3092 | ps | | | 4 mA | t _{OP} | 963 | 1009 | 2023 | 2123 | 2325 | 2433 | ps | | | | t _{DIP} | 983 | 1031 | 2089 | 2193 | 2401 | 2523 | ps | | | 6 mA | t _{OP} | 966 | 1012 | 1923 | 2018 | 2210 | 2315 | ps | | | | t _{DIP} | 986 | 1034 | 1989 | 2088 | 2286 | 2405 | ps | | | 8 mA (1) | t _{OP} | 926 | 971 | 1878 | 1970 | 2158 | 2262 | ps | | | | t _{DIP} | 946 | 993 | 1944 | 2040 | 2234 | 2352 | ps | | SSTL-2 Class I | 8 mA | t _{OP} | 913 | 957 | 1715 | 1799 | 1971 | 2041 | ps | | | | t _{DIP} | 933 | 979 | 1781 | 1869 | 2047 | 2131 | ps | | | 12 mA | t _{OP} | 896 | 940 | 1672 | 1754 | 1921 | 1991 | ps | | | (1) | t _{DIP} | 916 | 962 | 1738 | 1824 | 1997 | 2081 | ps | | SSTL-2 Class II | 16 mA | t _{OP} | 876 | 918 | 1609 | 1688 | 1849 | 1918 | ps | | | | t _{DIP} | 896 | 940 | 1675 | 1758 | 1925 | 2008 | ps | | | 20 mA | t _{OP} | 877 | 919 | 1598 | 1676 | 1836 | 1905 | ps | | | | t _{DIP} | 897 | 941 | 1664 | 1746 | 1912 | 1995 | ps | | | 24 mA
(1) | t _{OP} | 872 | 915 | 1596 | 1674 | 1834 | 1903 | ps | | | | t _{DIP} | 892 | 937 | 1662 | 1744 | 1910 | 1993 | ps | | I/O Standard | Drive
Strength | Parameter | Minimum Timing | | -3 | -3 | _ | -5 | | |------------------------------------|-------------------|------------------|----------------|------------|-----------------------|-----------------------|----------------------|----------------|------| | | | | Industrial | Commercial | Speed
Grade
(3) | Speed
Grade
(4) | -4
Speed
Grade | Speed
Grade | Unit | | Differential
SSTL-2 Class I | 8 mA | t _{OP} | 913 | 957 | 1715 | 1799 | 1971 | 2041 | ps | | | | t _{DIP} | 933 | 979 | 1781 | 1869 | 2047 | 2131 | ps | | | 12 mA | t _{OP} | 896 | 940 | 1672 | 1754 | 1921 | 1991 | ps | | | | t _{DIP} | 916 | 962 | 1738 | 1824 | 1997 | 2081 | ps | | Differential | 16 mA | t _{OP} | 876 | 918 | 1609 | 1688 | 1849 | 1918 | ps | | SSTL-2 Class II | | t _{DIP} | 896 | 940 | 1675 | 1758 | 1925 | 2008 | ps | | | 20 mA | t _{OP} | 877 | 919 | 1598 | 1676 | 1836 | 1905 | ps | | | | t _{DIP} | 897 | 941 | 1664 | 1746 | 1912 | 1995 | ps | | | 24 mA | t _{OP} | 872 | 915 | 1596 | 1674 | 1834 | 1903 | ps | | | | t _{DIP} | 892 | 937 | 1662 | 1744 | 1910 | 1993 | ps | | Differential
SSTL-18
Class I | 4 mA | t _{OP} | 909 | 953 | 1690 | 1773 | 1942 | 2012 | ps | | | | t _{DIP} | 929 | 975 | 1756 | 1843 | 2018 | 2102 | ps | | | 6 mA | t _{OP} | 914 | 958 | 1656 | 1737 | 1903 | 1973 | ps | | | | t _{DIP} | 934 | 980 | 1722 | 1807 | 1979 | 2063 | ps | | | 8 mA | t _{OP} | 894 | 937 | 1640 | 1721 | 1885 | 1954 | ps | | | | t _{DIP} | 914 | 959 | 1706 | 1791 | 1961 | 2044 | ps | | | 10 mA | t _{OP} | 898 | 942 | 1638 | 1718 | 1882 | 1952 | ps | | | | t _{DIP} | 918 | 964 | 1704 | 1788 | 1958 | 2042 | ps | | | 12 mA | t _{OP} | 891 | 936 | 1626 | 1706 | 1869 | 1938 | ps | | | | t _{DIP} | 911 | 958 | 1692 | 1776 | 1945 | 2028 | ps | | Differential | 8 mA | t _{OP} | 883 | 925 | 1597 | 1675 | 1835 | 1904 | ps | | SSTL-18
Class II | | t _{DIP} | 903 | 947 | 1663 | 1745 | 1911 | 1994 | ps | | | 16 mA | t _{OP} | 894 | 937 | 1578 | 1655 | 1813 | 1882 | ps | | | | t _{DIP} | 914 | 959 | 1644 | 1725 | 1889 | 1972 | ps | | | 18 mA | t _{OP} | 890 | 933 | 1585 | 1663 | 1821 | 1890 | ps | | | | t _{DIP} | 910 | 955 | 1651 | 1733 | 1897 | 1980 | ps | | | 20 mA | t _{OP} | 890 | 933 | 1583 | 1661 | 1819 | 1888 | ps | | | | t _{DIP} | 910 | 955 | 1649 | 1731 | 1895 | 1978 | ps | Figure 5-7. Duty Cycle Distortion DCD expressed in absolution derivation, for example, D1 or D2 in Figure 5–7, is clock-period independent. DCD can also be expressed as a percentage, and the percentage number is clock-period dependent. DCD as a percentage is defined as (T/2 - D1) / T (the low percentage boundary) (T/2 + D2) / T (the high percentage boundary) ## **DCD Measurement Techniques** DCD is measured at an FPGA output pin driven by registers inside the corresponding I/O element (IOE) block. When the output is a single data rate signal (non-DDIO), only one edge of the register input clock (positive or negative) triggers output transitions (Figure 5–8). Therefore, any DCD present on the input clock signal or caused by the clock input buffer or different input I/O standard does not transfer to the output signal. Figure 5–8. DCD Measurement Technique for Non-DDIO (Single-Data Rate) Outputs Table 5–85. Maximum DCD for DDIO Output on Column I/O Pins Without PLL in the Clock Path for -4 & -5 Devices (Part 2 of 2) Notes (1), (2) | DDIO Column Output I/O | Maximum DCD Based on I/O Standard of Input Feeding the DDIO
Clock Port (No PLL in the Clock Path) | | | | | | |------------------------|--|-----------|--------|-----------|------|--| | Standard | TTL/0 | CMOS | SSTL-2 | SSTL/HSTL | Unit | | | | 3.3/2.5 V | 1.8/1.5 V | 2.5 V | 1.8/1.5 V | | | | SSTL-18 Class I | 335 | 390 | 65 | 65 | ps | | | SSTL-18 Class II | 320 | 375 | 70 | 80 | ps | | | 1.8-V HSTL Class I | 330 | 385 | 60 | 70 | ps | | | 1.8-V HSTL Class II | 330 | 385 | 60 | 70 | ps | | | 1.5-V HSTL Class I | 330 | 390 | 60 | 70 | ps | | | 1.5-V HSTL Class II | 330 | 360 | 90 | 100 | ps | | | 1.2-V HSTL | 420 | 470 | 155 | 165 | ps | | | LVPECL | 180 | 180 | 180 | 180 | ps | | #### Notes to Table 5-85: - (1) Table 5–85 assumes the input clock has zero DCD. - (2) The DCD specification is based on a no logic array noise condition. Table 5–86. Maximum DCD for DDIO Output on Row I/O Pins with PLL in the Clock Path (Part 1 of 2) Note (1) | Row DDIO Output I/O | Maximum DCD (PLL Output Clock Feeding DDIO Clock Port) | | | | |---------------------|--|----------------|----|--| | Stanuaru | -3 Device | -4 & -5 Device | | | | 3.3-V LVTTL | 110 | 105 | ps | | | 3.3-V LVCMOS | 65 | 75 | ps | | | 2.5V | 75 | 90 | ps | | | 1.8V | 85 | 100 | ps | | | 1.5-V LVCMOS | 105 | 100 | ps | | | SSTL-2 Class I | 65 | 75 | ps | | | SSTL-2 Class II | 60 | 70 | ps | | | SSTL-18 Class I | 50 | 65 | ps | | | 1.8-V HSTL Class I | 50 | 70 | ps | | | 1.5-V HSTL Class I | 55 | 70 | ps | |